用户名: 密码: 验证码:
非皂化萃取分离稀土、钍、氟过程机制及调控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟碳铈矿是世界上储量最大的稀土矿物,也是目前开采量最大的稀土矿产资源,全球约70%的稀土产自氟碳铈矿。氟碳铈精矿中含有8-10wt%氟以及0.2-0.3wt%的放射性元素钍,针对目前氟碳铈矿冶炼分离过程存在伴生资源钍、氟浪费与环境污染问题,本文开展了复杂硫酸稀土体系中HEH(EHP)(P507)萃取分离铈、钍、氟新技术应用基础研究。探明了酸性磷类萃取剂HEH(EHP)对钍(Ⅳ)和氟(Ⅰ)元素的萃取机理及平衡规律;配位洗氟过程中氟(Ⅰ)、铈(Ⅳ)和钍(Ⅳ)的分布规律,以及H2O2-HCl还原反萃铈(Ⅳ)与H2SO4反萃钍(Ⅳ)过程;指导完善了氟碳铈矿处理过程中综合回收钍、氟的绿色冶炼分离工艺,并进行了工程化试验研究。以氟碳铈矿氧化焙烧-硫酸浸出得到的含氟、钍、铈硫酸稀土溶液为原料,采用HEH(EHP)萃取分离回收铈、氟和钍。萃取过程中F(Ⅰ)分别与Ce(IV)、Th(IV)形成[CeFx]4-x、[ThFx]4-x配合物,更易于被HEH(EHP)萃取进入有机相中,从而实现与RE(Ⅲ)的分离;负载有机相中的F(Ⅰ)采用Al(Ⅲ)配位洗涤使其进入水相,并以冰晶石产品形式回收;负载有机相再采用H2O2-HCl还原反萃回收Ce(Ⅳ),最后采用硫酸反萃回收Th(Ⅳ),获得纯度为99.95%的CeO2产品以及纯度为99.5%的ThO2产品,避免了危废物氟、钍排放造成的环境污染问题,实现了伴生资源的综合利用。
     氟碳铈矿氧化焙烧-硫酸浸取液经HEH(EHP)萃取分离回收铈、氟和钍后,萃余液三价稀土硫酸溶液经转型为氯化稀土后进行分离提纯。由于稀土离子价态相同以及相近的离子半径,其化学性质相近,不同稀土离子间分离系数极小,导致稀土元素间分离难度极大,是目前最难分离元素之一,仅次于同位素间的分离。目前稀土分离提纯主要采用酸性萃取剂进行萃取分离,而传统工艺均须采用氨水或碳酸氢铵等无机碱对萃取剂进行皂化处理,以提高有机相中稀土负载量,该过程成本高、污染重。针对课题组提出的非皂化萃取分离稀土新技术,本文开展了非皂化萃取分离稀土元素过程研究,探明了HEH(EHP)、Cyanex272及其混合萃取剂在盐酸介质中对三价稀土元素的萃取机理及协同效应,确定协萃配合物的组成与结构;揭示了稀土浓度梯度控制以及碳酸稀土、钙镁碱性化合物等调节萃取水相平衡酸度的非皂化萃取分离过程,掌握了不同非皂化萃取分离体系萃取稀土离子的行为规律;指导并完善了HEH(EHP)-HCl体系稀土浓度梯度控制技术、萃取过程水相平衡酸度调控技术,为稀土非皂化萃取分离提纯工艺提供理论依据与技术指导。并在江苏国盛稀土公司利用稀土浓度梯度及平衡酸度调控技术,进行了盐酸体系中采用不皂化的HEH(EHP)进行了Gd/Tb分离的工程化试验研究,替代了传统的氨皂化萃取分离工艺,从源头消除氨氮废水污染,并大幅度降低了生产成本,实现了稀土绿色分离提纯。
Bastnaesite is the main type of rare earth mining in the world. Output from bastnaesite typically contains0.2-0.3wt%thorium and8-10wt%fluorine in addition to the rare earth. During the common process of bastnasite treatment, however, some environmental issues still remains. One is the discharge of fluorine and radioactive thorium via waste liquid or waste solid. The loss of fluorine from the bastnaesite damages the economy of the process and, more seriously, the environment. Hence, discovering a method to efficiently recover cerium, thorium, and fluorine from bastnaesite is a critical issue in rare earths metallurgy. A new eco-friendly process for the separation and the recovery of thorium and fluorine from bastnaesite treatment was developed and put into industrial application. Solvent extraction of Ce(IV), Th(IV) and F(I) using HEH(EHP)(P507) from a sulfuric acid medium is studied by investigating extraction dependence, with the extraction mechanism determined using slope analysis. The elements distribution were studied during the coordination scrubbing of F(I), the reductively stripping of Ce(IV) and Th(IV) stripping. The new, clean process consists of oxidation roasting, leaching with sulfuric acid, and then recovering the rare earths, fluorine, and thorium using HEH(EHP), and prevents pollution caused by the dumping of thorium and fluorine as hazardous industrial wastes. After oxidation, virtually all RE(III), Ce(IV), Th(IV), and F(I) can be leached out with sulfuric acid. The F(I) coordinates with Ce(IV) and Th(IV) to form [CeFx]4-x and [ThFx]4-x complexes respectively, which can be easily extracted into an organic phase with HEH(EHP) and separated from RE(III) for the negligible extraction of RE(III). The F(I) loaded into the organic phase was scrubbed using Al(III) as the coordination reagent, and recovered as cryolite. After the coordination scrubbing of F(I), the Ce(IV) was reductively stripped using H2O2and HCl while the Th(IV) remained in the organic phase, then recovered as CeO2with a purity of99.95%. In the final step, the Th(IV) was stripped with H2SO4and recovered as ThO2with a purity of99.5%.
     Normally, the separation factors for different rare earth ions show minimal differences owing to their similar valence and ionic radii. However, this similarity in chemical properties generally makes it difficult to separate and purify individual metals from lanthanides, and the separation of rare earths is perhaps the most difficult task in analytical chemistry. Solvent extraction processes have been well established and have been widely used in industry, and in these processes organophosphorus acids are commonly used as the extractants. The extraction mechanism of rare earths by the organophosphorus acids can be expressed as ions exchange process with hydrogen ion. Thus, conventional acidic extractants, such as HEH(EHP) used widely in rare earth hydrometallurgy, always need to be saponified by NH3H2O, NaOH, or Ca(OH)2to facilitate the cation exchange of rare earths. However, this method undoubtedly results in waste water containing NH4+, Ca2+and Na+, which causes discharge of ammonium nitrogen pollutants and increasing salt concentration. A cleaner extraction process is always more desirable to reduce environmental pollution generated by industry, and for rare earth production it is necessary to look for an appropriate non-saponification separation method to replace the existing system. A new environmentally friendly process for rare earth separation was developed and put into industrial application. A novel ideal for rare earth extraction and separation in hydrochloric acid medium with the mixture of HEH(EHP) and Cyanex272which does not need to be saponified with ammonium was put forward. Extraction mechanism and the behavior of RE(Ⅲ) in the systems were studied. A technique for controlling equilibrium acidity, RE concentration gradient and synergistic extraction achieves ammonia-free emissions during rare earth separation while obtaining an organic phase with high rare earth loading. A pilot test separating Gd and Tb in a HEH(EHP)-HCl system is conducted using the proposed equilibrium acidity control technology, and without saponification, to verify the process and show that the method obtains ammonia-free emissions using an industrial separation process.
引文
[1]Xu G. X. Rare Earth [M]. Beijing:Metallurgical Industry Press,1995.
    [2]Jordens A., Cheng Y. P., Waters K. E. A review of the beneficiation of rare earth element bearing minerals [J]. Minerals Engineering 2013,41:97-114.
    [3]Mai H.X., Zhang Y.W., Si R., et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals:Controlled Synthesis and Optical Properties [J]. Journal of the American Chemical Society,2006,128(19):6426-6436.
    [4]Du Y.P., Zhang Y.W., Yan Z.G., et al. Highly Luminescent Self-organized Sub-2-nm EuOF Nanowires [J]. Journal of the American Chemical Society,2009,131(45): 16364-16365.
    [5]Ma B.Q., Gao S., Su G., et al. Cyano-bridged 4f-3d coordination polymers with a unique two-dimensional topological architecture and unusual magnetic behavior [J]. Angewandte Chemie International Edition,2001(40):434-437.
    [6]Shen B.G., Sun J.R., Hu F.X., et al. Recent Progress in Exploring Magnetocaloric Materials [J]. Advance Materials,2009,21(45):4545-4564.
    [7]Ding Y., Chen R.J., Liu Z., et al. Coercivity enhancement of sintered Nd14.4Fe78.4Co1.3B5.9 magnets by dysprosium diffusion in grain boundaries of rapidly solidified strips [J].Journal of Applied Physics,2010, (107):09A726(1-3).
    [8]黄小卫,严纯华,李红卫,等.中国稀土资源的高效提取与循环利用[R].北京:香山科学会议第377次学术讨论会,2010.
    [9]Information office of the state council the People's Republic of China. Situation and policies of China's rare earth industry [M]. Beijing:Foreign languages press,2012.
    [10]U.S. Department of the Interior and U.S. Geological Survey. Mineral commodity summaries 2010. United States Government Printing Office, Washington,2010.
    [11]中华人民共和国国家统计局.《中国统计年鉴》[R].2010.
    [12]Kanazawa Y., Kamitani M., Rare earth minerals and resources in the world, Journal of Alloys and Compounds,2006,(408-412):1339-1343.
    [13]龙志奇,王良士,黄小卫,等.磷矿综合应用提取稀土研究进展[J].稀有金属,2009,33(3):434-441.
    [14]王良士,龙志奇,黄小卫,等.磷酸体系中微量稀土元素萃取回收技术研究[J].中国稀土学报,2009,27(2):228-233.
    [15]王良士,龙志奇,黄小卫,等.湿法磷酸生产过程中控制稀土走向的研究[J].中国稀土学报,2008,26(3):307-312.
    [16]Wang L.S., Long Z.Q., Huang X.W., et al. Recovery of rare earths from wet-process phosphoric acid[J]. Hydrometallurgy,2010, 101(1-2):41-47.
    [17]Wang L.S., Yu Y., Liu Y., et al. Centrifugal extraction of rare earths from wet-process phosphoric acid[J]. Rare Metals,2011,30(3):211-215.
    [18]中华人民共和国国土资源部.《中国矿产资源主要矿种开发利用水平与政策建议》[R].2002年9月.
    [19]杨武斌,罗勇,单强,等.内蒙古巴尔哲稀有稀土多金属矿床特征[J].矿物学报,2009,(S1):266-266.
    [20]冯守忠.巴尔哲碱性花岗岩稀有稀土矿床地质特征及成因探讨[J].中国有色金属学报,1994,(4):14-17.
    [21]杨武斌,牛贺才,单强,等.巴尔哲超大型稀有稀土矿床成矿机制研究[J].岩石学报,2009,(11):2924-2932.
    [22]中华人民共和国科学技术部.《稀土材料科技发展战略研究》[R].2014.
    [23]Kato Y., Fujinaga K., Nakamura K., et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements [J]. Nature Geoscience,2011, DOI:10.1038/NGEO1185.
    [24]Huang X.W., Long Z.Q., Li H.W., et al. Development of rare earth hydrometallurgy technology in China [J]. Journal of Rare Earths,2005,23(1):1-4.
    [25]黄小卫,李红卫,王彩凤,等.我国稀土工业发展现状及进展[J].稀有金属,2007,31(3):279-288.
    [26]黄小卫,李红卫,薛向欣,等.我国稀土湿法冶金发展状况及研究进展[J].中国稀土学报,2006,24(2):129-133.
    [27]黄小卫,张永奇,李红卫.我国稀土资源的开发利用现状与发展趋势[J].中国科学基金,2011,(03):134-137.
    [28]张国成,黄小卫.氟碳铈矿冶炼工艺述评[J].稀有金属,1997,21(3):193-199.
    [29]Yan C.H., Liao C.S., Jia J.T., et al. Comparison of economical and technical indices on rare earth separation processes of bastnasite by solvent extraction [J]. Journal of Rare Earths,1999,17(1):58-63.
    [30]朱国才,田君,池汝安,等.氟碳铈矿提取稀土的绿色化学进展[J].化学通报,2000,(12):6-11.
    [31]朱国才,时文中,池汝安.氯化铵焙烧法从氟碳铈矿提取稀土的研究进展[J].中国稀土学报,2002,(20):136-142.
    [32]池汝安,王淀佐.稀土选矿及提取技术[M].北京:科学出版社,1996.
    [33]Wang L.S., Wang C.M., Yu Y., et al. Recovery of fluorine from bastnasite as synthetic cryolite by product [J]. Journal of Hazardous Materials,2012, 209-210:77-83.
    [34]Wang L.S., Yu Y., Huang X.W., et al. Toward greener comprehensive utilization of bastnaesite:Simultaneous recovery of cerium, fluorine, and thorium from bastnaesite leach liquor using HEH(EHP)[J]. Chemical Engineer Journal,2013,215-216: 162-167.
    [35]Zhang Z.F., Li H.F., Guo F.Q., et al. Synergistic extraction and recovery of cerium(IV) and fluorine from sulfuric solutions with Cyanex923 and di-2-ethylhexyl phosphoric acid[J]. Separation and Purification Technology,2008, (63):348-352.
    [36]王满合,曾明,王良士,等.氟碳铈矿氧化焙烧-盐酸催化浸出新工艺研究[J].中国稀土学报,2013,31(2):148-154.
    [37]Metaxas M., Kasselouri-Rigopoulou V., Galiatsatou P., et al. Thorium removal by different adsorbents [J]. Journal of Hazardous Materials,2003,97(1-3):71-82.
    [38]Kimura J. Review of cooperative research on thorium fuel cycle as a promising energy source in the next century [J]. Progress in Nuclear Energy,1995,29:445-452.
    [39]Bhatnagara A., Kumara E., Sillanpaa M. Fluoride removal from water by adsorption-a review [J]. Chemical Engineer Journal,2011,171:811-840.
    [40]Zhu G, Chi R, Shi W, et al. Chlorination kinetics of fluorine-fixed rare earth concentrate[J]. Minerals Engineering,2003,16(7):671-674.
    [41]Chi R, Zhang X, Zhu G, et al. Recovery of rare earth from bastnasite by ammonium chloride roasting with fluorine deactivation[J]. Minerals Engineering,2004,17(9): 1037-1043.
    [42]Wu W Y, Bian X, Wu Z Y, et al. Reaction process of monazite and bastnaesite mixed rare earth minerals calcined by CaO-NaCl-CaCl2 [J]. Transactions of Nonferrous Metals Society of China,2007,17(4):864-868.
    [43]Wu W Y, Bian X, Sun S C, et al. Study on Roasting Decomposition of Mixed Rare Earth Concentrate in CaO-NaCl-CaCl2[J]. Journal of Rare Earths,2006,24(1):23-27.
    [44]柳招刚,杨启山,刘铃声,等.碳酸钠焙烧盐酸浸出分解氟碳铈矿精矿工艺的研究[J].稀土,2004,25(2):20-25.
    [45]张丽清,王之昌,姜琳琳,等SiCl4作用下氟碳铈精矿的碳热氯化动力学[J].过程工程学报,2007,7(2):298-301.
    [46]张丽清,王军,范世华,等.Stepwise chlorination-chemical vapor transport reactions for bastnaesite concentrate [J]. Journal of Rare Earths,2002,20(1):56-60.
    [47]于秀兰,王之昌,王勇,等.采用AlCl3氟-碳热氯化法从混合稀土精矿中提取稀土[J].过程工程学报,2008,8(2):258-262.
    [48]刘营,龙志奇,黄文梅,等.从含氟硫酸稀土溶液中萃取过程产生第三相的原因[J].中国稀土学报,2001,19(4):320-323.
    [49]龙志奇,黄小卫.二(2-乙基己基)磷酸从含氟硫酸稀土溶液中萃取的机制[J].中国稀土学报,2000,18(1):18-20.
    [50]Liu Y. Study on the method of treatment bastnaesite by oxidative roasting-dilute sulfuric leaching-extracting processing [D]. General research institute for nonferrous metals,2002.
    [51]Zhu Z.W., Zhao N., Long Z.Q., et al. New environment-friendly approach for bastnasite metallurgic treatment (Ⅰ):extraction of tetravalent cerium from sulphuric acid medium with di(2-ethylhexyl) phosphoric acid [J]. Journal of Rare Earths,2005, 23(2):178-182.
    [52]Hu F. Study on solution chemistry, extraction mechanism and stripping properties of thorium in fluorine-contained sulfuric acid medium [D]. General research institute for nonferrous metals,2011.
    [53]Zhang Y.Q., Xu Y., Huang X.W., et al. Study on the Thorium recovery from bastnaesite treatment process [J]. Journal of Rare Earths,2012,30(4):374-377.
    [54]Zhang Z.F., Guo F.Q., Meng S.L., et al. Simultaneous recovery of cerium and fluorine from bastnaesite leach liquor by mixtures of Cyanex923 and HEH(EHP) [J]. Industrial and Engineering Chemistry Research,2010,49(13):6184-6188.
    [55]Li D.Q., Zuo Y., Meng S.L. Separation of thorium(Ⅳ) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method[J]. Journal of Alloys and Compounds,2004,374:431-433.
    [56]Lu J., Wei Z.G., Li D.Q., et al. Recovery of Ce(Ⅳ) and Th(Ⅳ) from rare earths(Ⅲ) with cyanex923[J]. Hydrometallurgy,1998,50:77-87.
    [57]Xiong Y., Wang X.L., Li D.Q. Synergistic extraction and separation of heavy lanthanide by mixture of bis(2,4,4-trimethylpentyl) phosphinic acid and 2-ethylhexyl phosphinic acid mono-2-ethylhexyl ester[J]. Separation Science and Technology, 2005,40:2325-2336.
    [58]Liao W.P., Yu G.H., Li D.Q. Extraction mechanism of cerium(Ⅳ) and fluorine(Ⅰ) in the separation process of bastnasite leach solution by Cyanex 923[J]. Acta Metallurgica Sinica,2001,14(1):21-26.
    [59]Liao W.P., Yu G.H., Yue S.T., et al. Kinetics of cerium(Ⅳ) extraction from H2SO4-HF medium with Cyanex 923[J]. Talanta,2002,56(4):613-618.
    [60]Zuo Y., Liu Y., Chen J., et al. Extraction and recovery of cerium(Ⅳ) along with fluorine(Ⅰ) from bastnasite leaching liquor by DEHEHP in [C8mim]PF6 [J]. Journal of Chemical Technology and Biotechnology,2009,84 (7):949-956.
    [61]Li D.Q., Wang Z.H., Zeng G.F., et al. Extraction mechanism of cerium(Ⅳ) from sulphuric aicd solution by mono(2-ethyl hexyl)-2-ethyl hexyl phosphonate [J].Chinese Rare Earth Society,1984,2(2):9-19.
    [62]Liu J.J., Wang Y.L., Li D.Q. Extraction kinetics of cerium(Ⅳ) from sulfuric acid medium by the primary amine N1923 using a constant interfacial area cell with laminar flow[J]. Journal of Chemical Technology and Biotechnology,2007, (82): 949-955.
    [63]Liu J.J., Wang Y.L., Li D.Q. Extraction Kinetics of Thorium(Ⅳ) with Primary Amine N1923 in Sulfate Media Using a Constant Interfacial Cell with Laminar Flow[J].Separation Science and Technology,2008,43(2),431-445.
    [64]Liu J.J., Wang W.W., Li D.Q. Interfacial behavior of primary amine N1923 and the kinetics of thorium(IV) extraction in sulfate media[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,311:124-130.
    [65]Yu G.H., Yue S.T., Li D.Q., et al, Kinetic study of Ce4+extraction with Cyanex 923 [J] Journal of Rare Earths,2001,19(4):250-254.
    [66]Zhao J.M., Li W., Li D.Q., et al. Kinetics of Cerium(IV) extraction with DEHEHP From HNO3-HF medium using a constant interfacial cell with Laminar flow, [J].Solvent Extraction and Ion Exchange,2006,24(2):165-176.
    [67]Zhang D.L., Wang W., Deng Y.F., et al. Extraction and recovery of cerium(IV) and fluorine(Ⅰ) from sulfuric solutions using bifunctional ionic liquid extractants [J]. Chemical Engineer Journal,2012, (179):19-25.
    [68]张国成,黄小卫,洪维民,等.陈家镛主编《湿法冶金手册》中“稀土湿法冶金”[M],北京:冶金工业出版社,2005.
    [69]黄小卫,李红卫.有色金属进展(1996-2005)第五卷:稀有金属和贵金属/第1册:稀土[M],长沙:中南大学出版社,2007.
    [70]李红卫,黄文梅,程耀庚,等.P507萃淋树脂提取高纯氧化镝的研究[J].稀有金属,1995,(05):321-325.
    [71]应娓娟,雅文厚,沈韵玉,等.CL-P204萃淋树脂分离稀土的研究[J].稀有金属,1981,6:1-6.
    [72]Abbott A. P., Frisch G., Hartley J., et al. Processing of metals and metal oxides using ionic liquids[J].Green Chemistry,2011,13:471-481.
    [73]Xiong Y., Wang X.L., Li D.Q. Synergistic extraction and separation of heavy lanthanide by mixture of bis(2,4,4-trimethylpentyl) phosphinic acid and 2-ethylhexyl phosphinic acid mono-2-ethylhexyl ester[J]. Separation Science and Technology, 2005,(40):2325-2336.
    [74]Richelton W.A., Boyle R.J. Solvent extraction with organophosphines:commercial and potential applications[J]. Separation Science and Technology,1988,23(12-13): 1227-1250.
    [75]Behera P., Mishra M.S., Mohanty M.I., et al. Organophosphinic, phosphonic acids and their binary mixtures as extractants for molybdenum (VI) and uranium (VI) from aqueous HCl media [J]. Journal of Radioanal Nuclear Chemistry,1994,178(1): 179-192.
    [76]Sato T. Liquid-liquid extraction of rare-earth elements from aqueous acid solutions by acid organophosphorus compounds [J]. Hydrometallurgy,1989,22:121-140.
    [77]Reddy B.R., Priya D.N., Kumar J.R. Solvent extraction of cadmium (Ⅱ) from sulphate solutions using TOPS99, PC88A, Cyanex272 and their mixtures [J].Hydrometallurgy, 2004,74(3-4):277-283.
    [78]Reddy B. R., Priya D. N., Park K. H. Separation and recovery of cadmium(II), cobalt(II) and nickel(II) from sulphate leach liquors of spent Ni-Cd batteries using phosphorus based extractants[J]. Separation and Purification Technology,2006,50(2): 161-166.
    [79]Radhika S., Kumar B.N., Kantam M.L., et al. Liquid-liquid extraction and separation possibilities of heavy and light rare-earths from phosphoric acid solutions with acidic organophosphorus reagents [J]. Separation and Purification Technology,2010,75(3): 295-302.
    [80]Zhu Z.W., Cheng C.Y. Solvent extraction technology for the separation and purification of niobium and tantalum:A review [J]. Hydrometallurgy,2011,107(1-2): 1-12.
    [81]Bandekar S.V., Dhadke P.M.. Solvent extraction separation of platinum (IV) and palladium (Ⅱ) by 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) [J]. Separation and Purification Technology,1998,13(2):129-135.
    [82]Ma E.X., Yan X.M., Wang G.L., et al. Tetrad effect in solvent extraction of lanthanides by 2-ethylhexyl phosphonic and acid mono 2-ethylhexyl ester [J]. Kexue Tongbao,1980,25(11):911-915.
    [83]Ma E.X., Yan X.M., Wang S.Y., et al. Solvent extraction of lanthanides by 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester [J]. Scientia Sinica,1981, (9): 1237-1247.
    [84]Flett D.S. Solvent extraction in hydrometallurgy-the role of organophosphorus extractants [J]. Journal of Organometallic Chemistry,2005,690:2426-2438.
    [85]Ritcey G.M. Solvent Extraction in hydrometallurgy-Presentand and Future [J]. Tsinghua Science and Technology,2006,11(2):137-152.
    [86]严纯华,吴声,廖春生,等.稀土分离理论及其实践的新进展[J].无机化学学报,2008,24(8):1200-1205.
    [87]严纯华,贾江涛,廖春生,等.稀土串级萃取分离过程的自动控制系统[J].稀土,1997,18(2):37-42.
    [88]吴声,廖春生,严纯华.含不同价态的多组份体系萃取平衡算法研究[J].中国稀土学报,2012,30(2):163-167.
    [89]吴声,廖春生,贾江涛,等.多组份多出口稀土串级萃取静态优化设计研究(Ⅱ)静态程序设计及动态仿真验证[J].中国稀土学报,2004,22(2):171-176.
    [90]贾江涛,王建方,严纯华,等.多组分体系单级萃取平衡的Newton-Raphson算法[J].中国稀土学报,1999,17(2):102-106.
    [91]Jia J.T., Wang J.F., Yan C.H., et al. Calculation of extraction equilibrium in multi-component system by Newton-Raphson algorithm [J]. Journal of Rare Earths, 1999,17(4):246-249.
    [92]Jia J.T., Wu S., Liao C.S., et al. Research and application progress in countercurrent solvent extraction [J]. Journal of Rare Earths,1999,22(5):576-581.
    [93]Yan C.H., Jia J.T., Liao C.S., et al. Rare earth separation in China [J]. Tsinghua Science & Technology,2006,11(2):241-247.
    [94]Jia J.T., Yan C.H., Liao C.S., et al. Automation system in rare earths countercurrent extraction processes[J]. Journal of Rare Earths,2001,19(1):6-10.
    [95]Yan C.H., Liao C.S., Jia J.T., et al. Comparison of economical and technical indices on rare earth separation processes of bastnasite by solvent extraction [J]. Journal of Rare Earths,1999,17(1):58-63.
    [96]Wang L. S., Huang X. W., Yu Y., et al. Eliminating ammonia emissions during rare earth separation through control of equilibrium acidity in a HEH(EHP)-Cl system [J]. Green Chemistry,2013,15 (7):1889-1894.
    [97]Wang L. S., Huang X. W., Yu Y., et al. Kinetics of rare earth pre-loading with 2-ethylhexyl phosphoric acid mono 2-ethylhexyl ester [HEH(EHP)] using rare earth carbonates [J]. Separation and Purification Technology,2014,122:490-494.
    [98]Zhang C., Wang L. S., Huang X. W., et al. Yttrium extraction from chloride solution with a synergistic system of 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester and bis(2,4,4-trimethylpentyl) phosphinic acid [J]. Hydrometallurgy,2014. DOI: 10.1016/j.hydromet.2014.04.008.
    [99]Xiao Y. F., Long Z. Q., Huang X. W., et al. Study on non-saponification extraction process for rare earth separation [J]. Journal of Rare Earths,2013,31(5):512-516.
    [100]王俊兰,丁文华,安卫国.对稀土酸法冶炼污染治理的探讨[J].内蒙古环境保护,2003,15(4):16-21.
    [101]王春梅,张永奇,黄小卫,等.稀土冶炼废水处理技术发展现状[J].有色冶金节能,2012,(1):11-15.
    [102]杨清宇,王琳丽,蔡锡元,等.南方稀土湿法冶炼废水综合回收与治理研究[J].有色冶金节能,2012,(1):7-10.
    [103]李建宁,黄小卫,朱兆武,等.P507-P204-H2SO4体系萃取稀土元素的研究[J].中国稀土学报,2007,25(1):55-59.
    [104]Huang X.W., Li J.N., Long Z.Q., et al. Synergistic extraction of rare earth by mixtures of 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester and di-(2-ethylhexyl) phosphoric acid from sulfuric acid medium[J]. Journal of Rare Earths,2008,26(3): 410-413.
    [105]黄小卫,李建宁,张永奇,等.P204-P507在酸性硫酸盐溶液中对Nd3+和Sm3+的协同萃取[J].中国有色金属学报,2008,18(2):366-371.
    [106]Zhang Y.Q., Li J.N., Hunag X.W., et al. Synergistic Extraction of Rare Earths by Mixture of HDEHP and HEH/EHP in Sulfuric Acid Medium[J].Journal of Rare Earths,2008,26(5):688-692.
    [107]张永奇,李建宁,黄小卫,等HDEHP和HEH/EHP混合萃取剂在硫酸介质中协同萃取RE(Ⅲ)的机制研究[J].中国稀土学报,2008,26(6):671-676.
    [108]黄小卫,张永奇,龙志奇,等HDEHP和HEH/EHP在硫酸介质中对Y3+的协同萃取及反萃行为研究[J].稀土,2008,29(3):5-9.
    [109]张永奇,黄小卫,王春梅,等.从混合酸性磷类负载有机相中反萃稀土的研究[J].稀有金属,2009,1:124-128.
    [110]张永奇,黄小卫,王春梅,等.酸性磷类萃取剂在硫酸介质中对Y(Ⅲ)的协萃机制研究[J].中国稀土学报,2008,26(4):437-442.
    [111]罗兴华,黄小卫,朱兆武,等.2-乙基己基膦酸单2-乙基己基酯和二(2-乙基己基)磷酸从硫酸介质中协同萃取Ce(Ⅳ)的研究[J].中国稀土学报,2008,26(5):566-569.
    [112]Luo X.H., Huang X.W., Zhu Z.W., et al. Synergistic extraction of cerium from sulphuric acid medium using mixture of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester and Di-(2-ethyl hexyl) phosphoric acid as extractant [J]. Journal of Rare Earths,2009,27(1):119-122.
    [113]黄小卫,李红卫,龙志奇,等.一种高浓度稀土溶液非皂化萃取全分离工艺[P].中国专利:1880489,2006-12-20.
    [114]黄小卫,李红卫,龙志奇,等.一种非皂化有机相萃取稀土全分离工艺[P].中国专利:1824814,2006-08-30.
    [115]黄小卫,李建宁,彭新林,等.一种非皂化磷类混合萃取剂萃取分离稀土元素的工艺[P].中国专利:1804063,2006-07-19.
    [116]黄小卫,李建宁,彭新林,等.一种非皂化有机萃取剂萃取分离稀土元素的工艺[P].中国专利:1730680,2006-02-08.
    [117]GB 26451-2011, Emission Standards of Pollutants from Rare Earths Industry [S]. China:China Ministry of Environmental Protection,2011.
    [118]Geng Y, Sarkis J. Achieving national emission reduction target-China's new challenge and opportunity [J]. Environmental Science & Technology,2012:107-108.
    [119]Sawant R.M., Rastogi R.K., Mahajan M.A., et al. Stabilisation of tetravalent cerium in perchloric acid medium and measurement of the stability constants of its fluoride complexes using ion selective potentiometry [J]. Talanta,1996,43:89-94.
    [120]Zhu Z.W., Bian Z.Y., Long Z.Q. Determination of free acid in rare earth solution by a fixed pH method [J]. Analytical Methods,2010,2:82-85.
    [121]严磊,张永奇,王良士,等.含氟硫酸体系HEH/EHP萃取铈(Ⅳ)的动力学研究[J].中国稀土学报,2012,30(3):278-283.
    [122]Danesi P.R., Vandegrift G.F. Kinetics and mechanism of the interfacial mass transfer of europium (3+) and americium (3+) in the system bis(2-ethylhexyl) phosphate-n-dodecane-sodium chloride-hydrochloric acid-water [J]. Journal of Physical Chemistry,1981,85 (24):3646-3651.
    [123]Yu J.F., Ji C. Interfacial chemistry and kinetics controlled reaction mechanism of organo-phosphoric acid mixed extraction systems [J]. Chemical Journal of Chinese Universities,1992,13 (2):224-226.
    [124]Danesi P.R., Chiarizia R. The kinetics of metal solvent extraction [J]. CRC Critical Reviews in Analytical Chemistry,1980,10 (1):1-126.
    [125]Xu T., Peng H.Q. Formation cause, composition analysis and comprehensive utilization of rare earth solid wastes [J]. Journal of Rare Earths,2009,27(6): 1096-1102.
    [126]Alvarez-Ayuso E., Querol X., Ballesteros J.C., et al. Risk minimisation of FGD gypsum leachates by incorporation of aluminium sulphate [J]. Science of the Total Environment,2008,406:69-75.
    [127]Wang C.M., Huang X.W., Cui D.L., et al. Synthesis of cryolite by fluoride aluminum complex solution [J]. Chinese Journal of Rare Metals,2009,33(5):737-741.
    [128]Martin B.R. Ternary complexes of Al3+ and F- with a third ligand [J]. Coordination Chemistry Reviews,1996,141:23-32.
    [129]Tchomgui-Kamga E., Alonzo V., Nanseu-Njiki C. P., et al. Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water [J]. Carbon,2010,48:333-343.
    [130]Kumar E., Bhatnagar A., Kumar U., et al. Defluoridation from aqueous solutions by nano-alumina:characterization and sorption studies [J]. Journal of Hazardous Materials,2011,186:1042-1049.
    [131]Chen N., Zhang Z., Feng C., et al. Preparation and characterization of porous granular ceramic containing dispersed aluminum and iron oxides as adsorbents for fluoride removal from aqueous solution [J]. Journal of Hazardous Materials,2011,186: 863-868.
    [132]Wu X., Zhang Y., Dou X., et al. Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent [J]. Chemosphere,2007,69 (11):1758-1764.
    [133]Plankey B.J., Patterson H.H. Kinetics of aluminum fluoride complexation in acidic waters [J]. Environmental Science & Technology,1986,20(2):160-165.
    [134]Kumar M., Nani Babu M., Mankhand T.R., et al. Precipitation of sodium silicofluoride (Na2SiF6) and cryolite (Na3AlF6) from HF/HCl leach liquors of alumino-silicates [J]. Hydrometallurgy,2010,104(2):304-307.
    [135]Akdeniz Z., Cicek Z., Tosi M.P. Theoretical evidence for the stability of the (AlF5)2-complex anion [J]. Chemical Physics Letters,1999,308(5-6):479-485.
    [136]Rietjens M. Decomplexation of aluminium-fluoride complexes by citrate-based buffers as a function of pH, aluminium and fluoride concentrations [J]. Analytica Chimica Acta 1998,368:265-273.
    [137]Townsend G.S., Bache B.W. Kinetics of aluminium fluoride complexation in single-and mixed-ligand systems [J]. Talanta,1992,39(11):1531-1535.
    [138]Eskandarpour A., Onyango M.S., Ochieng A., et al. Removal of fluoride ions from aqueous solution at low pH using schwertmannite [J]. Journal of Hazardous Materials, 2008,152:571-579.
    [139]Kogfeldt E. Stability constants of metal-ion complexes part A:inorganic ligands [M]. Pergamon press, Oxford,1982.
    [140]Paudyal H., Pangeni B., Inoue K., et al. Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal ions [J]. Journal of Hazardous Materials,2011,192:676-682.
    [141]Lv L., He J., Wei M., et al. Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides [J]. Journal of Hazardous Materials,2006,133:119-128.
    [142]Chen N., Zhang Z., Feng C., et al. Fluoride removal from water by granular ceramic adsorption [J]. Journal of Colloid and Interface Science,2010,348:579-584.
    [143]Jagtap S., Yenkie M.K.N., Labhsetwar N., et al. Defluoridation of drinking water using chitosan based mesoporous alumina [J]. Microporous Mesoporous Mater.,2011, 142:454-463.
    [144]Scholz G., Korup O. High-energy ball milling-a possible synthesis route for cryolite and chiolite [J]. Solid State Science,2006,8:678-684.
    [145]Metal department of Sun Yat-sen University. Physical and chemical constants of rare earths [M]. Metallurgical Industry Press,1978.
    [146]Liu X.J., Zhu Y.F., Gao F. Inorganic elements in chemistry [M]. Science Press,2010.
    [147]Sillen L.G. Stability constants of metal-ion complexes, section I:inorganic ligands [M]. London:the chemical society, Burlington house,1964.
    [148]Radhika S., Kumar B.N., Kantam M.L., et al. Studies on solvent extraction of Dy(III) and separation possibilities of rare earths using PC-88A from phosphoric acid solutions [J]. Journal of Taiwan institute of chemical engineers,2012,43(6):839-844.
    [149]Kim J.S., Kumar B.N., Lee J.Y., et al. Separation and Recovery of Light Rare-Earths from Chloride Solutions using Organophosphorus based Extractants [J]. Separation Science and Technology,2012,47:1644-1650.
    [150]Cheng C.Y. Purification of synthetic laterite leach solution by solvent extraction using D2EHPA [J]. Hydrometallurgy,2000,56(3):369-386.
    [151]Zhu Z.W., Zhang W.S., Cheng C.Y. A literature review of titanium solvent extraction in chloride media [J]. Hydrometallurgy,2011,105 (3-4):304-313.
    [152]Xing P., Wang C.Y., Ju Z.J., et al. Cobalt separation from nickel in sulfate aqueous solution by a new extractant:Di-decylphosphinic acid (DDPA) [J]. Hydrometallurgy, 2012,113-114:86-90.
    [153]Fan S.J., Zhao X.W., Song N.Z., et al. Studies on the synergistic extraction of rare earths from nitrate medium with mixtures of sec-nonylphenoxy acetic acid and 1,10-phenanthroline [J]. Separation and Purification Technology,2010,71:241-245.
    154] Mathur J.N. Synergism of trivalent actinides and lanthanides [J]. Ion Exchange and Solvent Extraction,1983,1:349-412.
    155] Nayak D., Lahiri S., Das N. R., Synergistic extraction of neodymium and carrier-free promethium by the mixture of HDEHP and PC88A [J]. Journal of Radioanalytical and Nuclear Chemistry,2009,240:555-560.
    156] Song N.Z., Tong S.S., Liu W., et al. Extraction and separation of rare earths from chloride medium with mixtures of 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester and sec-nonylphenoxy acetic acid [J]. Journal of Chemical Technology and Biotechnology,2009,84:1798-1802.
    [157]Sun X.B., Wang J.P., Li D.Q., et al. Synergistic extraction of rare earths by mixture of bis(2,4,4-trimethylpentyl)phosphinic acid and Sec-nonylphenoxy acetic acid [J]. Separation and Purification Technology,2006,50:30-34.
    [158]Sun X.B., Zhao J.M., Meng S.L., et al. Synergistic extraction and separation of yttrium from heavy rare earths using mixture of sec-octylphenoxy acetic acid and bis (2,4,4-trimethylpentyl) phosphinic acid [J]. Analytica Chimica Acta,2005,533: 83-88.
    [159]Wang X.L., Du M., Liu H. Synergistic extraction study of samarium(Ⅲ) from chloride medium by mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid and 8-hydroxyquinoline mixtures [J]. Separation and Purification Technology,2012,93: 48-51.
    [160]Xiong Y., Wang X. L., Li D.Q. Synergistic extraction and separation of heavy lanthanide by mixture of bis(2,4,4-trimethylpentyl)phophinic acid and 2-ehtylhexyl phosphinic acid mono-2-ethylhexyl ester [J]. Separation Science and Technology, 2005,40:2325-2336.
    [161]Xu, G.X., Wang, W.Q., and Wu, J. Extraction chemistry of the nuclear fuel (Ⅰ): Synergistic extraction with chelating and complexing extractants [J]. Atomic Energy Science and Technology,1963,7:487-508.
    [162]Zhu Z., Zhang W., Pranolo Y., et al. Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction [J]. Hydrometallurgy, 2012,127-128:1-7.
    [163]Liu Y.H., Chen J., Li D.Q. Application and Perspective of Ionic Liquids on Rare Earths Green Separation [J]. Separation Science and Technology,2012,47(2): 223-232.
    [164]Yin S.H., Wu W.Y., Bian X., et al. Effect of complexing agent lactic acid on the extraction and separation of Pr(Ⅲ)/Ce(Ⅲ) with di-(2-ethylhexyl) phosphoric acid [J]. Hydrometallurgy,2013,131-132:133-137.
    [165]Geng Y., Sarkis J.. Achieving national emission reduction target-China's new challenge and opportunity [J]. Environmental Science & Technology,2012,46: 107-108.
    [166]袁承业.稀土萃取剂的化学结构与性能问题[J].科学通报,1977,11:465-479.
    [167]Sun X.Q., Luo H.M., Dai S. Ionic Liquids-Based Extraction:A Promising Strategy for the Advanced Nuclear Fuel Cycle [J]. Chemical Reviews,2012,112:2100-2128.
    [168]Sun X.Q., Bell J.R., Luo H.M., et al. Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases [J]. Dalton Transactions,2011,40:8019-8023.
    [169]Vander Hoogerstraete T., Wellens S., Verachtert K., et al. Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid:separations relevant to rare-earth magnet recycling [J]. Green Chemistry,2013, 15:919-927.
    [170]Chen J., Spear S.K., Huddleston J.G., et al. Aqueous polyethylene glycol solutions as green reaction media [J]. Green Chemistry,2005,7:64-82.
    [171]Liu Y.H., Zhu L.L., Sun X.Q., et al. Towards greener separations of rare earths: bifunctional ionic liquid extractants in biodiesel [J]. AIChE Journal,2010,56: 2338-2346.
    [172]Sun X.Q., Ji Y., Hu F.C., et al. The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction [J]. Talanta,2010,81:1877-1883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700