用户名: 密码: 验证码:
氧化镧表面反应性对甲烷和氧分子活化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Surface Reactivity of Lanthanum Oxide on the Activation of Methane and Oxygen
  • 作者:程文敏 ; 夏文生 ; 万惠霖
  • 英文作者:CHENG Wenmin;XIA Wensheng;WAN Huilin;Key Laboratory of Theoretical and Computational Chemistry of Fujian Province,National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,State Key Laboratory of Physical Chemistry of Solid State Surfaces,College of Chemistry and Chemical Engineering,Xiamen University;
  • 关键词:氧化镧 ; 甲烷 ; ; 结构敏感性 ; 密度泛函理论
  • 英文关键词:Lanthanum oxide;;Methane;;Oxygen;;Structure sensitivity;;Density functional theory
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:厦门大学化学化工学院固体表面物理化学国家重点实验室醇醚酯化工清洁生产国家工程实验室福建省理论计算化学重点实验室;
  • 出版日期:2019-05-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(批准号:21373169);; 教育部长江学者和创新团队发展计划项目(批准号:IRT1036)资助~~
  • 语种:中文;
  • 页:GDXH201905012
  • 页数:10
  • CN:05
  • ISSN:22-1131/O6
  • 分类号:96-105
摘要
以氧化镧催化剂在甲烷氧化偶联(OCM)反应中的结构敏感性实验研究为基础,采用周期性密度泛函理论(DFT)计算研究氧化镧(001),(110)和(100) 3个晶面及OCM反应物分子甲烷和氧在其上的吸附、活化和解离.结果表明,氧化镧(001),(110)和(100) 3个晶面的表面能大小顺序为(110)>(100)>(001),3个晶面的价带和导带间隙大小顺序为(110)<(100)<(001),即(001)是3个晶面中最稳定的晶面,而(110)则是最活泼的晶面.甲烷分子在氧化镧(001),(110)和(100)晶面上的吸附很弱(~0. 03 e V),H—CH3解离吸附能分别为2. 16,0. 68和0. 90 e V,解离反应的难易性与晶面的活性顺序一致;而氧分子在氧化镧(001),(110)和(100)晶面上的分子吸附能分别为-0. 04,-0. 31和-0. 12 e V,解离吸附能分别为1. 22,0. 53和1. 52e V,即氧化镧晶面结构对氧分子吸附具有明显的影响,其中,(001)晶面上吸附最弱,(110)晶面上吸附最强,以致O—O在(110)晶面上可以较低能垒(0. 53 e V)解离,形成亲电的过氧物种.由于氧分子在氧化镧表面的吸附较甲烷分子强,因此,氧化镧在OCM反应中结构敏感性应与氧分子的吸附和活化密切相关.甲烷和氧分子在氧化镧表面上活化的本质源自于电子自表面流向甲烷和氧分子的反键轨道,且表面结构的改变会导致不同强度的电子流动驱动.
        The properties of lanthanum oxide facets [(001),(110) and(100) ] and the adsorption,activation and dissociation of methane and oxygen on them were studied by means of periodical density functional theory(DFT),based on the previous experimental investigation upon structure sensitivity of lanthanum oxide in Oxidative coupling of methane(OCM). The result shows that surface energy of lanthanum oxide facets decreases in the order of(110) >(100) >(001),and the energy gap between valence and conduction bands follows the order of(110) <(100) <(001),meaning that the facet(001) is most stable and(110) is most reactive among the three facets. The associative adsorption of methane on lanthanum oxide is very weak(ca.0. 03 eV),and the barriers for H—CH3 on lanthanum oxide(001),(110) and(100) surfaces are 2. 16,0. 68 and 0. 90 e V,respectively,showing the reactivity of the facets is matched with the dissociation of methane. On the other hand,the associative adsorption energy of oxygen on lanthanum oxide(001),(110) and(100) surfaces is-0. 04,-0. 31 and-0. 12 eV,respectively,and the dissociation barrier is 1. 22,0. 53 and1. 52 e V,respectively. The oxygen adsorption is greatly influenced by the varied structures of lanthanum oxide.The interaction of oxygen with the facet(001) is the weakest,but the strongest with the facet(110) among the three facets of lanthanum oxide,which promotes O—O bond cleavage at lower barrier(0. 53 e V) on the facet(110) to lead to the formation of electrophilic peroxide species. As oxygen adsorption on lanthanum oxide is stronger than methane,the structure sensitivity of lanthanum oxide in OCM should be closely associated with oxygen adsorption and activation. In addition,the mechanism of methane and oxygen activation on lanthanum oxide can be ascribed to the transfer of electrons from the surface to their antibonding orbitals,which implies that varied structures of the lanthanum oxide surfaces can change the driving forces on the electron transfer.
引文
[1] Schwach P.,Pan X.,Bao X.,Chem. Rev.,2017,117(13),8497—8520
    [2] Kondratenko E. V.,Peppel T.,Seeburg D.,Kondratenko V. A.,Kalevaru N.,Martin A.,Wohlrab S.,Catal. Sci. Technol.,2017,7(2),366—381
    [3] Wang B.,Albarracin-Suazo S.,Pagan-Torres Y.,Nikolla E.,Catal. Today,2017,285,147—158
    [4] Narsimhan K.,Iyoki K.,Dinh K.,Roman-Leshkov Y.,ACS Cent. Sci.,2016,2(6),424—429
    [5] Ravi M.,Ranocchiari M.,van Bokhoven J. A.,Angew. Chem.,Int. Ed.,2017,56(52),16464—16483
    [6] Zhu W.,Shen M.,Fan G.,Yang A.,Meyer J. R.,Ou Y.,Yin B.,Fortner J.,Foston M.,Li Z.,Zou Z.,Sadtler B.,ACS Appl. Nano Mater.,2018,1(12),6683—6691
    [7] Farrell B. L.,Igenegbai V. O.,Linic S.,ACS Catal.,2016,6(7),4340—4346
    [8] Olivos-Suarez A. I.,Szecsenyi A.,Hensen E. J. M.,Ruiz-Martinez J.,Pidko E. A.,Gascon J.,ACS Catal.,2016,6(5),2965—2981
    [9] Taifan W.,Baltrusaitis J.,Appl. Catal.,B,2016,198,525—547
    [10] Noon D.,Seubsai A.,Senkan S.,ChemCatChem,2013,5(1),146—149
    [11] Zuo Z.,Ramirez P. J.,Senanayake S. D.,Liu P.,Rodriguez J. A.,J. Am. Chem. Soc.,2016,138(42),13810—13813
    [12] Cui X.,Li H.,Wang Y.,Hu Y.,Hua L.,Li H.,Han X.,Liu Q.,Yang F.,He L.,Chen X.,Li Q.,Xiao J.,Deng D.,Bao X.,Chem.,2018,4(8),1902—1910
    [13] Hou Y. H.,Han W. C.,Xia W. S.,Wan H. L.,ACS Catal.,2015,5(3),1663—1674
    [14] Greis O.,J. Solid State Chem.,1980,34(1),39—44
    [15] Molinari M.,Parker S. C.,Sayle D. C.,Islam M. S.,J. Phys. Chem. C,2012,116(12),7073—7082
    [16] Kresse G.,Furthmuller J.,Comput. Mater. Sci.,1996,6(1),15—50
    [17] Kresse G.,Joubert D.,Phys. Rev. B:Condens. Matter Mater. Phys.,1999,59(3),1758—1775
    [18] Li B.,Metiu H.,J. Phys. Chem. C,2010,114(28),12234—12244
    [19] Anisimov V. I.,Aryasetiawan F.,Lichtenstein A. I.,J. Phys.:Condens. Matter,1997,9(4),767—808
    [20] Perdew J. P.,Zunger A.,Phys. Rev. B:Condens. Matter,1981,23(10),5048—5079
    [21] Zhou W.,Jefferson D. A.,Liang W. Y.,Surf. Sci.,1989,209(3),444—454
    [22] Islam M. S.,Ilett D. J.,Catal. Today,1994,21(2/3),417—422
    [23] Chretien S.,Metiu H.,J. Phys. Chem. C,2014,118(47),27336—27342
    [24] Palmer M. S.,Neurock M.,Olken M. M.,J. Am. Chem. Soc.,2002,124(28),8452—8461
    [25] Wang S.,Cong L.,Zhao C.,Li Y.,Pang Y.,Zhao Y.,Li S.,Sun Y.,Phys. Chem. Chem. Phys.,2017,19(39),26799—26811
    [26] Xing B.,Pang X. Y.,Wang G. C.,J. Catal.,2011,282(1),74—82
    [27] Xing B.,Wang G. C.,Phys. Chem. Chem. Phys.,2014,16(6),2621—2629
    [28] Wang J.,Wang G. C.,J. Phys. Chem. C,2018,122(30),17338—17346
    [29] Wang G. C.,J. Xinyang Normal University(Nat. Sci. Ed.),2018,31(2),333—338(王贵昌.信阳师范学院学报(自然科学版),2018,31(2),333—338)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700