用户名: 密码: 验证码:
地表水源热泵系统的运行特性与运行优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展可再生能源是优化我国能源结构和改善环境质量的要求。地源热泵利用散布在地球表面浅层水源和浅层土壤中的低品位热能,是一项节能环保的可再生能源技术。地源热泵包括土壤源热泵、地下水源热泵和地表水源热泵。土壤源热泵和地下水源热泵在我国已经有一些应用,但地表水源热泵的应用较少,地表水源热泵研究方面的积累也较少。本文结合我国南方地区的地表水温特点和气候特点,对地表水源热泵系统的运行特性和运行优化问题进行了研究。论文的第一部分对开式地表水源热泵、闭式地表水源热泵、混合地表水源热泵的运行特性以及地表水源热泵运行时地表水温的变化进行了一系列试验与理论研究;第二部分研究了地表水源热泵系统的运行优化问题。论文的工作和所获得的成果具有明确的工程应用价值,主要的工作和成果有:
     (1) 在对国内外研究现状进行分析和总结的基础上,自主设计了湖南省湘潭市城市中心区大型地表水源热泵区域供冷供热系统。对该系统夏、冬季实际运行情况进行了全面的测试,包括水质、湖水温度恢复情况、气温、进出水温度、COP等。还对南方地区地表水源热泵系统与风冷热泵的性能进行了对比测试。为今后国内发展大型地表水源热泵区域供冷供热系统积累了设计与运行数据,提供了参考依据。
     (2) 完整、系统地建立了闭式地表水源热泵系统的动态模型,应用该模型能够根据逐时的负荷和气象参数模拟出闭式系统全年运行的动态特性。对位于长沙市的一处拟建的闭式地表水源热泵系统在制冷制热期的动态特性进行了模拟。分析了水底盘管大小对进液温度的影响;分析了水体深度、面积对进液温度和底层水温的影响;比较了无负荷和有负荷时的底层水温变化;分析了该系统的性能。
     (3) 在工程应用中会出现地表水量不稳定或不足的情况,有必要发展混合地表水源热泵系统。针对本文提出的带喷泉的混合地表水源热泵系统,建立了预测水池喷淋冷却效果的简化模型。对某种型号喷嘴的喷淋冷却效果进行了模拟,模拟结果与实测结果吻合得较好。该模型的输入参数少,可以方便地用于设计带喷泉的混合地表水源热泵系统。
     (4) 地表水源热泵、冷水机组的冷却水以及工业冷却水排入地表水体后,会使水温发生变化,并可能会影响到水体的生态环境。论文研究了地表水作为热泵低位热源时的水温恢复机理,并提出了弱温水体得热系数的计算公式。
     针对封闭地表水体与外界换热以及受纳废热的特点,将水温变化过程看成是一个随机过程,首次建立了封闭地表水体水温变化的随机模型,并且给出了随机
Developing renewable energy is necessary to energy structure optimization and environmental protection of China. As a renewable energy technology, ground-source heat pumps which include ground-coupled heat pumps, groundwater heat pumps and surface water heat pumps (SWHPs) can utilize diffused low-grade energy over shallow water and soil. Some ground-coupled heat pump systems and groundwater heat pump systems have been built in China, but the application of SWHPs is rare, so is the study on SWHPs. Studies on the operating characteristics and the operation optimization of SWHPs according to the characteristics of the surface water temperatures and climate of south China have been carried out in this dissertation. Experimental and theoretical studies on the operating characteristics of open-loop SWHPs, closed-loop SWHPs and hybrid SWHPs and on the variations of the surface water temperatures when SWHPs operate are included in the first part of the dissertation. The second part deals with the operation optimization of SWHPs. The researches and the related results obtained in the dissertation are practical in engineering applications. The major works and related results include:
    (1) Based on the analysis of development of researches on SWHPs, a large pioneer SWHP system for district heating and cooling that utilizes lake water as heat source-sink of heat pumps in Xiangtan was designed. A series of field tests for the system were performed. The objects of the tests include the water quality, the recovery of lake water temperature, the air temperature, the entering and leaving water temperature of condenser and evaporater, COP values, etc. Based on the field tests of the COP values, SWHP performance is compared with air-source heat pump (ASHP) performance in south China. The design and tests for the system can provide considerable experiences, practical data and references for developing large SWHP system for district heating and cooling in China.
    (2) An integral and systemic model for closed-loop SWHP system is established. Dynamic simulation for a closed-loop SWHP system in Changsha was performed by applying the model according to the hourly load and the hourly weather data. The impacts of the coil size, the area and the depth of the water body on the entering fluid temperature and the bottom water temperature are analyzed through the simulation. The bottom water temperature with heat rejection/extraction is
引文
[1] 郎四维,龙惟定,林海燕,等.公共建筑节能设计标准宣贯辅导教材.北京:中国建筑工业出版社,2005,11
    [2] 中华人民共和国建设部.贯彻落实科学发展观大力发展节能与绿色建筑. http://www.cin.gov.cn/green/yj/, 2005-02-23
    [3] 新华网.今年区域性、季节性电力缺口仍然存在.http://news.xinhuanet.com/fortune//2006-03/18/content_4315339.htm, 2006-03-14
    [4] 龙惟定,王长庆,丁文婷.试论中国的能源结构与空调冷热源的选择取向.暖通空调,2000,30(5):27-32
    [5] 姚杨,马最良.浅议“热泵”定义.暖通空调,2002,32(3):33
    [6] 徐邦裕,陆亚俊,马最良.热泵.北京:中国建筑工业出版社,1988,14
    [7] Cube H L,Steimle F著,王子介译.热泵的理论与实践.北京:中国建筑工业出版社,1986,36-39
    [8] Heitschue R D. Heating with heat pumps. Refrigeration Engineering, 1951, 41 (5):317-320
    [9] Rose R. Heat pumps in Europe—an overview. In: Proceedings of the 7th International Energy Agency Heat Pump Conference. Beijing, 2002, 47-53
    [10] Calm J M. Heat pumps in USA. Internatinal Journal of Refrigeration, 1987, 10(4):190-196
    [11] 李新国.中高温热泵及其压缩式制冷机的研究:[天津大学硕士论文].天津:天津大学,1989,2-3
    [12] 马最良,姚杨,杨自强.水环热泵空调系统设计.北京:化学工业出版社,2005,1-2
    [13] 范新,谢峤,甄华斌,等.水源热泵系统及其应用.见:殷平主编.现代空调(3).北京:中国建筑工业出版社,2001,106-111
    [14] ASHRAE. ASHRAE handbook—applications. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1999,794-796
    [15] 郑秀华.世界地热资源开发应用现状.探矿工程,2001(1):6-7
    [16] 马荣生,孙志高.地热资源及其在热泵供热中的应用.节能与环保,2003(7):25-27
    [17] 马最良,杨辉.太阳能开式环路水源热泵空调系统.应用能源技术,1997(3):41-44
    [18] 林之光.长江中下游水域气候及其三峡水库可能的气候效应.气象,1985,11(12):24-28
    [19] Ryushi T, Kita I, Sakuratiot H. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. Internatinal Journal of Biometeorol, 1998,4(3): 132-136
    [20] Watanabe I, Noro H, Ohtsuka Y. Physical effects of negative air ions in a wet sauna. Internatinal Journal of Biometeorol, 1997,40(2): 107-112
    [21] Morton L L, Kershner J R. Differential negative air ion effects on learning disabled and norrnal-achieving children. Internatinal Journal of Biometeorol, 1990, 34(1):35-41
    [22] 厉曙光,刘琦,李进,等.喷泉产生的空气负离子及其影响因素的研究.环境与健康杂志,2000,17(4):205-207
    [23] Kavanaugh S P, Rafferty K. Ground-source heat pumps—design of geothermal systems for commercial and institutional buildings. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1997, 119-120
    [24] Hattemer B, Kavanaugh S P. Design temperature data for surface water heating and cooling systems. ASHRAE Transactions, 2005,111(1):695-701
    [25] Kavanaugh S P. Design considerations for ground and water source heat pumps in southern climates. ASHRAE Transactions, 1989,95(1): 1139-1149
    [26] Kavanaugh S P, Pezent M C. Lake water applications of water-to-air heat pumps. ASHRAE Transactions, 1990,96(1):813-820
    [27] Sauer J H, Howell R H. Heat pump systems. New York: John Wiley & Sons, 1983, 106-110
    [28] Büyükalaca O, Ekinci F, Yilmaz T. Experimental investigation of Seyhan River and dam lake as heat source-sink for a heat pump. Energy, 2003,28(2):157-169
    [29] Aittomaki A. Lakes as a heat source in cold climate. In: Proceedings of the 21st International Congress of Refrigeration, Washington, 2003, 872-878
    [30] Katsuhiko N, Tetsuya M. Energy recycling system for urban waste heat. Energy and Buildings, 1991,16(2):553-560
    [31] Lu A, Charters W S. Electrical and engine driven heat pumps for effective utilization of renewable energy resources. Applied Thermal Engineering, 2003, 23(10): 1295-1300
    [32] Ma S W Y, Kueh C S W, Chiu G W, et al. Environmental management of coastal cooling water discharges in Hong Kong. Water Science & Technllogy, 1998,38 (8):267-274
    [33] Hanneke V. Large energy systems—an international overview. IEA Heat Pump Centre Newsletter, 1998,16(1):10-15
    [34] Enstrom. Some experience of heat pump in district heating networks. In: Proceedings of the 16th International Congress of Refrigeration. Paris, 1983, 25-30
    [35] JARN Ltd. A new river water source heat pump project. Japan Air-Conditioning, Heating & Refrigeration News, 1996-08-25
    [36] Hazen E. Deep water source cooling: an untapped resource. In: Proceedings of the 10th Annual District Cooling Conference. Florida, 1995, 276-282
    [37] 蒋爽,李震,端木琳.海水热泵系统在斯德哥尔摩应用及其在中国的发展前景.见:2005年全国空调与热泵节能技术交流会论文集.大连,2005,89-95
    [38] 王刚.瑞典区域供冷技术对中国的启示.建筑热能通风空调,2004,23(3):24-29
    [39] Tim P, Joyce W S. Lake-source cooling. ASHRAE Journal, 2002,44(4):37-39
    [40] Davey T. Deep lake water cooling—a matter of degrees. Environmental Science & Engineering, 2003(9):67-71
    [41] 慧聪暖通制冷行业频道编辑部.2005年度暖通制冷行业十大新技术.2006年中国行业资讯大全·暖通制冷行业卷,2006,4(1):101-102
    [42] 大连高新园区冷冻空调科技公司.大连市海水热泵技术工程的应用.大连制冷信息简报(空调与热泵特刊),2005(1):23-24
    [43] 中华人民共和国水利部.2002年中国水资源公报.http://www.mwr.gov.cn,2002-12-31
    [44] 秦红,文远高,张文华.空调系统的地表水利用及其节能和环境影响分析.见:1998年全国暖通空调制冷学术年会学术文集.北京:中国建筑工业出版社,1998,322-326
    [45] 祝耀升,张晓奋,单哲简.地下水空调技术.北京:航空工业出版社,1994,12
    [46] 何满潮,李学元.混合水源联动运行空调技术及工程应用.矿业研究与开发,2004,24(1):30-33
    [47] 李永安,李继志,王先玉.湖水水源热泵综合能源利用设计与实践.低温建筑技术,2003(5):78-79
    [48] 于立强.青岛东部开发区建设海水冷热源大型热泵站可行性分析.暖通空调,1996,26(3):10-13
    [49] 《湘潭日报》社.2004年震撼湘潭的十大新闻事件.湘潭日报,2005-03-27
    [50] Chow T T, Au W H, Yau R, et al. Applying district-cooling technology in Hong Kong. Applied Energy, 2004,79(11):275-289
    [51] 李炜.环境水力学进展.武汉:武汉水利电力大学出版社,1999,313-317
    [52] 赵文谦.环境水力学.成都:成都科技大学出版社,1986,156-158
    [53] ASHRAE. Commercial/institutional ground-source heat pump engineering manual. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1995, 77-79
    [54] Pezent M C, Kavanaugh S P. Development and verification of a thermal model of lakes used with water source heat pumps. ASHRAE Transactions, 1990,96(1): 574-582
    [55] Chiasson A D, Spitler J D, Rees S J. A model for simulating the performance of a shallow pond as a supplemental heat rejecter with closed-loop ground source heat pump systems. ASHRAE Transactions, 2000,106(2): 107-121
    [56] Jirka G H, Watanabe M, Octavio K H, et al. Mathematical predictive models for cooling ponds and lakes (Part A: Model development and design considerations). Boston: R M Parsons Lab of MIT, 1978, 238
    [57] Hondzo M, Stefan H G. Lake water temperature simulation model. ASCE Journal of Hydraulic Engineering, 1993,119(11): 1251-1273
    [58] Hondzo M, Ellis C R, Stefan H G. Vertical diffusion in small stratified lake: data and error analysis. ASCE Journal of Hydraulic Engineering, 1991,117(10): 1352-1369
    [59] Fang X, Stefan H G. Long-term lake water temperature and ice cover simulations/measurements. Cold Regions Science and Technology, 1996,24(3): 289-304
    [60] 雒文生,宋星原.水环境分析及预测.武汉:武汉大学出版社,2000,142-143
    [61] 陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究.水利学报,1998(9):14-20
    [62] Reid R C, Prausnitz J M, Poling B E. The properties of gases and liquids. New York: McGraw-Hill, 1987, 741
    [63] Incropera F P, DeWitt D P. Introduction to heat transfer. New York: John Wiley & Sons, 1996, 152
    [64] Churchill S W, Chu H S. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Internatinal Journal of Heat and Mass Transfer, 1975,18(9): 1049-1053
    [65] Kim S A. Discharge of buoyant fluid jets and particle-laden jets into stratified ambient fluid: [Ph.D. dissertation]. Vancouver: University of British Columbia, 2001, 62
    [66] Allen J J, Hamilton J F. Steady-state reciprocating water chiller models. ASHRAE Transactions, 1983,89(2):398-407
    [67] Stoecker W F. Procedures for simulating the performance of components and systems for energy calculations. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1975, 368-392
    [68] Stefanuk N B, Aplevich J D, Renksizbulut M. Modeling and simulation of a superheat-controlled water-to-water heat pump. ASHRAE Transactions, 1992, 98(2):172-184
    [69] Bourdouxhe J P, Grodent H M, Lebrun J J. A toolkit for primary HVAC system energy calculation-part 2: reciprocating chiller models. ASHRAE Transactions, 1994,100(2):774-786
    [70] Jin H. Parameter estimation based models of water source heat pumps: [Ph.D. dissertation]. Stillwater: Oklahoma State University, 2002, 162-163
    [71] ASHRAE. ASHRAE handbook—fundamentals. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1997, 132-135
    [72] Mirth D R, Ramadhyani S. Comparison of methods of modeling the air-side heat and mass transfer in chilled-water cooling coils. ASHRAE Transactions, 1993,99(1):285-298
    [73] Jacobi A M, Goldschmidt V W. Low Reynolds number heat and mass transfer measurements of an overall counterflow, baffled, finned-tube, condensing heat exchanger. International Journal of Heat and Mass Transfer, 1990,33(4): 755-765
    [74] 吴俊云.湿球温度与饱和焓值经验关系式.暖通空调,2000,30(3):27-29
    [75] 刘宪英,陈建萍,王文,等.地源水-水热泵冬夏暖冷联供实验研究.制冷学报,2002,23(2):10-14
    [76] Cantrell J M, Wepfer W J. Shallow ponds for dissipation of building heat: a case study. ASHRAE Transactions, 1984, 90(1):239-246
    [77] Arnold D. Thermal storage case study: combined building mass and cooling pond. ASHRAE Transactions, 2000, 106(1):819-827
    [78] Kavanaugh S P. A design method for hybrid ground-source heat pumps. ASHRAE Transactions, 1998, 104(2):691-698
    [79] Phetteplace G, Sullivan W. Performance of a hybrid ground-coupled heat pump system. ASHRAE Transactions, 1998,104(1):763-770
    [80] Codell R B. Spray pond design for nuclear power plants. ASCE Journal of Energy Engineering, 1986,112(2):90-103
    [81] Winiarski D. WhiteCap~(?) roof spray cooling system. http://www.eren.doe.gov/femp, 1997-12-21
    [82] Moussiopoulos N. Numerical simulation of spray cooling pond performance.ASME Journal of Fluids Engineering, 1987,109(2): 179-185
    [83] Migdal D, Agosta V D. A source flow model for continuous gas-particle flow.ASME Journal of Applied Mechanics, 1967,35(4):860-862
    [84] Porter R W, Yang U M, Yanik A. Thermal performance of spray cooling systems. In: Proceeding of the American Power Conference. Washington, 1976,1458-1472
    [85] Porter R W, Jain M, Chaturvedi S K. Unit thermal performance of atmospheric spray cooling systems. ASME Journal of Heat Transfer, 1980,102(2):210-214
    [86] Chen K H, Trezek G J. Thermal performance models and drift loss predictions for a spray cooling system. ASME Journal of Heat Transfer, 1977,99(2):274-280
    [87] Chen K H, Trezek G J. The effect of heat transfer coefficient, local wet bulb temperature and droplet size distribution function on the thermal performance of sprays. ASME Journal of Heat Transfer, 1977,99(3):381-385
    [88] Codell R B. Performance model for ultimate heat spray ponds. ASCE Journal of Energy Engineering, 1986,112(2):71-89
    [89] Hsiang L P, Faeth G M. Drop deformation and breakup due to shock wave and steady disturbances. International Journal of Muiltiphase Flow, 1995,21(4):545-560
    
    [90] 蔡斌,李磊,王照林.液滴在气流中破碎的数值分析.工程热物理学报,2003,24(4):613-616
    [91] Putnam A. Integrable form of droplet drag coefficient. Journal of Atmosphere Rocket Society, 1961,31(12): 1467-1468
    [92] Ranz W D, Marshall W R. Evaporation from drops. Chemical Engineering Progress, 1952,48(1):141-146
    [93] Simmons H C. The correlation of drop-size distribution in fuel nozzle sprays.Journal of Engineering Power, 1977,99(3):309-319
    [94] Solomon K H. Drop size distributions for irrigation spray nozzles. ASAE Transactions, 1985,28(5):1966-1974
    [95] Sirignano W A. Fluid dynamics and transport of droplets and sprays. Cambridge:Cambridge University Press, 1999, 4-6
    [96] Yin R M. Numerical studies of fire and sprinkler induced air flows in atria: [Ph. D. dissertation]. Hong Kong: The Hong Kong Polytechnic University, 2000, 32-38
    [97] Li X G, Li M S. Droplet size distribution in sprays based on maximization of entropy generation. Entropy, 2003(5):417-431
    [98] Ahmadi M, Sellens R W. A simplified maximum-entropy-based drop size distribution. Atomization and Sprays, 1993(3):291-310
    [99] 马承伟,严荷荣,袁冬顺,等.液力式雾化喷头雾滴直径的分布规律.农业机械学报,1999,30(1):33-39
    [100] 王乃宁.颗粒粒径的光学测量技术及其应用.北京:原子能出版社,2000,67-78
    [101] Funes-Gallanzi M. High accuracy measurement of unsteady flows using digital particle image velocimetry. Optics & Laser Technology, 1998,30(6-7): 349-359
    [102] Adrian R J. Partical-imaging techniques for experiments fluid mechanics. Annual Review of Fluid Mechanics, 1991,23(3):261-304
    [103] Hinze J O. Turbulence. New York: McGraw-Hill, 1975, 724-741
    [104] 李平衡,赵国,张庆年.喷射冷却的研究和应用.见:中国水利水电科学研究院科学研究论文集(第17集).北京:水利电力出版社,1984,239-256
    [105] 孔祥云.能源与环境保护.北京:中国科学技术出版社,1991,106-107
    [106] 郑邦民,赵昕.湖泊型温度流的数值分析.水利学报,1986(8):37-43
    [107] Hamrick J M, Mills W B. Analysis of water temperatures in Conowingo pond as influenced by the Peach Bottom atomic power plant thermal discharge. Environmental Science & Policy, 2000, 3(4): 197-209
    [108] Sub S W. A hybrid near-field/far-field thermal discharge model for coastal areas. Marine Pollution Bulletin, 2001,43(7):225-233
    [109] Shaw C Y, Lee Y. Wind-induced turbulent heat and mass transfer over large bodies of water. Journal of Fluid Mechanics, 1976,77(4):67-74
    [110] Ryan P J, Harleman D R. Surface heat loss from cooling pond. Water Resources Research, 1974,10(5):1269-1277
    [111] 陈惠泉,何树椿,刘长贵,等.超温水体水面蒸发与散热.水利学报,1989(10):27-36
    [112] 中华人民共和国国家标准.工业循环水冷却设计规范GB/T50102—2003.北京:中国计划出版社,2003,33-34
    [113] Antonopoulos V Z, Gianniou S K. Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecological Modelling, 2003, 160(1-2):39-53
    [114] Tanthapanichakoon W, Himmelblau D M. A stochastic analysis of a solar heated and cooled house. ASME Journal of Solar Energy Engineering, 1981, 103(2):158-166
    [115] Haghighat F, Unny T E, Chandrashekar M. Stochastic modeling of transient heat flow through walls. ASME Journal of Solar Energy Engineering, 1985, 107(3):202-207
    [116] Haghighat F. Thermal behaviour of buildings under random conditions. Applied Mathematical Modelling, 1987,11(5):349-356
    [117] Scartezzini J L. Using markovian stochastic modeling to predict energy performances and thermal comfort of passive solar systems. Energy and Buildings, 1987,10(2):135-150
    [118] Hokoi S. An analysis of stochastic properties of the cooling load in an intermittently air-conditioned building: analysis of discrete-time system. ASHRAE Transactions, 1990,96(1): 183-190
    [119] Hokoi S, Matsumoto M. An analysis of stochastic properties of the heating load in an intermittently air-conditioned building. Energy and Buildings, 1988,11(1-3):259-266
    [120] Jiang Y, Hong T Z. Stochastic analysis of building thermal processes. Building and Environment, 1993,28(4):509-518
    [121] Hong T Z, Jiang Y. Stochastic weather model for building HVAC systems. Building and Environment, 1995, 30(4):521-529
    [122] 洪天真.建筑热环境的随机分析:[清华大学博士论文].北京:清华大学,1994,14-77
    [123] 陆传赉.工程系统中的随机过程.北京:电子工业出版社,2000,142-143
    [124] 尚玫,梅凤翔.Gauss白噪声与非Gauss白噪声.力学与实践,2002,24(6):47-50
    [125] Collares-Pereira M, Rabl A. The average distribution of solar radiation correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 1979,22(2): 155-164
    [126] 赵荣义,范存养,薛殿华,等.空气调节.北京:中国建筑工业出版社,1994,28
    [127] 李庆扬,王能超,易大义.数值分析.武汉:华中理工大学出版社,1986,69-70
    [128] 武宝亭,李庆士,杨跃武.随机过程与随机微分方程.成都:电子科技大学出 版社,1993,158-160
    [129] 陆大淦.随机过程及其应用.北京:清华大学出版社,1986,538-539
    [130] Guirk J, Rodi W. A depth-averaged mathematical model for the near field discharges into open channel flow. Journal of Fluid Mechanics, 1978, 86(8): 761-781
    [131] Demuren A O, Rodi W. Side discharge into open channels: mathematical model. ASCE Journal of Hydraulic Engineering, 1982,199(12): 1707-1722
    [132] 郝瑞霞,周力行,陈惠泉.冷却水工程中湍浮力射流的三维数值模拟.水动力学研究与进展,1999,14(4):484-492
    [133] Jirka G H, Adams E E, Stolzenbach K D. Buoyant surface jets. ASCE Journal of the Hydraulic Division, 1981, 107(12):1467-1487
    [134] Jirka G H, Doneker R L, Hinton S W. User's manual for CORMIX: a hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. U.S. Environmental Protection Agency, Env. Research Laboratory, Athens, Georgia, 1996, 17-25
    [135] Valeo C, Tsanis I K, Shen H. Modelling Mimico Creek as a surface discharge. Journal of Hydraulic Research, 1996,34(1): 115-131
    [136] Davison M J, Pun K L. Hybrid model for prediction of initial dilutions from outfall discharges. ASCE Journal of Hydraulic Engineering, 1998,124(12): 1188-1197
    [137] Jones G R, Nash J D, Jirka G H. CORMIX3: an expert system for mixing zone analysis and prediction of buoyant surface discharges. DeFrees Hydraulics Laboratory, Cornell University, Ithaca, New York, 1996, 62-65
    [138] 余常昭.环境流体力学导论.北京:清华大学出版社,1992,138-141以及295-297
    [139] 北京水利水电科学研究院冷却水所.株洲电厂负荷、冷却水量及凝汽器进出口水温观测资料.长沙:湖南省电力局,1996,1-5
    [140] 湖南省水文水资源勘测局.株洲电厂水温测量分析图表.长沙:湖南省水文水资源勘测局,1996,1-20
    [141] Deng S M, Burnett J. Performance monitoring and measurement for central air conditioning chiller plants in buildings in Hong Kong. HKIE Transactions, 1997, 4(1): 7-12
    [142] 潘云钢.高层民用建筑空调设计.北京:中国建筑工业出版社,1999,330
    [143] 徐菱红,王凌云.集中空调冷却水系统的节能运行.暖通空调,2000,30(3):82-84
    [144] 孙一坚.关于集中空调冷却水系统节能运行——评《节能不能因小失大》.暖通空调,2003,33(2):39
    [145] 张谋雄.冷水机组变流量的性能.暖通空调,2000,30(6):56-58
    [146] 曾振威.节能不能因小失大——兼与《集中空调冷却水系统的节能运行》商榷.暖通空调,2002,32(4):32-33
    [147] 李苏泷.集中空调冷却水变流量问题辨析.暖通空调,2005,3 5(6):52-54
    [148] 李苏泷,徐莉,朱海峰.水冷式冷水机组冷凝温度控制法研究.制冷学报,2005,26(4):59-62
    [149] Astrom K J. Theory and application of adaptive control—a survey. Automatica,1983, 19(5):471-486
    [150] Ljung L R, Anderson B D. Adaptive Control, where are we?. Automatica, 1984, 20(5):499-501
    [151] 李清泉.自适应控制系统理论、设计与应用.北京:科学出版社,1990,2-7
    [152] Wang S W, Burnett J. Online adaptive control for optimizing variable-speed pumps of indirect water-cooled chilling systems. Applied thermal Engineering, 2001, 21(11):1083-1103
    [153] Darrow J N, Lovatt S J, Cleland A C. Assessment of a simple mathematical model for predicting the transient behavior of a refrigeration system. In: Proceedings of the 18th International Congress of Refrigeration. Montreal, 1991, 217-221
    [154] Koury R, Machado L. Numerical simulation of a variable speed refrigeration system. International Journal of Refrigeration, 2001, 24(2): 192-200
    [155] Sonntag R E, Borgnakke C. Fundamentals of thermodynamics. New York: John Wiley and Sons, 1996, 342
    [156] 蔡季冰.系统辨识.北京:北京理工大学出版社,1989,27-29
    [157] Svensson M C. Non-steady-state modeling of a water-to-water heat pump unit. In: Proceedings of the 20th International Congress of Refrigeration. Sydney, 1999, 431-435
    [158] 陈在平,杜太行.控制系统计算机仿真与CAD—MATLAB语言应用.天津:天津大学出版社,2001,1-2
    [159] 张祉佑.制冷原理与设备.北京:机械工业出版社,1987,191-192
    [160] Wang S W. Dynamic simulation of a building central chilling system and evaluation of EMCS on-line control strategies. Building and Environment, 1998, 33(1): 1-20
    [161] Slipcevic. Heat transfer and flow resistance calculation of the inner finned tube. Die Kalte, 1970(9):81-87
    [162] Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. Internatinal Journal of Heat and Mass Transfer, 1980, 23(1):73-86
    [163] Cleland A C. Computer subroutines for rapid evaluation of refrigerant thermodynamic properties. International Journal of Refrigeration, 1986,9(8): 346-351
    [164] 沈志光.制冷工质热物理性质表和图.北京:机械工业出版社,1983,13-15
    [165] 黄文厚,李娥飞,潘云钢.一次泵系统冷水机组变流量控制方案.暖通空调,2004,34(4):65-69
    [166] Rishel J B. HVAC pump handbook. New York: McGraw-Hill, 1990, 246
    [167] 殷平.空调大温差研究(1):经济分析方法.暖通空调,2000,30(4):62-66
    [168] Kirkpatrick A T, Elleson J S. Cold air distribution system design guide. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1996, 162-165
    [169] Garen H, Demirchian P E, Michael A, et al. The benefits of higher condenser water △T at Logan international airport central chilled water plant. In: Proceedings of the 88th Annual Conference of International District Energy Association. San Diego, 1997, 291-300
    [170] 北京市发展和改革委员会.关于发展热泵系统的指导意见.http://www.bjpc.gov.cn/tztg/200606/t122122.htm, 2006-05-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700