用户名: 密码: 验证码:
不同氮素水平对杨树光合生产力的影响
详细信息    查看官网全文
摘要
为提高杨树人工林的产量,探索不同氮素浓度水平对杨树光合生产力的影响,本文以蛭石培养模拟氮素胁迫的实验方法,设置4种氮素浓度水平(缺氮、低氮、CK、高氮),测定分析了杨树扦插生根植株叶片光合气体交换参数、叶绿素荧光参数及生物量,探讨不同氮素浓度水平对杨树光合作用影响程度与机理。结果表明:氮素能明显改变杨树的光合生产力,表现为随着氮素浓度水平的升高,杨树叶片净光合速率(P_n)、最大光合速率(P_(nmax))、光合量子效率(Φ)、PSII最大和实际光化学效率(F_v/F_m和Φ_(PSII))、总生物量等明显上升。氮素影响杨树幼苗的地上地下部分的分配格局,表现为随着氮素浓度的升高,叶生物量比(LMR)升高,根生物量比(RMR)下降。供氮不足时,引起杨树光合作用下降的原因,主要是由PSII反应中心的电子传递受阻的非气孔因素造成的。将杨树用于人工林连作栽培时,建议增加氮肥的使用量,最适用氮量还需要进一步研究。
To explore effect of different nitrogen concentration on photosynthetic productivity of poplar and improve poplar plantation production,the poplar seedlings in this experiment were conducted in planting pot and planted by vermiculite to simulate nitrogen stress.Four nitrogen concentration(deficiency-nitrogen,lownitrogen,CK,high-nitrogen) were set for the measurement and analysis of gas-exchange parameters,Chl fluorescence parameters and biomass of poplar cutting rooting plant leaves.The influence degree and mechanism of different nitrogen concentration to poplar photosynthetic was explored in this paper.The result shows that nitrogen changed photosynthetic productivity,which mainly manifested as the following:with an increase in N supply,net photosynthetic rate(P_n),maximum photosynthetic rate(P_(nmax)),photosynthetic quantum efficiency(Φ),maximal and effective quantum yield of PSII photochemistry(F_v/F_m and Φ_(PSII)) and total biomass etc.were up significantly.The distribution pattern of biomass above groundand the underground biomass was effected by the nitrogen which mainly manifested as leaf mass ratio and root mass ratio incresed with increasing N concentration.N supply had significant effect on total nitrogen content of different organs which was presented as total N concentration of leaves and root increased with N supply.At nitrogen lacking,the main reason of decline of poplar photosynthetic was that non stomatal factors of the electron transfer of PSII was restrained.We suggest increasing application of nitrogen when poplar are planted as plantation recurrent cultivation.The optimum amount needs further study.
引文
[1]王华田,杨阳,王延平,等.外源酚酸对欧美杨‘I-107'水培幼苗硝态氮吸收利用的影响[J].植物生态学报,2011,35(2):214-222
    [2]Brandao AD,Sodek L.Nitrate uptake and metabolism by roots of soybean plant under oxygen deficiency.Bra-zilian Journal of Plant Physiology,2009,21:13-23.
    [3]殷春渊,张庆,魏海燕等.不同产量类型水稻基因型氮素吸收、利用效率的差异[J].中国农业科学,2010,.43(1):39-50
    [4]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究.生态科学,1998,17(2):37-42.
    [5]Evans J R.Photosynthesis and nitrogen relationships in leaves of C_3 Plant[J].Oecologia,1989,78:9—19
    [6]Cruz J L,Mosquim P R,Pelacani C R,el al.Carbon partitioning and assimilation as affected by nitrogen deficiency in cassava[J].Photosynthetica,2003,41(2):201-207
    [7]王月福,于振文,李尚霞,等.氮素营养水平对小麦开花后碳素同化、运转和产量的影响[J].麦类作物学报,2002,22(2):55-59
    [8]黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生态生理机制[J].植物营养与肥料学报,2001,7(3):293-297
    [9]赵峥,龚苏,段承俐,等.氮、磷、钾对灯盏花生长发育及光合色素含量的影响[J].云南农业大学学报,2005,20(5):676-690
    [10]吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响[J].中国农业科学,1995,28(增刊):104-107
    [11]王延平,王华田,许坛,等.酚酸对杨树人工林土壤养分有效性及酶活性的影响[J].应用生态学报,2013,24(3):667-674
    [12]Krause G H,Weis E..Chlorophyll fluorescence and photosynthesis;the basics[J].Annu Rev Plant Bio,1991,42:313-349.
    [13]Nijs I,Ferris R,Blum H,et al.1997.Stomatal regulation in a changing climate:A field study using free air temperature increase(FATI)and free air CO_2 enrichment(FACE)[J],Plant Cell Environment,20(8):1041-1050.
    [14]朱英华,屠乃美,肖汉乾,等.2011.硫对成熟期烤烟叶绿素荧光参数的影响[J].生态学报,31(13):3796-3801.
    [15]姜立志,王东,刘树楠,等.光照和氮素对喜早莲子草形态特征和生物量分配的影响[J].水生生物学报,2010,34(1):101-107
    [16]Pinol R,Sim6n E.2009.Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic C02 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn.Journal of Plant Growth Regulation,28(2):97-105.
    [17]裴斌,张光灿,张淑勇,等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报,2013,33(5),1386-1395
    [18]郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,25(6):1291-1298
    [19]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448
    [20]冯玉龙,曹坤芳,冯志立.生长光强对4种热带雨林树苗光合机构的影响.植物生理与分子生物学通报,2002,28(2):153-160
    [21]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243
    [22]梁芳,郑成淑,孙宪芝,等.2010.低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响.应用生态学报,21(1):29-35.
    [23]李菊艳,赵成义,闫映宇,盛钰,于波,彭刚.不同盐分梯度下胡杨幼苗的光合-光响应特征,干旱区研究,2014,31(4):728-733.
    [24]武维华.植物生理学(面向21世纪课程教材).北京:科学出版社,2003.4.91-92.
    [25]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究.生态科学,1998,17(2):37-42.
    [26]曹帮华,巩其亮,齐清.三倍体毛白杨苗期不同配方施肥效应的研究[J].山东农业大学学报(自然科学版),2004,35(4):512-516
    [27]孙旭生,林琪,赵长星,等.施氮量对超高产冬小麦灌浆期旗叶光响应曲线的影响[J].生态学报,2009,29,(3),1428-1437
    [28]Efeoglu B,Ekmekei Y,Cicek N.Physiological responses of three maize cultivars to drought stress and recovery.South Afican Journal of Botany,2009,75(1):34-42
    [29]Ouzounidou G,Asfi M,Sortirakis N,et al.2008.Olive mill wastewater triggered changes in physiology andnutritional quality of tomato(Lycopersicon esculentum Mill.)depending on growth substrate.J Haz Mat,158:523-530.
    [30]El-Hassani F Z,Amraoui M B,Zinedine H.et al.2009.Changes in leaf phenols and other physiological parameters of peppermint in response to olive mill wastewater application.Int.J.Agric Biol,11:413-418.
    [31]毛伟,李玉霖,崔夺,等.沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J].植物生态学报,2014,38(2):125-133
    [32]Agren GI,Ingestad T.Root:shoot ratio as a balance between nitrogen productivity and photosynthesis[J].Plant.Cell and Environment,1987,10,579-586.
    [33]Hutching MJ,de Kroon H.Foraging in plants:the role of morphological plasticity in resource acquisition[J].Ad-vances in Ecological Research,1987,25,159-238.
    [34]T.W.Berger,G.Glatzel.Response of Quercus petraea seedlings to nitrogen fertilization[J].Forest Ecology and Management,2001,149:1-14.doi:10.1016/S0378-1127(00)00541-7
    [35]Dueck T A(1990).Effects of ammonia,ammonium sulphate and sulphur dioxide on the frost sensitivity of scots pine(Pinus sylvestrisL.)[J].Functional Ecology,1990,4:109-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700