用户名: 密码: 验证码:
磁性纳米颗粒微泡空化阈值的研究
详细信息    查看官网全文
摘要
双模态造影剂是是一种将磁性纳米颗粒与蛋白微泡相结合,能够同时实现超声造影和磁共振造影的一种新型多功能造影剂。磁性纳米颗粒嵌入超声造影剂微泡包膜的同时,也改变了微泡的机械特性,从而直接影响了微泡的动力学行为和临床应用。本文主要基于被动空化检测技术,对双模态造影剂微泡的动力学响应和空化活动进行了研究,在不同的声学激励以及不同的磁性纳米颗粒浓度等条件下,对稳态空化和惯性空化做了定量研究,并着重分析了嵌入磁性纳米颗粒微泡空化阈值的变化趋势。
By coupling encapsulated microbubbles with magnetic nanoparticles, a new type of dual-modality agents, which can be used to achieve the functions in both ultrasonic and magnetic resonance imaging, have attracted broad attentions in both acoustic and medical communities. Whereas, the mechanical properties of albumin-shelled bubbles may change dramatically when added with superparamagnetic iron oxide nanoparticles(SPIOs), which will immediate influence bubble's dynamic properties and clinical application. In this article, passive cavitation detection(PCD) method were used to research the dynamic response and cavitation of dual-modality agents, and discuss the variation trend of cavitation pressure threshold on microbubble with magnetic nanoparticle.
引文
[1]Park J I,Jagadeesan D,Williams R,et al.Microbubbles loaded withnanoparticles:a route to multiple imaging modalities[J].Acs Nano,2010,4(11):6579-86.
    [2]Chow A M,Chan K W Y,Cheung J S,et al.Enhancement of gas-filledmicrobubble by iron oxide nanoparticles for MRI[J].Magnetic Resonance in Medicine,2010,63(1):224–229.
    [3]Poehlmann M,Grishenkov D,Kothapalli S V,et al.On the interplay of shellstructure with low-and high-frequency mechanics of multifunctional magneticmicrobubbles[J].Soft Matter,2013,10(1):214-26.
    [4]Tung Y S,Vlachos F,Feshitan J A,et al.The mechanism of interaction betweenfocused ultrasound and microbubbles in blood-brain barrier opening in mice[J].Journal of the Acoustical Society of America,2011,130(5):3059-67.
    [5]Borden M A,Kruse D E,Caskey C F,et al.Influence of lipid shellphysicochemical properties on ultrasound-induced microbubble destruction[J].IEEETransactions on Ultrasonics Ferroelectrics&Frequency Control,2005,52(11):1992-2002.
    [6]Wrenn S P,Mleczko M,Schmitz G.Phospholipid-stabilized microbubbles:Influence of shell chemistry on cavitation threshold and binding to giant uni-lamellarvesicles[J].Applied Acoustics,2009,70(10):1313-1322.
    [7]Vignon F,Shi W T,Powers J E,et al.Microbubble cavitation imaging[J].IEEETransactions on Ultrasonics Ferroelectrics&Frequency Control,2011,60(4):661-70.
    [8]Sarkar K,Shi W T,Chatterjee D,et al.Characterization of ultrasound contrastmicrobubbles using in vitro experiments and viscous and viscoelastic interface modelsfor encapsulation[J].Journal of the Acoustical Society of America,2005,118(1):539-550.
    [9]Hoff L,Sontum P C,Hovem J M.Oscillations of polymeric microbubbles:Effectof the encapsulating shell[J].Journal of the Acoustical Society of America,2000,107(4):2272-80.
    [10]Lauterborn W.Numerical investigation of nonlinear oscillations of gas bubbles inliquids[J].Journal of the Acoustical Society of America,1976,59(2):283-293.
    [11]Katiyar A,Sarkar K.Excitation threshold for subharmonic generation fromcontrast microbubbles[J].Journal of the Acoustical Society of America,2011,130(5):3137-47.
    [12]Yasui K,Lee J,Tuziuti T,et al.Influence of the bubble-bubble interaction ondestruction of encapsulated microbubbles under ultrasound[J].Journal of the Acoustical Society of America,2009,126(3):973-82.
    [13]Yasui K,Tuziuti T,Lee J,et al.Numerical simulations of acoustic cavitationnoise with the temporal fluctuation in the number of bubbles[J].Ultrasonics Sonochemistry,2010,17(2):460-472.
    [14]Cramer E,Lauterborn W.Acoustic cavitation noise spectra[J].Applied cientific Research,1981,38(1):209-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700