用户名: 密码: 验证码:
Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification
  • 作者:Zhe ; Shen ; Minghu ; Peng ; Dongsheng ; Zhu ; Tianxiang ; Zheng ; Yunbo ; Zhong ; Weili ; Ren ; Chuanjun ; Li ; Weidong ; Xuan ; Zhongming ; Ren
  • 英文作者:Zhe Shen;Minghu Peng;Dongsheng Zhu;Tianxiang Zheng;Yunbo Zhong;Weili Ren;Chuanjun Li;Weidong Xuan;Zhongming Ren;State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University;
  • 英文关键词:Directional solidification;;Sn-Bi alloy;;Forced flow;;Solute distribution;;Numerical simulation;;Electromagnetic field
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University;
  • 出版日期:2019-04-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:financially supported by the National Key Research and Development Program of China (No.2016YFB0301401);; the National Natural Science Foundation of China (No.U1732276);; the Science and Technology Commission of Shanghai Municipality (Key Project Nos.13JC1402500 and 15520711000);; the Independent Research and Development Project of State Key of Advanced Special Steel,Shanghai University (Nos.SKLASS2015-Z021 and SELF-2014-02)
  • 语种:英文;
  • 页:CLKJ201904013
  • 页数:10
  • CN:04
  • ISSN:21-1315/TG
  • 分类号:106-115
摘要
The effects of forced flows at different velocities on microstructure and solute distribution during the directional solidification of Sn-10 wt% Bi alloys under a simultaneous imposition of a transverse static magnetic field(TSMF) and an external direct current(DC) have been investigated experimentally and numerically. The experimental results show that the solid-liquid interface will gradually become sloping with the increase of the forced flow velocity when the thermoelectric magnetic convection(TEMC)dominates the forced flow at solidification front. However, the interface will gradually become planar as the flow velocity further increases when the electromagnetic convection(EMC) dominates the forced flow. Moreover, when the flow velocity gradually increases, the primary dendrite spacing decreases from384 to 105 μm accordingly. The simulation results show that the solute distribution at the two sides of the sample can be significantly changed by the forced flow at solidification front. The rejected solute will be unidirectionally transported to one side of the sample along the TEMC(a low-velocity forced flow),thereby causing the formation of a sloping interface. However, the rejected solute will be returned back along the EMC(a higher-velocity force flow), which results in a planar interface. Furthermore, the solute content at the two sides of the sample under the forced flows at different velocities was measured. The results are in good agreement with the simulation results, which shows that the solute content difference between the two sides of the sample reaches the maximum when a 0.5 T TSMF is applied, while the solute content difference decreases to zero with a simultaneous application of a 0.5 T TSMF and a 1.6 × 10~5 A/m~2 external DC.
        The effects of forced flows at different velocities on microstructure and solute distribution during the directional solidification of Sn-10 wt% Bi alloys under a simultaneous imposition of a transverse static magnetic field(TSMF) and an external direct current(DC) have been investigated experimentally and numerically. The experimental results show that the solid-liquid interface will gradually become sloping with the increase of the forced flow velocity when the thermoelectric magnetic convection(TEMC)dominates the forced flow at solidification front. However, the interface will gradually become planar as the flow velocity further increases when the electromagnetic convection(EMC) dominates the forced flow. Moreover, when the flow velocity gradually increases, the primary dendrite spacing decreases from384 to 105 μm accordingly. The simulation results show that the solute distribution at the two sides of the sample can be significantly changed by the forced flow at solidification front. The rejected solute will be unidirectionally transported to one side of the sample along the TEMC(a low-velocity forced flow),thereby causing the formation of a sloping interface. However, the rejected solute will be returned back along the EMC(a higher-velocity force flow), which results in a planar interface. Furthermore, the solute content at the two sides of the sample under the forced flows at different velocities was measured. The results are in good agreement with the simulation results, which shows that the solute content difference between the two sides of the sample reaches the maximum when a 0.5 T TSMF is applied, while the solute content difference decreases to zero with a simultaneous application of a 0.5 T TSMF and a 1.6 × 10~5 A/m~2 external DC.
引文
[1]J.Wang,Z.M.Ren,Y.Fautrelle,X.Li,H.Nguyen-Thi,N.Mangelinck-Noel,G.S.A.Jaoude,Y.B.Zhong,I.Kaldre,A.Bojarevics,J.Mater.Sci.48(2013)213-219.
    [2]X.Li,Y.Fautrelle,Z.M.Ren,Acta Mater.56(2008)3146-3161.
    [3]X.Li,D.F.Du,A.Gagnoud,Z.M.Ren,Y.Fautrelle,R.Moreau,Metall.Mater.Trans.A 45(2014)5584-5600.
    [4]K.Hoshikawa,J.Appl.Phys.21(1982)545-547.
    [5]K.Hoshi,N.Isawa,T.Suzuki,Y.Ohkubo,J.Electrochem.Soc.132(1985)693-700.
    [6]Y.Y.Khine,J.S.Walker,J.Cryst.Growth 183(1998)150-158.
    [7]X.Li,Y.Fautrelle,A.Gagnoud,D.F.Du,J.Wang,Z.M.Ren,H.Nguyen-Thi,N.Mangelinck-Noel,Acta Mater.64(2014)367-381.
    [8]D.F.Du,Y.Fautrelle,Z.M.Ren,R.Moreau,X.Li,ISIJ Int.57(2017)833-840.
    [9]J.Wang,Y.Fautrelle,Z.M.Ren,H.Nguyen-Thi,A.J.Salloum,G.Reinhart,N.Mangelinck-Noel,X.Li,I.Kaldre,Appl.Phys.Lett.104(2014),121916.
    [10]J.Wang,Y.Fautrelle,H.Nguyen-Thi,G.Reinhart,H.L.Liao,X.Li,Y.B.Zhong,Z.M.Ren,Metall.Mater.Transa.A 47(2016)1-11.
    [11]X.Li,Z.M.Ren,G.H.Cao,A.Gagmoud,Y.Fautrelle,Mater.Lett.65(2011)3340-3343.
    [12]J.Ni,C.Beckermann,Metall.Trans.B 22(1991)349-361.
    [13]Y.H.Yang,R.R.Chen,Q.Wang,J.J.Guo,Y.Q.Su,H.S.Ding,H.Z.Fu,Int.J.Heat Mass Transf.90(2018)56-66.
    [14]P.Sharifi,J.Jamali,K.Sadayappan,J.T.Wood,J.Mater.Sci.Technol.34(2018)324-334.
    [15]H.W.Pan,Z.Q.Han,B.C.Liu,J.Mater.Sci.Technol.32(2016)68-75.
    [16]Z.Y.Lu,Z.M.Ren,Y.Fautrelle,X.Li,ISIJ Int.58(2017)505-514.
    [17]M.C.Schneider,J.P.Gu,C.Beckermann,W.J.Boettinger,U.R.Kattner,Metall.Mater.Trans.A 28(1997)1517-1531.
    [18]S.Karagadde,L.Yuan,N.Shevchenko,S.Eckert,P.D.Lee,Acta Mater.79(2014)168-180.
    [19]A.Rouzaud,J.Coméra,P.Contamin,B.Angelier,F.Herbillon,J.J.Favier,J.Cryst.Growth 129(1993)173-178.
    [20]J.J.Favier,J.P.Garandet,A.Rouzaud,D.Camel,J.Cryst.Growth 140(1994)237-243.
    [21]J.J.Favier,P.Lehmann,J.P.Garandet,B.Drevet,F.Herbillon,Acta Mater.44(1996)4899-4907.
    [22]J.P.Garandet,J.I.D.Alexander,S.Corre,J.J.Favier,J.Cryst.Growth 226(2001)543-554.
    [23]D.R.Liu,B.G.Sang,X.H.Kang,D.Z.Li,Metall.Mater.Trans.B 42(2011)210-223.
    [24]Z.Shen,B.F.Zhou,Y.B.Zhong,L.C.Dong,H.Wang,L.J.Fan,T.X.Zheng,C.J.Li,W.L.Ren,W.D.Xuan,Z.M.Ren,Metall.Mater.Trans.A 49(2018)3373-3382.
    [25]P.Lehmann,R.Moreau,D.Camel,R.Bolcato,J.Cryst.Growth 183(1998)690-704.
    [26]P.Lehmann,R.Moreau,D.Camel,R.Bolcato,Acta Mater.46(1998)4067-4079.
    [27]M.Ganesan,D.Dye,P.D.Lee,Metall.Mater.Trans.A 36(2005)2191-2204.
    [28]M.Ganesan,L.Thuinet,D.Dye,P.D.Lee,Metall.Mater.Trans.B 38(2007)557-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700