用户名: 密码: 验证码:
Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors
  • 作者:Yuting ; Luan ; Rong ; Hu ; Yongzheng ; Fang ; Kai ; Zhu ; Kui ; Cheng ; Jun ; Yan ; Ke ; Ye ; Guiling ; Wang ; Dianxue ; Cao
  • 英文作者:Yuting Luan;Rong Hu;Yongzheng Fang;Kai Zhu;Kui Cheng;Jun Yan;Ke Ye;Guiling Wang;Dianxue Cao;Key Laboratory of Superlight Material and Surface Technology of Ministry of Education,College of Material Science and Chemical Engineering,Harbin Engineering University;
  • 英文关键词:Arc discharge;;Graphene;;Heteroatom doping;;Lithium/potassium ion battery;;Lithium/potassium ion capacitor
  • 中文刊名:NANO
  • 英文刊名:纳微快报(英文)
  • 机构:Key Laboratory of Superlight Material and Surface Technology of Ministry of Education,College of Material Science and Chemical Engineering,Harbin Engineering University;
  • 出版日期:2019-06-15
  • 出版单位:Nano-Micro Letters
  • 年:2019
  • 期:v.11
  • 基金:supported by National Natural Science Foundation of China(Nos.51672056 and 51702063);; Natural Science Foundation of Heilongjiang(LC2018004);; China Postdoctoral Science Foundation(2018M630340);; the Fundamental Research Funds for the Central University(HEUCFD201732)
  • 语种:英文;
  • 页:NANO201902012
  • 页数:13
  • CN:02
  • ISSN:31-2103/TB
  • 分类号:166-178
摘要
Lithium/potassium ion capacitors(LICs/PICs) have been proposed to bridge the performance gap between high-energy batteries and high-power capacitors.However,their development is hindered by the choice,electrochemical performance,and preparation technique of the battery-type anode materials.Herein,a nitrogen and phosphorus dual-doped multilayer graphene(NPG) material is designed and synthesized through an arc discharge process,using low-cost graphite and solid nitrogen and phosphorus sources.When employed as the anode material,NPG exhibits high capacity,remarkable rate capability,and stable cycling performance in both lithium and potassium ion batteries.This excellent electrochemical performance is ascribed to the synergistic effect of nitrogen and phosphorus doping,which enhances the electrochemical conductivity,provides a higher number of ion storage sites,and leads to increased interlayer spacing.Full carbon-based NPG‖LiPF_6‖active carbon(AC) LICs and NPG‖KPF_6‖AC PICs are assembled and show excellent electrochemical performance,with competitive energy and power densities.This work provides a route for the large-scale production of dual-doped graphene as a universal anode material for high-performance alkali ion batteries and capacitors.
        Lithium/potassium ion capacitors(LICs/PICs) have been proposed to bridge the performance gap between high-energy batteries and high-power capacitors.However,their development is hindered by the choice,electrochemical performance,and preparation technique of the battery-type anode materials.Herein,a nitrogen and phosphorus dual-doped multilayer graphene(NPG) material is designed and synthesized through an arc discharge process,using low-cost graphite and solid nitrogen and phosphorus sources.When employed as the anode material,NPG exhibits high capacity,remarkable rate capability,and stable cycling performance in both lithium and potassium ion batteries.This excellent electrochemical performance is ascribed to the synergistic effect of nitrogen and phosphorus doping,which enhances the electrochemical conductivity,provides a higher number of ion storage sites,and leads to increased interlayer spacing.Full carbon-based NPG‖LiPF_6‖active carbon(AC) LICs and NPG‖KPF_6‖AC PICs are assembled and show excellent electrochemical performance,with competitive energy and power densities.This work provides a route for the large-scale production of dual-doped graphene as a universal anode material for high-performance alkali ion batteries and capacitors.
引文
1.T.B.Schon,B.T.McAllister,P.F.Li,D.S.Seferos,The rise of organic electrode materials for energy storage.Chem.Soc.Rev.45(22),6345-6404(2016).https://doi.org/10.1039/C6CS0 0173D
    2.W.Tu,Y.Zhou,Z.Zou,Versatile graphene-promoting photocatalytic performance of semiconductors:basic principles,synthesis,solar energy conversion,and environmental applications.Adv.Funct.Mater.23(40),4996-5008(2013).https://doi.org/10.1002/adfm.20120 3547
    3.Z.Jian,W.Luo,X.Ji,Carbon electrodes for K-ion batteries.J.Am.Chem.Soc.137(36),11566-11569(2015).https://doi.org/10.1021/jacs.5b068 09
    4.W.Zhang,J.Mao,S.Li,Z.Chen,Z.P.Guo,Phosphorusbased alloy materials for advanced potassium-ion battery anode.J.Am.Chem.Soc.139(9),3316-3319(2017).https://doi.org/10.1021/jacs.6b121 85
    5.L.Qie,W.M.Chen,H.H.Xu,X.Q.Xiong,Y.Jiang et al.,Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors.Energy Environ.Sci.6(8),2497-2504(2013).https://doi.org/10.1039/c3ee41638k
    6.J.Bai,B.J.Xi,H.Z.Mao,Y.Lin,X.J.Ma,J.K.Feng,S.L.Xiong,One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage.Adv.Mater.30(35),1802310(2018).https://doi.org/10.1002/adma.20180 2310
    7.Z.Pan,J.Ren,G.Guan,X.Fang,B.Wang et al.,Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries.Adv.Energy Mater.6(8),1600271(2016).https://doi.org/10.1002/aenm.20160 0271
    8.F.Zheng,Y.Yang,Q.Chen,High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework.Nat.Commun.5,5261(2014).https://doi.org/10.1038/ncomm s6261
    9.C.Zhang,X.Wang,Q.Liang,X.Liu,Q.Weng et al.,Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries.Nano Lett.16(3),2054-2060(2016).https://doi.org/10.1021/acs.nanol ett.6b000 57
    10.G.Y.Ma,K.S.Huang,J.S.Ma,Z.C.Ju,Z.Xing,Q.C.Zhuang,Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries.J.Mater.Chem.A 5(17),7854-7861(2017).https://doi.org/10.1021/acs.nanol ett.6b000 57
    11.X.X.Gu,L.B.Xin,Y.Li,F.Dong,M.Fu,Y.L.Hou,Highly reversible Li-Se batteries with ultra-lightweight N,S-codoped graphene blocking layer.Nano-Micro Lett.10(4),59(2018).https://doi.org/10.1007/s4082 0-018-0213-5
    12.X.L.Wang,G.Li,M.H.Seo,F.M.Hassan,M.A.Hoque,Z.W.Chen,Sulfur atoms bridging few-layered MoS2with S-doped graphene enable highly robust anode for lithium-ion batteries.Adv.Energy Mater.5(23),1501106(2015).https://doi.org/10.1002/aenm.20150 1106
    13.W.Ai,Z.Luo,J.Jiang,J.Zhu,Z.Du et al.,Nitrogen and sulfur co-doped graphene:multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction.Adv.Mater.26(35),6186-6192(2015).https://doi.org/10.1002/adma.20140 1427
    14.C.Zhang,N.Mahmood,H.Yin,F.Liu,Y.Hou,Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries.Adv.Mater.25(35),4932-4937(2013).https://doi.org/10.1002/adma.20130 1870
    15.K.S.Subrahmanyam,L.S.Panchakarla,A.Govindaraj,C.N.R.Rao,Simple method of preparing graphene flakes by an arcdischarge method.J.Phys.Chem.C 113(11),4257-4259(2009).https://doi.org/10.1021/jp900 791y
    16.N.Li,Z.Y.Wang,K.K.Zhao,Z.J.Shi,Z.N.Gu,S.K.Xu,Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method.Carbon 48(1),255-259(2010).https://doi.org/10.1016/j.carbo n.2009.09.013
    17.Z.S.Wu,W.C.Ren,L.B.Gao,J.P.Zhao,Z.P.Chen,Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation.ACSNano 3(2),411-417(2009).https://doi.org/10.1021/nn900020u
    18.I.Levchenko,O.Volotskova,A.Shashurin,Y.Raitses,K.Ostrikov,M.Keidar,The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes.Carbon 48(15),4570-4574(2010).https://doi.org/10.1016/j.carbo n.2010.07.055
    19.A.C.Ferrari,J.Robertson,Interpretation of raman spectra of disordered and amorphous carbon.Phys.Rev.B61(20),14095-14107(2000).https://doi.org/10.1103/PhysRevB.61.14095
    20.A.Reina,X.Jia,J.Ho,D.Nezich,H.Son,V.Bulovic,Large area,few-layer graphene films on arbitrary substrates by chemical vapor deposition.Nano Lett.9(1),30-35(2009).https://doi.org/10.1021/nl801 827v
    21.Y.P.Wu,B.Wang,Y.F.Ma,Y.Huang,N.Li,F.Zhang,Y.S.Chen,Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries.Nano Res.3(9),661-669(2010).https://doi.org/10.1007/s1227 4-010-0027-3
    22.S.Nie,L.Liu,J.F.Liu,J.J.Xie,Y.Zhang et al.,Nitrogendoped TiO2-C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries.Nano-Micro Lett.10(4),71(2018).https://doi.org/10.1007/s4082 0-018-0225-1
    23.X.L.Ma,G.Q.Ning,C.L.Qi,C.G.Xu,J.S.Gao,Phosphorus and nitrogen dual-doped few-layered porous graphene:a highperformance anode material for lithium-ion batteries.ACSAppl.Mater.Interfaces 6(16),14415-14422(2014).https://doi.org/10.1021/am503 692g
    24.H.B.Wang,C.J.Zhang,Z.H.Liu,L.Wang,P.X.Han et al.,Nitrogen-doped graphene nanosheets with excellent lithium storage properties.J.Mater.Chem.21(14),5430-5434(2011).https://doi.org/10.1039/c1jm0 0049g
    25.M.S.Kim,J.-H.Ryu,Y.R.Lim Deepika,I.W.Nah et al.,LangmuirBlodgett artificial solid-electrolyte interphases for practical lithium metal batteries.Nat.Energy 3,889-898(2018).https://doi.org/10.1038/s4156 0-018-0237-6
    26.E.H.Kim,Y.Jung,Effects of phosphorus content and operating temperature on the electrochemical performance of phosphorus-doped soft carbons.Carbon Lett.15(4),277-281(2014).https://doi.org/10.5714/CL.2014.15.4.277
    27.H.C.Tao,Y.Xiong,S.L.Du,Y.Q.Zhang,X.L.Yang,L.L.Zhang,Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride:an ultrahigh capacity and rate anode for Li and Na ion batteries.Carbon 122,54-63(2017).https://doi.org/10.1016/j.carbo n.2017.06.040
    28.Y.Z.Fang,R.Hu,D.X.Cao,K.Zhu,MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries.J.Mater.Chem.A7,5363-5372(2019).https://doi.org/10.1039/C8TA1 2069B
    29.Y.Jin,S.Li,A.Kushima,X.Zheng,Y.Sun et al.,Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%.Energy Environ.Sci.10(2),580-592(2017).https://doi.org/10.1039/C6EE0 2685K
    30.J.L.Yang,Z.C.Ju,Y.Jiang,Z.Xing,B.J.Xi,J.K.Feng,S.L.Xiong,Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassiumion storage.Adv.Mater.30(4),1700104(2018).https://doi.org/10.1002/adma.20170 0104
    31.Q.Zhang,J.F.Mao,W.K.Pang,T.Zheng,V.Sencadas,Y.Z.Chen,Y.J.Liu,Z.P.Guo,Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry.Adv.Energy Mater.8(15),1703288(2018).https://doi.org/10.1002/aenm.20170 3288
    32.H.Gao,T.F.Zhou,Y.Zheng,Q.Zhang,Y.Q.Liu,J.Chen,H.K.Liu,Z.P.Guo,CoS quantum dot nanoclusters for highenergy potassium-ion batteries.Adv.Funct.Mater.27(43),1702634(2017).https://doi.org/10.1002/adfm.20170 2634
    33.Y.J.Liu,Z.Tai,Q.Zhang,H.Q.Wang,W.K.Pang,H.K.Liu,K.Konstantinov,Z.P.Guo,A new energy storage system:rechargeable potassium-selenium battery.Nano Energy 35,36-43(2017).https://doi.org/10.1016/j.nanoe n.2017.03.029
    34.H.L.Wang,C.M.B.Holt,Z.Li,X.H.Tan,B.S.Amirkhiz,Z.W.Xu,B.C.Olsen,T.Stephenson,D.Mitlin,Graphenenickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading.Nano Res.5(9),605-617(2012).https://doi.org/10.1007/s1227 4-012-0246-x
    35.J.Yin,L.Qi,H.Y.Wang,Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.ACSAppl.Mater.Interfaces 4(5),2762-2768(2012).https://doi.org/10.1021/am300 385r
    36.V.Khomenko,E.Raymundo-Piro,F.Béguin,High-energy density graphite/AC capacitor in organic electrolyte.J.Power Sources 177(2),643-651(2008).https://doi.org/10.1016/j.jpows our.2007.11.101
    37.H.Kim,M.-Y.Cho,M.-H.Kim,K.-Y.Park,H.Gwon,Y.Lee,K.C.Roh,K.Kang,A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode.Adv.Energy Mater.3(11),1500-1506(2013).https://doi.org/10.1002/aenm.20130 0467
    38.H.S.Li,L.L.Peng,Y.Zhu,X.G.Zhang,G.H.Yu,Achieving high-energy-high-power density in a flexible quasi-solid-state sodium ion capacitor.Nano Lett.16(9),5938-5943(2016).https://doi.org/10.1021/acs.nanol ett.6b029 32
    39.X.Z.Sun,X.Zhang,H.T.Zhang,N.S.Xu,K.Wang,Y.W.Ma,High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes.J.Power Sources 270,318-325(2014).https://doi.org/10.1016/j.jpows our.2014.07.146
    40.X.L.Yu,C.Z.Zhan,R.T.Lv,Y.Bai,Y.X.Lin et al.,Ultrahighrate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode.Nano Energy 15,43-45(2015).https://doi.org/10.1016/j.nanoe n.2015.03.001
    41.Z.Chen,Y.Yuan,H.H.Zhou,X.L.Wang,Z.H.Gan,F.S.Wang,Y.F.Lu,3D nanocomposite architectures from carbonnanotubethreaded nanocrystals for high-performance electrochemical energy storage.Adv.Mater.26(2),339-345(2014).https://doi.org/10.1002/adma.20130 3317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700