用户名: 密码: 验证码:
输电线路绝缘子(串)交流污闪特性及放电过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污秽闪络是影响输电线路外绝缘设计和安全运行的重要因素之一,国内外学者对绝缘子的污闪特性和机理已进行了大量研究。但由于污闪机理的复杂性和各地气象、地理、污秽的多样性,污闪事故依然频繁,对绝缘子的污闪研究仍需深入进行。本文根据交流人工污秽试验,研究盐密和灰密对输电线路绝缘子交流污闪电压的综合影响,分析不同型式输电线路绝缘子交流污闪特性和放电过程的差异,并对高海拔现场人工染污绝缘子的试验结果进行了分析;根据真型绝缘子的放电过程,建立绝缘子交流污秽放电模型。本文的研究有助于更深入地认识绝缘子交流污闪特性和机理,对“西电东送、南北互供、全国联网”和超、特高压输电线路的建设和运行具有一定的参考意义。
     在国内外研究成果基础上,本文在实验室和高海拔现场对多种型式的输电线路绝缘子进行了大量的交流人工污秽试验。根据高速摄像机拍摄的放电过程和多种因素对污闪电压的影响,本文对绝缘子交流污闪特性和机理进行了深入分析。本文得到的主要结论有:
     在同样的污秽度下,外伞型绝缘子的污闪电压梯度较低,而钟罩型绝缘子的有效爬电系数较高,复合绝缘子由于其材料表面的憎水性,具有较高的污闪电压。比较硅藻土和高岭土两种不溶性物质对绝缘子污闪电压的影响,由于高岭土更易吸收水分且在湿润过程中不易流失,因此以高岭土为不溶性物质的绝缘子污闪电压比硅藻土为不溶性物质的要低。
     盐密和灰密对绝缘子交流污闪电压的影响规律均满足负指数幂函数关系,使用最小二乘法分析污闪试验数据,得到了盐密、灰密综合影响下的绝缘子交流污闪电压计算公式。
     高海拔地区绝缘子交流污闪电压是染污程度和大气环境综合作用的结果。在表面均为亲水性的状态下,不同型式绝缘子的气压影响特征指数在0.507~0.587之间,与绝缘子材质和结构没有明显关系;绝缘子表面湿污层的电导率受到环境温度的影响,污闪电压的环境温度影响特征指数在0.21左右。
     染污绝缘子局部电弧的发展主要取决于静电力和热浮力的平衡,泄漏电流的增大将使得热浮力作用增加,从而导致了飘弧现象。静电力和热浮力随着气压的改变而变化,气压越低,热浮力的作用越明显,低气压下严重的飘弧是造成绝缘子污闪电压下降的主要原因之一。对常压下不同型式绝缘子(串)污秽放电过程的比较和分析显示:标准型绝缘子局部电弧的发展紧贴着绝缘子表面,其爬电距离得到了较充分地利用;外伞型绝缘子的伞裙间易发生飘弧现象,使其爬电距离利用率降低;钟罩型绝缘子伞下的深棱抑制了局部电弧的发展,其爬电距离利用率较高。放电过程的差异验证了人工污秽试验的结果。
     绝缘子交流污秽放电过程中,局部电弧由沿面电弧和飘弧导致的空气间隙电弧二部分组成,沿面电弧和空气间隙电弧可用一个合成电弧表征,由此建立污秽绝缘子的交流放电模型。对于常压下的交流放电,空气间隙电弧可以忽略,而在高海拔条件下必须考虑空气间隙电弧的作用。根据试验数据,可使用统计方法得到合成电弧的电弧常数。
Pollution flashover is one of the key issues affecting the external insulation design and safety operation of transmission lines, and there have been many studies of flashover performance and mechanism of polluted insulators in China as well as other countries. However, because of the complexity of flashover mechanism and the diversity of weather, geography and pollutants in various areas, the pollution flashover accidents still occurred continually and the study need to be putted up more. Based on the AC artificial pollution tests, this thesis aims to study the combined effect of salt deposit density and non-soluble deposit density on AC pollution flashover voltages and analyze the difference of AC pollution flashover performances and discharge processes for various types of transmission line insulators, as well as, analyze the AC flashover performances of artificial polluted insulators at high altitude sites. At the same time, based on the discharge process of insulators,the AC pollution discharge model is discussed. The studies in the thesis will make to understand the AC pollution flashover performance and mechanism, as well as, will contribute to the West-to-East Power Transmission, South-and-North Transaction and Nationwide Electricity Interconnection and will be of significant referenced values to the constructions and operations of EHV and UHV transmission lines.
     Based on the existing studies in China as well as other countries, a mass of AC artificial pollution tests of some types of transmission line insulators have been carried out in the laboratory and at the high altitude sites. The AC pollution flashover performance and mechanism is analyzed through the flashover processes gained by a high speed frame camera and the combined effects of multi factors on the pollution flashover voltage. The main conclusions in the thesis are as following:
     Under the same pollution grade, the pollution flashover voltage gradients of the outer-rib type insulators are lower while the effectiveness of leakage distances of the insulators with the long ridges are higher. The flashover voltages of composite insulators are higher because of the hydrophobicity on its material surfaces. Comparing two types of non-soluble materials, kieselguhr and kaolin, the pollution flashover voltage of insulators polluted with kaolin is lower than that of insulators with kieselguhr because that kaolin on the insulators surfaces will absorb more water and the water is not easily run off in the wetting process.
     There is a power function relationship between the pollution flashover voltage and equivalent salt deposit density or non-soluble deposit density. By using the least square method to analyze the test data, the calculational formula of pollution flashover voltages at the combined effect of equivalent salt deposit density and non-soluble deposit density is gained.
     The flashover voltages in high altitude areas are combined affected by the pollution grades and air conditions. If the surface property is hydrophilic, the exponent characterizing the effect of air pressure varies between 0.507 and 0.587 for various insulators, which is not immediately related with the materials and configurations of insulators, and the exponent characterizing the effect of ambient temperature is about 0.21 because the conductivity of the wetting pollution layer is affected by the ambient temperature.
     The propagation of the partial arc on the polluted insulator surface mainly depends on the balance of electrostatic force and thermal buoyand force, the effect of latter is more obvious for the bigger leakage current, which results in the arc-floating. The electrostatic force and thermal buoyand force will change with the changing of the air pressure, and the lower the air pressure is, the more obvious the effect of the thermal buoyand force is. The serious arc-floating is one of the main reasons for the reducing of the pollution flashover voltages. The comparison and analysis of the pollution discharge processes of the various insulator strings in the plains show that the partial arc develops along the surfaces of the standard insulators and their leakage distances are used well, the leakage distances of the outer-rib type insulators are not used well because of the arc-floating between their sheds, and the effectiveness of leakage distances of the anti-fog insulators because their long ridges retrain the development of the partial arc. The differences of the discharge processes verify the artificial pollution test results.
     In the AC pollution discharge process of insulators, the partial arc includes surface arcs and air-gap arcs begot by arc-floating. The surface arc and air-gap arc can be characterized by a combined arc, so a discharge model of polluted insulators is introduced. The air-gap arc can be neglected for AC pollution flashover in the plains while its effect on the flashover voltages must be considered under the high altitude conditions. The statistical arc constants of the combined arc are gained by the tested results.
引文
[1]孙才新,司马文霞,舒立春.大气环境与电气外绝缘[M].北京:中国电力出版社, 2002.
    [2]刘振亚主编.特高压电网[M].北京:中国经济出版社, 2005.
    [3]舒印彪.我国特高压输电的发展与实施[J].中国电力, 2005, 38(11): 1-8.
    [4]张仁豫.绝缘污秽放电[M].北京:水利电力出版社, 1994.
    [5]四川省电力工业局,四川省电力教育协会编.电网防污闪技术[M].北京:中国电力出版社, 1998.
    [6]孙才新.重视和加强防止复杂气候环境及输变电设备故障导致大面积事故的安全技术研究[C].中国电机工程学会高电压专业委员会2004年学术会议论文集,重庆, 2004, 1: 6-7.
    [7]胡毅.“2.22电网大面积污闪”原因及对策[J].高电压技术, 2001, 27(2): 30-32.
    [8]高航. 2001年初河南电网发生污闪事故的原因与防范措施[J].电网技术, 2001, 25(10): 76-79.
    [9]张宇,肖嵘.华东电网2.20污闪事故的分析和思考[J].华东电力, 2004, 32(9): 17-22.
    [10]樊灵孟,刘平原,郑晓光,等.广东电网2005年初大面积污闪分析和对策[J].南方电网技术研究, 2005, 1(5): 43-47.
    [11]胡毅.输电线路运行故障的分析与防治[J].高电压技术, 2007, 33(3): 1-8.
    [12]顾乐观,孙才新.电力系统的污秽绝缘[M].重庆:重庆大学出版社, 1988.
    [13] GB/T 4585.交流系统用高压绝缘子的人工污秽试验[S]. 2004.
    [14] IEC 60507. Artificial pollution tests on high-voltage insulators to be used on a.c. systems [S]. 1991.
    [15] Caixin Sun, Yuchun Tian, Xingliang Jiang, et al. Flashover performance and voltage correction of iced and polluted HV insulator string at high altitude of 4000m and above [C]. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 2003, 1: 141-145.
    [16] Ramos N G, Campillo R M T, Naito K. A study on the characteristics of various conductive contaminants accumulated on high voltage insulators [J]. IEEE Transactions on Power Delivery, 1993, 8(4): 1842-1850.
    [17] Matsuoka R, Kondo K, Naito K, et al. Influence of nonsoluble contaminants on the flashover voltages of artificially contaminated insulators [J]. IEEE Transactions on Power Delivery, 1996, 11(1): 420-430.
    [18]孙才新,舒立春,蒋兴良,等.高海拔、污秽、覆冰环境下超高压线路绝缘子交直流放电特性及闪络电压校正研究[J].中国电机工程学报, 2002, 22(11): 115-120.
    [19] Zhou J G, Dong G, Imakoma T, et al. Contamination performance of outer-rib type suspension insulators [C]. IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, 2002, 3: 2185–2190.
    [20] Karady G G. Flashover mechanism of non-ceramic insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 718-723.
    [21] Hackam R. Outdoor HV composite polymeric insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 557-585.
    [22] Sundararajan R, Gorur R S. Role of non-soluble contaminants on the flashover voltage of porcelain insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(1): 113–118.
    [23] IEC 60815. Selection and dimensioning of high-voltage insulators for polluted conditions - Part 1: definitions, information and general principles [S]. 2006.
    [24] Ishii M, Komatsubara M, Matsuoka R, et al. Behavior of insoluble materials in artificial contamination test [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(3): 432-438.
    [25]吴光亚,蔡炜,卢燕龙,等.直流输电线路绝缘子串片数的防污设计[J].高电压技术, 2001, 27(6): 51-53.
    [26] Naito K, Matsuoka R, Irie T, et al. Test methods and results for recent outdoor insulation in Japan [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 732-743.
    [27] Matsuoka R, Shinokubo H, Kondo K, et al. Assessment of basic contamination withstand voltage characteristics of polymer insulators [J]. IEEE Transactions on Power Delivery, 1996, 11(4): 1895-1900.
    [28] Sundhar S. Influence of non-soluble contaminants on flashover performance of artificially contaminated polymer insulators [C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Arlington, TX, USA, 1994, 657-662.
    [29] Naito K, Morita K, Hasegawa Y, et al. Improvement of the DC voltage insulation efficiency of suspension insulators under contaminated conditions [J]. IEEE Transactions on Electrical Insulation, 1988, 23(6): 1025-1032.
    [30] CIGRE Taskforce 33-04-01. A Review of Current Knowledge: Polluted Insulators [M]. 1998.
    [31]张开贤.悬式绝缘子串自然积污规律的探讨[J].电网技术, 1997, 21(3): 39-43.
    [32] Garcia R W S, Bosignoli R, Gomes E Jr. Influence of the non-uniformity of pollution distribution on the electrical behavior of insulators [C]. International Conference on Properties and Applications of Dielectric Materials, Tokyo, Japan, 1991, 1: 342-345.
    [33] Topalis F V, Gonos I F, Stathopulos I A. Dielectric behaviour of polluted porcelain insulators[J]. IEE Proceedings - Generation, Transmission and Distribution, 2001, 148(4): 269-274.
    [34] Matsuka R, Ito S, Sakanishi K, et al. Flashover on contaminated insulators with different diameters [J]. IEEE Transactions on Electrical Insulation, 1991, 26(6): 1140-1146.
    [35] Ye H, Zhang J, Ji Y M, et al. Contamination accumulation and withstand voltage characteristics of various types of insulators [C]. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 2003, 3: 1019–1023.
    [36] Suzuki Y, Ito S, Akizuki M, et al. Artificial contamination test method on accumulated contamination conditions [C]. The 7th International Symposium on High Voltage Engineering, London, UK, 1999, 4: 192–195.
    [37] Zedan F M, Akabar M A. Performance of HV transmission line insulators in desert conditions IV: study of insulators at a semicoastal site in the Eastern Region of Saudi Arabia [J]. IEEE Transactions on Power Delivery, 1991, 6(1): 439-447.
    [38] Al-Hamoudi I Y. Performance of high voltage insulators under heavy natural pollution conditions [C]. Proceedings of the 7th International Conference on Transmission and Distribution Construction and Live Line Maintenance, Columbus, Ohio, USA, 1995, 25-31.
    [39] Salam M A, Ahmad H. Derivation of creepage distance in terms of ESDD and diameter of the contaminated insulator [J]. IEEE Power Engineering Review, 2000, 20(9): 44-45.
    [40] Salam M A, Ahmad H, Ahmad A S, et al. Study of creepage distance of the contaminated insulator in correlation with salt deposit density [C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Victoria, British Columbia, Canada, 2000, 1: 215–217.
    [41] Ishii M, Akbar M, Kawamura T. Effect of ambient temperature on the performance of contamination DC insulators [J]. IEEE Transactions on Electrical Insulation, 1984, EI-19(2): 129-134.
    [42] Chisholm W A, Ringler K G, Erven C C, et al. The cold-fog test [J]. IEEE Transactions on Power Delivery, 1996, 11(4): 1874-1880.
    [43] Mizuno Y, Kusada H, Naito K. Effect of climatic conditions on contamination flashover voltage of insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(3): 286–289.
    [44] Mercure H P. Insulator pollution performance at high altitude: major trends [J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1461–1468.
    [45]蒋兴良,张志劲,胡建林,等.高海拔下不同伞形结构750kV合成绝缘子短样交流污秽闪络特性及其比较[J].中国电机工程学报, 2005, 25(12): 159-164.
    [46]余德芬,孙才新,顾乐观,等.酸性湿沉降对绝缘子闪络特性影响的表征量研究[J].中国电机工程学报, 2001, 21(4): 15-19.
    [47]舒立春.复杂环境中绝缘子交流闪络特性及校正方法研究[博士学位论文].重庆大学, 2002.
    [48] J. G.安德生著,武汉高压研究所译. 345kV及以上超高压输电线路[M].北京:电力工业出版社, 1981.
    [49]浙江省电力公司.输电线路绝缘子运行技术手册[M].北京:中国电力出版社, 2003.
    [50]梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社, 2003.
    [51]王绍武.污秽地区有机外绝缘特性的研究[博士学位论文].清华大学, 2001.
    [52] Wilkins R, Al-Baghdadi A. Arc propagation along an electrolyte surface [J]. Proc. IEE, 1971, 118(12).
    [53] Wilkins R. Flashover voltage of HV insulators with uniform surface - pollution films [J]. Proc. IEE, 1969, 116(3): 54-64.
    [54] Jolly D C. Contamination flashover Part I: theoretical aspects [J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(6): 2437-2442.
    [55] Jolly D C. Contamination flashover Part II: flat plate model tests [J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(6): 2443-2451.
    [56] Hampton B F. Flashover mechanism of polluted insulation [J]. IEE Power Record Inst, 1964, 111(5): 985-990.
    [57] Hesketh S. General criterion for the prediction of pollution flashover [J]. Proc. IEE, 1967, 114: 531-532.
    [58]李顺元,张仁豫,谈克雄.污秽闪络放电机理的研究[J].清华大学学报(自然科学版), 1991, 31(1): 7-15.
    [59]谢军.交流电压下染污绝缘子闪络过程动态电场计算及闪络机理研究[硕士学位论文].重庆大学, 1987.
    [60]张建辉.绝缘子污秽闪络机理及影响因素的研究[博士学位论文].重庆大学, 1991.
    [61] Obenaus F. Fremdschichtueberschlag und kriechweglacnge [J]. Deutsche Elektrotechnik, 1958, H.4, 135-137.
    [62] Rizk F A M. Mathematical models for pollution flashover [J]. Electra, 1981, (81): 71-103.
    [63]张仁豫.沿染污介质表面放电的发展与抑制[J].中国科学基金, 1996, (3): 186-193.
    [64] Ghosh P S, Chatterjee N. Polluted insulator flashover model for ac voltage [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(1): 128-136.
    [65] Holtzhausen J P, Vosloo W L. The pollution flashover of AC energized post type insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(2): 191-194.
    [66] Jaafar S, Ahmad A S, Ghosh P S, et al. A new approach in modeling AC flashover voltagefor polluted insulator [C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 2002, 558-561.
    [67] Sundarajan R, Gorur R S. Dynamic arc modeling of pollution flashover of insulators under DC voltage [J]. IEEE Transactions on Electrical Insulation, 1993, 28(2): 209-218.
    [68]金向朝,占亮,邱毓昌.绝缘子闪络的动态模型探讨[J].电瓷避雷器, 2003, (196): 6-8.
    [69] Farag A S, Shwehdi M H, Cheng T C. Interfacial breakdown on contaminated electrolytic surface [C]. Conference on Electrical Insulation and Electrical Manufacturing & Coil Winding, Piscataway, NJ, USA, 1997, 789-794.
    [70] Mekhaldi A, Namane D, Bouazabia S, et al. Flashover of discontinuous pollution layer on HV insulators [J]. IEEE Transactions on Dielectricss and Electrical Insulation, 1999, 6(6): 900-906.
    [71] Guan Z C, Chen Y, Liang X D. Contamination-flashover of silicone rubber composite insulators - I [C]. Proceedings of the 6th International Symposium on High Voltage Engineering, Montreal, Canada, 1997, 301-304.
    [72] Guan Z C, Chen Y, Liang X D. Contamination-flashover of silicone rubber composite insulators - II [C]. Proceedings of the 6th International Symposium on High Voltage Engineering, Montreal, Canada, 1997, 305-308.
    [73]冉启鹏.不同型式绝缘子交流污闪特性及其有效爬电系数的研究[硕士学位论文].重庆大学, 2006.
    [74]陈爱军.不同盐密和灰密对110kV复合绝缘子污秽闪络特性的影响研究[硕士学位论文].重庆大学, 2006.
    [75] DL/T 859.高压交流系统用复合绝缘子人工污秽试验[S]. 2004.
    [76] DL/T 810.±500kV直流棒形悬式复合绝缘子技术条件[S]. 2002.
    [77]关志成,刘瑛岩,周远翔,等.绝缘子及输变电设备外绝缘[M].北京:清华大学出版社, 2006.
    [78]李晓峰,李正瀛, MacAlpine J M K,等.绝缘子表面电导特性的研究及仿真[J].高电压技术, 2001, 27(3): 67-68,71,74.
    [79] Montoya G, Ramirez I, Montoya J I. Correlation among ESDD, NSDD and leakage current in distribution insulators [J]. IEE Proceedings - Generation Transmission and Distribution, 2004, 151(3): 334-340.
    [80]曹婉真,夏又新.电解质[M].西安:西安交通大学出版社, 1991.
    [81]朱裕贞,苏小云,路琼华.工科无机化学[M].上海:华东理工大学出版社, 1993.
    [82]徐通训.关于污秽等值盐密测量中一些主要问题的论证[J].东北电力技术, 1994, (4): 1-5.
    [83]霍万龙.绝缘子污秽等级测量方法选择[J].东北电力技术, 2002, (3): 23-25.
    [84]康春雷,王华峰,王宏宇.钢化玻璃绝缘子的性能及应用[J].黑龙江电力, 2000, 22(6): 46-48.
    [85] Cui Jiangliu, Su Zhiyi, Yi Hui. Application and prospect of silicone rubber composite insulators in China [C]. The 7th International Symposium on High Voltage Engineering, London, UK, 1999, 4: 5-8.
    [86] Liang Xidong, Wang Shaowu, Fan Ju, et al. Development of composite insulators in China [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 586-594.
    [87]徐光宝,梁曦东,关志成,等.超高压线路采用合成绝缘子的技术经济分析[J].中国电力, 1994, (2): 26-28.
    [88] Barclay A L, Swift D A. Cap and pin insulators: electrical puncture of porcelain under AC energization [C]. International Conference on Dielectric Materials, Measurements and Applications, Beijing, China, 1988, 370-374.
    [89]闫东,张亚鹏,卢明,等.污秽地区玻璃绝缘子的选用[J].电瓷避雷器, 2005, (5): 1-4.
    [90]吴光亚,蔡炜,王刚,等.输电线路不同型式绝缘子的特性分析[J].高电压技术, 2001, 27(3): 72-74.
    [91]周建国,肖嵘, Suzwki Y,等.多伞盘式绝缘子的污秽特性[C].电工陶瓷第七次学术年会暨学术交流会论文集,中国武夷山, 2001, 77-81.
    [92] C.Д.梅尔赫列夫, E. A.索洛莫尼克著,张重午译.大气污秽地区线路与变电所的绝缘[M].北京:电力工业出版社, 1980.
    [93] GB/T 16434.高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准[S]. 1996.
    [94] Sundararajan R, Gorur R. Influence of inert materials on the pollution flashover voltage of porcelain insulators [C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Arlington, TX, USA, 1994, 651–656.
    [95]江秀臣,安玲,韩振东.等值盐密现场测量方法的研究[J].中国电机工程学报, 2000, 20(4): 40-43,49.
    [96] Naito K, Nishiwaki S, Matsuoka R, et al. Investigation results of silicone rubber insulators under wet and contaminated conditions [C]. International Conference on Properties and Applications of Dielectric Materials, Brisbane, Australia, 1994, 2: 519-522.
    [97]吴虹.电瓷自然污秽化学成份分析[J].华东电力, 1994, (5): 45-46.
    [98]宿志一,刘燕生.我国北方内陆地区线路与变电站用绝缘子的直、交流自然积污试验结果的比较[J].电网技术, 2004, 28(10): 13-17.
    [99]张慧媛,丁扬.电网电瓷外绝缘污秽等级的确定[J].华北电力大学学报, 1997, 24(4):24-29.
    [100]袁鹏.硅藻土的提纯及其表面羟基、酸位研究[硕士学位论文].中国科学院广州地球化学研究所, 2001.
    [101]傅圣勇,王旃生,俞寿苗. SiO2与水泥节能[J].能源工程, 1997, (1): 21-24.
    [102]张志劲,蒋兴良,孙才新,等.两种不同染污方式下绝缘子交流闪络特性的比较[J].中国电机工程学报, 2006, 26(8): 124-127.
    [103]同济大学数学教研室.高等数学[M].北京:高等教育出版社, 1999.
    [104]李有法.数值计算方法[M].北京:高等教育出版社, 1996.
    [105]杨虎,刘琼荪,钟波.数理统计[M].北京:高等教育出版社, 2004.
    [106]鲁志伟,杨秀媛.硅橡胶憎水迁移原理的研究[J].中国电机工程学报, 2001, 21(5): 51-55.
    [107]钱茂华,崔国顺,关志成.用局部表面电导率划分污秽等级[J].电瓷避雷器, 1994, (6): 12-14.
    [108]崔国顺.高压绝缘子污秽度测量方法的研究[硕士学位论文].清华大学, 1994.
    [109]宿志一,杨源龙,刘革立,等.我国农业地区的大气污染与输变电设备污秽等级的划分[J].中国电力, 1997, 30(12): 3-6.
    [110]宿志一.用饱和盐密确定污秽等级及绘制污区分布图的探讨[J].电网技术, 2004, 28(8): 16-19.
    [111]宿志一.防止大面积污闪的根本出路是提高电网的基本外绝缘水平-对我国电网大面积污闪事故的反思[J].中国电力, 2003, 35(12): 57-61.
    [112]吴光亚,钱之银,肖勇,等.防污闪技术的现状与发展趋势[J].电力设备, 2005, 6(3): 5-9.
    [113]周正.常德及湘潭电网大面积污闪事故的分析[J].电力安全技术, 2003, 5(4): 23-30.
    [114]李宝泉,李锁彦. 110kV大新线耐张杆瓷绝缘子串污闪跳闸分析[J].河北电力技术, 2006, 25(5): 12,44.
    [115]袁红波,郭贤珊.佛山地区110-500kV输电线路污闪事故与对策[J].华中电力, 2005, 18(4): 55-58.
    [116]孙才新,舒立春,顾乐观,等.大气环境的酸性污染与绝缘子的交流放电特性[J].中国电力, 1995, (6): 42-45, 62.
    [117]李顺元.交流电压下染污绝缘表面闪络机理[博士学位论文].清华大学, 1988.
    [118] Guan Z, Zhang R. Calculation of DC and AC flashover voltage of polluted insulators [J]. IEEE Transactions on Electrical Insulation, 1990, 25(4): 723-729.
    [119]张志劲.低气压下绝缘子(长)串污闪特性及直流放电模型研究[博士学位论文].重庆大学, 2007.
    [120] Rudakova V M, Tikhodeev N N. Influence of low air pressure on flashover voltages ofpolluted insulators: test data, generalization attempts and some recommendations [J]. IEEE Transactions on Power Delivery, 1989, 4(1): 607-613.
    [121] Kawamura T, Ishii M, Akbar M, et al. Pressure dependence of DC breakdown of contaminated insulators [J]. IEEE Transactions on Electrical Insulation, 1982, EI-17(1): 39-45.
    [122] Zhou Jun, Guan Zhicheng, Wang Liming. Study on the various pollution performance of the post insulators in exceeding high voltage in high altitude area [C]. International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 2003, 3: 1024-1027.
    [123] Shi W D, Guan Z C, Wang L M, et al. A study on the selection of outdoor insulators used in high altitude areas [C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Albuquerque, USA, 2003, 391–393.
    [124] Bergman V I, Kolobova O I. Some results of investigation of the dielectric strength of polluted lines insulation in conditions of reduced atmospheric pressure [J]. Electrotrchnika, 1983, 54(2): 54-56.
    [125]关志成,张仁豫,黄超峰.低气压条件下绝缘子污闪特性的研究[J].清华大学学报(自然科学版), 1995, 35(1): 17-24.
    [126]张建辉,孙才新,顾乐观,等.高海拔条件下绝缘子污秽闪络特性及其校正[J].中国电机工程学报, 1993, 13(5): 20-26.
    [127] Leguan Gu, Caixin Sun, Jun Xie, et al. AC flashover characteristics of EHV line insulators for high altitude contamination regions [C]. International Conference on Properties and Applications of Dielectric Materials, Beijing, China, 1988, 1: 37-40.
    [128] Rizk F A M, Rezazada A Q. Modeling of altitude effects on AC flashover of polluted high voltage insulators [J]. IEEE Transactions on Power Delivery, 1997, 12(2): 810-822.
    [129]蒋兴良,舒立春,张永记,等.人工污秽下盐/灰密对普通悬式绝缘子串交流闪络特性的影响[J].中国电机工程学报, 2006, 26(15): 24-28.
    [130]蒋兴良,陈爱军,张志劲,等.盐密和灰密对110kV复合绝缘子闪络电压的影响[J].中国电机工程学报, 2006, 26(9): 150-154.
    [131]张仁豫,关志成,黄超峰.低气压对玻璃板表面污闪电压的影响[J].电网技术, 1994, 18(3): 17-21.
    [132]黄超峰.高海拔地区染污绝缘放电特性的研究[博士学位论文].清华大学, 1993.
    [133]周军.高海拔区染污绝缘放电特性的研究[博士学位论文].清华大学, 2004.
    [134] Li Y. Study of the Influence of Altitude on the Characteristics of the Electrical Arc on Polluted Ice Surface [博士学位论文]. Universitédu Québec, 2002.
    [135] Pholtzhausen J, Swift D A. The pollution flashover of AC and DC energised cap and pininsulators: the role of shortening of the arc [C]. International Symposium on High Voltage Engineering, London, UK, 1999, 4: 333-336.
    [136]蒋兴良,于亮,胡建林,等.棒–板长空气间隙在低气压下雷电冲击特性及电压校正[J].中国电机工程学报, 2005, 25(11): 152-156.
    [137] Farzaneh M, Zhang J, Chen X. Modeling of the AC arc discharge on ice surfaces [J]. IEEE Transactions on Power Delivery, 1997, 12(1): 325-338.
    [138]过增元,赵文华.电弧和热等离子体[M].科学出版社, 1986.
    [139] Xavier R J, Rao Y N. Study of surface conductivity and E.S.D.D. on contaminated porcelain insulating surfaces [C]. The 5th International Symposium of High Voltage Engineering, Braunschweig, 1987, Vol.2, Paper 51.12.
    [140]西安电瓷研究所.高压绝缘子的爬电距离、表面积以及形状因数的计算[R]. 1987.
    [141] Zegnini B, Mahi D, Chaker A. Determination of arc re-ignition conditions on polluted insulating surfaces [C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Boulder, Colorado, USA, 2004, 671-674.
    [142] Cheng T C, Nour H I M. A study on the profile of HVDC insulators - mathematical modeling and design considerations [J]. IEEE Transactions on Electrical Insulation, 1989, 24(1): 113–117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700