用户名: 密码: 验证码:
木霉诱变菌株T1010土壤种群动态及对樱桃番茄生长作用
详细信息    查看官网全文
摘要
通过测定木霉T1010在土壤中的种群动态,评价T1010在土壤中的适应性和生命力,进一步挖掘T1010生态效应潜力。结果表明,随着樱桃番茄的生长,T1010孢子开始在土壤中萌发、生长,T1010种群数量均大幅度提高,与土壤中初始接种量相比,增长量高达31倍;通过来源不同的土样比较,T1010种群数量不同,来自日光温室周边的土壤利于T1010的繁殖,种群动态符合S生长曲线,菌落数量达到接种量的33倍;在樱桃番茄结果期,在离主根5~10 cm处土壤T1010种群数量大;5~20 cm耕作层土壤,T1010生长最好,T1010种群数为接种量的32倍。T1010处理组与常规对照相比,樱桃番茄始花着果期、结果期提前,果实整齐均匀,侧根数比常规化肥处理组增加144%,立枯病感病指数降低36.36%。木霉在不同土壤生态环境存活数量不同,为木霉制剂在不同环境中应用提供理论依据。
Improved colonization vigor of biocontrol agent during soil inoculation is crucial to their effective application.After mixing with the soil by the Trichoderma 1010 agent and its colonization,the population dynamics of T1010 in the soil of greenhouse was measured and analyzed.The pot experiment indicated that Soil 4 from the circumjacent areas of the solar greenhouse was beneficial to the propagation of T1010,and its population dynamics complied with S growth curve,and the amount of the colony was 33 times as large as the inoculation amount.It can be seen in the pot experiment that the colony amount of T1010 reached the maximum in the soil at a distance of 5 —10cm to the axial root.Similarly,T1010 grew best in the soil at a depth of 5 — 20 cm,and the amount of the colony in the pot experiment was 32 times as large as the inoculation amount.Compared with the control with regular management,the numbers of lateral roots of the colonized cherry tomato increased 144%.The index of infection decreased by 36.36%by preventive effect of T1010 on the Rhizoctonia solani Kuhn disease compared to the control.The vigor and amount of Trichoderma are different in ecological environment with different soil,root distances or soil depths.
引文
[1]严建汉.环境土壤学[M].上海:华东师范大学出版社.1985:157-162.
    [2]贾志红,孙敏,杨珍平,等.施肥对作物根际微生物的影响[J].作物学报,2004,30(5):491-495.
    [3]陈为京,陈建爱,杨焕明.寿光日光温室土壤性状及微生物类群分析[J].莱阳农学院学报:自然科学版,2006,23(4):306-308.
    [4]Elad Y.Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action[J].Crop Protection,2000,19:709-714.
    [5]Harman GE,Howell CR,Viterbo A,et al.Trichoderma species-opportunistic,avirulent plant symbionts[J].Nature Rev.Microbiology,2004,2:43-56.
    [6]Bjorkman T,Blanchard LM,Harman GE.Growth enhancement of shrunken-2(sh2)sweet corn by Trichoderma harzianum 1295-22:Effect of environmental stress[J].Journal of the American Society for Horticultural Science,1998,123(1):35-40.
    [7]Yedidia I,Srivastva AK,Kapulnik Y,et al.Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants[J].Plant Soil,2001,235:235-242.
    [8]Zaidi A,Khan S,Aamil M.Bioassociative effect of rhizospheric microorganisms on growth yield and nutrient uptake of greengram[J].Journal of Plant Nutrition,2004,27(4):601-612.
    [9]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007,163-199.
    [10]张逸飞,钟文辉,王国祥.微生物在污染环境生物修复中的应用[J].中国生态农业学报,2007,15(3):198-202.
    [11]陈建爱,王未名,刘益同.生物复合肥木霉T1010对花生生长的影响[J].花生学报,2008,37(3):29-32.
    [12]Porras M,Barrau C,Romero F.Effects of soil solarization and Trichoderma on strawberry production[J].Crop protection,2007,26:782-787.
    [13]Harman GE.Myths and Dogmas of Biocontrol:Changes in perceptions derived from research on T.harzianum T-22[J].Plant Disease,2000,84(4):377-393.
    [14]DobbsCG,Hinson WH.A widespread fungistasis in soils[J].Nature,1953,172:197-199.
    [15]陈为京,陈建爱,杨焕明.土壤生态改良剂T1010对寿光日光温室土壤环境的改良效果[J].中国生态农业学报,2009,17(2):399-401.
    [16]Tu CM.Effect of four organophosphorus insecticides on microbial activities in soil[J].Applied and Environmental Microbiology,1970,19(3):479-484.
    [17]Egamberdiyera D.The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils[J].Applied Soil Ecology,2007,36:184-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700