用户名: 密码: 验证码:
Microstructure and compressive/tensile characteristic of large size Zr-based bulk metallic glass prepared by laser solid forming
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and compressive/tensile characteristic of large size Zr-based bulk metallic glass prepared by laser solid forming
  • 作者:Xin ; Lin ; Yuanyuan ; Zhang ; Gaolin ; Yang ; Xuehao ; Gao ; Qiao ; Hu ; Jun ; Yu ; Lei ; Wei ; Weidong ; Huang
  • 英文作者:Xin Lin;Yuanyuan Zhang;Gaolin Yang;Xuehao Gao;Qiao Hu;Jun Yu;Lei Wei;Weidong Huang;State Key Laboratory of Solidification Processing,Northwestern Polytechnical University;Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design,MIIT China,Northwestern Polytechnical University;
  • 英文关键词:Zr-based bulk metallic glass;;Laser solid forming;;Additive manufacturing;;Microstructure;;Compressive and tensile behavior
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:State Key Laboratory of Solidification Processing, Northwestern Polytechnical University;Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, MIIT China, Northwestern Polytechnical University;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Key Research and Development Plan of China (2016YFB1100100);; the National Natural Science Foundation of China (Grant Nos. 51323008, 51501154 and 51565041)
  • 语种:英文;
  • 页:CLKJ201902010
  • 页数:8
  • CN:02
  • ISSN:21-1315/TG
  • 分类号:102-109
摘要
The large size, crack-free Zr_(55)Cu_(30)Al_(10)Ni_(5) bulk metallic glass(BMGs) with the diameter of 54 mm and the height of 15 mm was built by laser solid forming additive manufacturing technology, whose size is larger than the critical diameter by casting. The microstructure, tensile and compressive deformation behaviors and fracture morphology of laser solid formed Zr_(55)Cu_(30)Al_(10)Ni_5 BMGs were investigated. It is found that the crystallization mainly occurs in the heat-affected zones of deposition layers, which consist of Al_5Ni_3Zr_2, NiZr_2, ZrCu, CuZr_2 phases. The content of amorphous phase in the deposit is about 63%.Under the compressive loading, the deposit presents no plasticity before fracture occurs. The fracture process is mainly controlled by the shear stress and the compressive shear fracture angles of about39?. The compressive strength reaches 1452 MPa, which is equivalent to that of as-Cast Zr_(55)Cu_(30)Al_(10)Ni_5 BMGs, and there exist vein-like patterns, river-like patterns and smooth regions at the compressive fractography. Under the tensile loading, the deposit presents the brittle fracture pattern without plastic deformation. The fracture process exhibits normal fracture model, and the tensile shear fracture angle of about 90?. The tensile strength is only about 609 MPa, and the tensile fractography mainly consists of micro-scaled cores and vein-like patterns, dimple-like patterns, chocolate-like patterns and smooth regions. The results further verified the feasibility and large potential of laser additive manufacturing on fabrication and industrial application of large-scale BMGs parts.
        The large size, crack-free Zr_(55)Cu_(30)Al_(10)Ni_(5) bulk metallic glass(BMGs) with the diameter of 54 mm and the height of 15 mm was built by laser solid forming additive manufacturing technology, whose size is larger than the critical diameter by casting. The microstructure, tensile and compressive deformation behaviors and fracture morphology of laser solid formed Zr_(55)Cu_(30)Al_(10)Ni_5 BMGs were investigated. It is found that the crystallization mainly occurs in the heat-affected zones of deposition layers, which consist of Al_5Ni_3Zr_2, NiZr_2, ZrCu, CuZr_2 phases. The content of amorphous phase in the deposit is about 63%.Under the compressive loading, the deposit presents no plasticity before fracture occurs. The fracture process is mainly controlled by the shear stress and the compressive shear fracture angles of about39?. The compressive strength reaches 1452 MPa, which is equivalent to that of as-Cast Zr_(55)Cu_(30)Al_(10)Ni_5 BMGs, and there exist vein-like patterns, river-like patterns and smooth regions at the compressive fractography. Under the tensile loading, the deposit presents the brittle fracture pattern without plastic deformation. The fracture process exhibits normal fracture model, and the tensile shear fracture angle of about 90?. The tensile strength is only about 609 MPa, and the tensile fractography mainly consists of micro-scaled cores and vein-like patterns, dimple-like patterns, chocolate-like patterns and smooth regions. The results further verified the feasibility and large potential of laser additive manufacturing on fabrication and industrial application of large-scale BMGs parts.
引文
[1] C.J. Byrne, M. Eldrup, Science 321(2008)502–503.
    [2] W. Pilarczyk, J. Alloys. Compd. 615(2004)S132–S135.
    [3] J. Schroers, Adv. Mater. 22(2010)1566–1597.
    [4] W.L. Johnson, JOM 54(2002)40–43.
    [5] A.N.N. Inoue, MRS Bull. 32(2007)651–658.
    [6] H. Sun, K.M. Flores, Metall. Mater. Trans. A 41(2010)1752–1757.
    [7] Y. Gan, W.X. Wang, Z.S. Guan, Z.Q. Cu, Opt. Laser Technol. 69(2015)17–22.
    [8] Y.L. Hu, X. Lin, K. Song, X.Y. Jiang, H.O. Yang, W.D. Huang, Opt. Laser Technol.86(2016)1–7.
    [9] X. Lin, T.M. Yue, H.O. Yang, W.D. Huang, Metall. Mater. Trans. A 38(2007)127–137.
    [10] B. Zheng, Y. Zhou, J.E. Smugeresky, E.J. Lavernia, Metall. Mater. Trans. A 40(2009)1235–1245.
    [11] G.L. Yang, X. Lin, F.G. Liu, Q. Hu, L. Ma, J.F. Li, W.D. Huang, Intermetallics 22(2012)110–115.
    [12] X. Ye, Y.C. Shin, Surf. Coat. Technol. 239(2014)34–40.
    [13] S. Pauly, L. L?ber, R. Petters, M. Stoica, S. Scudino, U. Kühn, J. Eckert, Mater.Today 16(2013)37–41.
    [14] Z. Mahbooba, L. Thorsson, M. Unosson, P. Skoglund, H. West, T. Horn, C. Rock,E. Vogli, O. Harrysson, Appl. Mater. Today 11(2018)1–6.
    [15] X.P. Li, M.P. Roberts, S. O’Keeffe, T.B. Sercombe, Mater. Des. 112(2016)217–226.
    [16] C. Yang, C. Zhang, W. Xing, L. Liu, Intermetallics 94(2018)22–28.
    [17] S. Pauly, C. Schricker, S. Scudino, L. Deng, U. K¨uhn, Mater. Des. 135(2017)133–141.
    [18] P. Bordeenithikasem, M. Stolpe, A. Elsen, D.C. Hofmanna, Addit. Manuf. 21(2018)312–317.
    [19] L. Deng, S. Wang, P. Wang, U. K¨uhn, S. Pauly, Mater. Lett. 212(2018)346–349.
    [20] P. Tsai, K.M. Flores, Acta Mater. 120(2016)426–434.
    [21] P. Gargarella, S. Pauly, M.S. Khoshkhoo, J. Alloys Compd. 663(2016)531–539.
    [22] H. Zhai, H. Wang, F. Liu, J. Alloys Compd. 685(2016)322–330.
    [23] C.C. Hays, C.P. Kim, W.L. Johnson, Phys. Rev. Lett. 84(2000)2901–2904.
    [24] G.J. Wu, R. Li, Z.Q. Liu, B.Q. Chen, Y. Li, Y. Cai, T. Zhang, Intermetallics 24(2012)50–55.
    [25] Y.Y. Cheng, S.J. Pang, C. Chen, T. Zhang, J. Alloys Compd. 688(2016)724–728.
    [26] J. Gu, M. Song, S. Ni, X.Z. Liao, S.F. Guo, Mater. Sci. Eng. A 602(2014)68–76.
    [27] A. Inoue, F.L. Kong, S.L.Zhu E. Shalaan, F.M. Al-Marzouki, Intermetallics 58(2015)20–30.
    [28] B. Song, S.J. Dong, Q. Liu, H.L. Liao, C. Coddet, Mater. Des. 54(2014)727–733.
    [29] Y.Y. Zhang, X. Lin, L.L. Wang, L. Wei, F.G. Liu, W.D. Huang, Intermetallics 66(2015)22–30.
    [30] A. Inoue, A. Takeuchi, Acta Mater. 59(2011)2243–2267.
    [31] Z.H. Chu, B. Huang, G.Y. Yuan, J. Zhang, J. Yin, W.J. Ding, Rare Metal Mat. Eng.40(2011)765–768.
    [32] W.J. Wright, R.B. Schwarz, W.D. Nix, Mater. Sci. Eng. A 319(2001)229–232.
    [33] W.J. Wright, R. Saha, W.D. Nix, Mater. Trans. 42(2001)642–649.
    [34] Y.K. Xu, H. Ma, J. Xu, E. Ma, Acta Mater. 53(2005)1857–1866.
    [35] J.W. Qiao, Y. Zhang, G.L. Chen, Mater. Des. 30(2009)3966–3971.
    [36] Z.F. Zhang, G. He, J. Eckert, L. Schultz, Phys. Rev. Lett. 91(2003)0455054.
    [37] C.T. Chang, T. Kubota, A. Makino, A. Inoue, J. Alloys Compd. 473(2009)368–372.
    [38] Z.F. Zhang, G. He, J. Eckert, Philos. Mag. Abingdon(Abingdon)85(2005)897–915.
    [39] Z.F. Zhang, J. Eckert, L. Schultz, Acta Mater. 51(2003)1167–1179.
    [40] D. Ouyang, N. Li, W. Xing, J. Zhang, L. Liu, Intermetallics 90(2017)128–134.
    [41] M. Kusy, U. Kühn, A. Concustell, A. Gebert, J. Das, J. Eckert, L. Schultz, M.D.Barob, Intermetallics 14(2006)982–986.
    [42] F. Jiang, D.H. Zhang, L.C. Zhang, Z.B. Zhang, L. He, J. Sun, Z.F. Zhang, Mater. Sci.Eng. A 467(2007)139–145.
    [43] R.D. Conner, H. Choi-Yim, W.L. Johnson, J. Mater. Res. 14(1999)3292–3297.
    [44] F.F. Wu, Z.F. Zhang, S.X. Mao, Acta Mater. 57(2009)257–266.
    [45] G. Li, M.Q. Jiang, F. Jiang, L. He, J. Sun, Mater. Sci. Eng. A 625(2015)393–402.
    [46] Y.Y. Zhang, X. Lin, L. Wei, F.G. Liu, W.D. Huang, Intermetallics 76(2016)1–9.
    [47] Z.F. Zhang, J. Eckert, Phys. Rev. Lett. 94(2005)0943019.
    [48] F.F. Wu, Z.F. Zhang, S.X. Mao, A. Peker, J. Eckert, Phys. Rev. B 75(2007)134201.
    [49] J.T. Fan, F.F. Wu, Z.F. Zhang, F. Jiang, J. Sun, S.X. Mao, J. Non-Cryst. Solids 353(2007)4707–4717.
    [50] J.M. Liu, H.F. Zhang, H.M. Fu, Z.Q. Hu, X.G. Yuan, J. Mater. Res. 25(2010)1159–1163.
    [51] I. Seki, H. Kimura, K. Nakata, A. Inoue, Mater. Trans. 51(11)(2010)2033–2038.
    [52] G. He, Scr. Mater. 48(2003)1531–1536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700