用户名: 密码: 验证码:
预应力锚固研究与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济建设的快速发展,城市化进程的不断加快,我国的基础设施建设正处于一个蓬勃发展的时期,在诸如水电、交通、能源等各种基础设施建设中产生了大量的高边坡和基坑工程。预应力锚索锚固系统能够有效的激发岩土体潜在承载能力,充分发挥岩土体自身强度,提高岩土体的自身稳定性,且其施工工程量小、安全性高、工期快、消耗小,具有极高的投入产出比。该锚固技术自诞生以来就颇受工程设计者及施工人员的青睐,在诸如水利、公路、铁路等各种工程的滑坡治理、高边坡支护工程中广泛应用。
     本文针对预应力锚索的荷载传递机理、预应力锚索的应力亏损机理及预应力锚索长期性能进行系统研究。结合实际高边坡预应力锚索加固工程提出边坡变形机制分析方法及边坡稳定性分析方法,并基于发明专利“压力分散型锚索的内锚固承载体”进行预应力锚索的设计,同时对预应力锚索施工过程进行探讨研究。在预应力锚索监测方面,文章分析了基十磁通量传感器的检测系统,并主要对光纤光栅的检测手段进行研究。
     本文具体研究内容包括以下几个方面:
     (1)对预应力锚索锚固段荷载传递解析进行探索,基于弹性力学凯尔文(kelvin)问题弹性解推导预应力锚索内锚固段应力分布弹性解。根据压力型锚索的主要失效模式从理论上分析了压力型锚索荷载传递机制。在考虑灌浆体三向受力状态的前提下,选择合适的荷载传递模型建立反映压力型锚索灌浆体与岩体粘接界面相互作用规律的基本方程,求解界面剪应力分布规律以及灌浆体中轴向应力应变分布规律。同时,分析了不同岩体、锚固体材料参数对应力分布的影响。理论上解释了压力型预应力锚索的荷载传递特点及主要影响因素。基于明德林解,采用积分法分析压力型岩锚锚固段周围岩体中的应力分布情况
     (2)从预应力锚索锚固材料性质、被锚固介质力学性质、施工工艺及运行管理水平等多方面对预应力锚索预应力亏损进行分析研究。对锚墩基础沉降量引起的预应力亏损进行研究,考虑了预应力锚墩下土体在三向应力作用下的变形影响,引入土体弹塑性本构关系来阐述土体的变形特性,进而研究锚墩基础沉降引起的锚索预应力亏损。
     (3)针对预应力锚索锚固的预应力亏损,讨论预应力锚索长期性能的综合控制措施,为工程设计及施工提供一定的参考依据。
     (4)结合实际工程,对高边坡进行预应力锚固设计,在地质分析的基础上,选择典型剖面计算不同工作状态下的应力、应变,总结出边坡破坏模式,利用反演法推导力学参数计算边坡稳定加固荷载。基于发明专利“压力分散型锚索的内锚固承载体”进行预应力锚索的设计,同时对预应力锚索施工技术要领进行分析研究。
     (5)对预应力锚索的监测进行研究,包括监测内容、项目、监测的基本要求等方面,研究基于磁通量的预应力锚索监测系统,主要对光纤光栅的检测手段进行研究,改进现有预应力锚索钢绞线形成基于光纤光栅传感器的智能钢绞线,对智能钢绞线的应力传感性能、温度传感性能等方面进行试验,证明智能钢绞线完全能满足用于拉索测量的基本条件。
With the rapid development of our country's economic construction and the continuing acceleration of urbanization, our country's construction of infrastructure is in a period of vigorous development,In areas such as water conservancy, transportation, energy and other infrastructure producing a large number of high-slope and foundation engineering. Prestressed anchor rope stabilization can fully play the self-supporting's potentiality, adjust and improve the soil's strength and self-stability, reduce the weight of the supporting structure, save engineering materials, and ensure the security and stability of the construction, which has significant economic and social benefits. Therefore, prestressed anchorage technology are widely used in highway, railway, and water conservancy projects such as landslide, high slope supportPotential for its advantages of small perturbations of geotechnical, fast construction, economy security and so on.
     This article will focus on the load transfer mechanism of prestressed anchor, the stress prestressed loss mechanism and the long-term performance of prestressed anchor to conduct a systematical research. Proposing analytical and slope stability analysis methods according to the actual high-slope prestressed anchor reinforcement engineering Resigning prestressed anchor based on the patent "inner pressure dispersion-type anchor anchor carrier",while exploring and researching the construction process of prestressed anchor at the same time. In the aspect of monitoring prestressed anchor, this article analyzes the detection system based on the flux sensor and mainly studies the means of detection of FBG.
     The specific studying context includes the following aspects:
     (1)Explore the load transfer method about the anchorage section of pre-stressed anchorage cable. Based on elasticity Kelvin (kelvin) problem prestressed elastic solution derived anchor rope, elastic stress distribution solution. According to the main pressure type cable failure mode, we analyze the pressure type cable load transfer mechanism theoretically. In considering three-dimensional stress of grouted body, select the appropriate load transfer model to establish the basic equation reflects pressure type cable grout bonding interface with rock interaction law and solve the distribution of interfacial shear stress and grouted body axial stress. At the same time, analysis different rocks and anchoring material parameters'impact on the stress distribution. Theoretically, Explains the characteristics of pressure-type Prestressed load transfer and main influencing factors. Based on Mindlin Solution, using integral method to analysis the distribution of pressure-type rock bolt anchorage segment surrounding rock stress.
     (2)From the material properties of pre-stressed anchor cable and anchorage, mechanical properties of anchored media, construction technology and management level and other aspects, we will analysis the prestressing loss of anchor cable. Also we will conduct a research concerning prestressing loss which is caused by the foundation settlement of anchorage pier, and take into account the deformation influence of the soil in three-dimensional stress under the prestressed anchor pier, introducing the constitutive relation of elastoplasticity to illustrate the deformation characteristics of the soil, and thus carry on a research about the prestressing loss of anchor cable, which is caused by the foundation settlement of anchorage pier.
     (3) Discussing the long-term integrated control measures of prestressing anchor, in connection with prepressing losses of anchorage, to provide certain reference for engineering design and construction.
     (4)Concerning about actual project, do the prepressed anchorage design for high slope. Based on the analysis of geological, select a typical cross-section calculations under different working conditions of stress and strain. Calculate the slope stability reinforcement load using mechanical parameters derived by the inversion. Design the prepressing anchor based on the invention patent of the pressure dispersion-type anchor carrier. At the same time, complete research and analysis of technical construction essentials for prepressing anchorage.
     (5)Research on the monitoring of prestressed anchor cable including the monitoring content, the basic requirement of the project, monitoring, etc. Research based on the magnetic flux of prestressed anchor monitoring system, maily focus on the testing method of Fiber Bragg grating, improving the Existing prestressing anchor cable steel strand and form Smart steel strand based on Optical fiber grating sensor and through make experiment on stress sensing performance and temperature sensing performance of smart steel strand to prove that Smart steel strand can completely meet the basic conditions for measuring anchor cable.
引文
[1]程良奎.岩土锚固研究与新进展[J].岩石力学与工程学报.2005,24(21):3803-3811.
    [2]陈祖煜,杨健.岩土预应力锚固技术的进展[J].贵州水力发电.2004,18(5):5-10.
    [3]赵明阶,何光春,上多垠.边坡工程处治技术[M].北京:人民交通出版社.2003,123-125.
    [4]唐树名.碎裂结构岩体路堑边坡锚固机理分析及其应用研究[D].重庆:重庆大学.2003:1-9.
    [5]耿卫红,罗春华.岩土锚固工程技术及其应用[J].探矿工程.1997,4:8-10.
    [6]王冲.预应力锚固的施工[M].北京:水利电力出版社,1987.
    [7]谢文明.漫湾电站左岸边坡隐患及对策[J].大坝与安全,2002,4:44-45.
    [8]邹成杰.天生桥二级水电站下山包滑坡稳定分析及工程治理[J].水利水电技术,1994,10:27-34.
    [9]程良奎.岩土锚固新技术.北京:人民交通出版社.1998,11.
    [10]工军怀,余永志.三峡工程永久船闸高边坡卸荷松动带变形特点[J].人民长江,1999(30).
    [11]梁炯均.我国岩土工程预应力锚索的发展和问题.国际岩十锚固与灌浆新进展.北京:中国建筑工业出版社.1996,62-68.
    [12]孙均.中国岩十工程锚固技术的应用与发展.国际岩十锚固与灌浆新进展.北京:中国建筑工业出版社,1996,27-32.
    [13]岩土锚固技术手册
    [14]任青文,罗军.锚杆应用及加固机理研究综述[J].水利水电科技进展.1997,17(1):29-33.
    [15]张乐文,王捻.岩土锚固理论研究之现状[J].岩土力学.2002,23(5):627-631.
    [16]闰莫明,徐祯祥,苏自约.岩上锚固技术手册.北京:人民交通出版社.2004.
    [17]葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报.1988,10(1):8-19.
    [18]陈安敏,顾金才等.预应力锚索对块状岩体加固效应模型试验研究[J].隧道建设.2000,4:1-6.
    [19]吴德海,曾祥刃等.单锚锚杆加固碎裂结构岩体模型试验研究[J].地下空间.2003,23(2):158-161.
    [20]朱杰兵,韩军,程良奎等.三峡永久船闸预应力锚索加固对周边岩体力学形状影响的研究[J].岩石力学与工程学报.2002,21(6):853-857.
    [21]张发明,邵蔚侠.岩质高边坡预应力锚固问题研究[J].河海大学学报.1999,27(6):75-78.
    [22]候朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报.2000,19(3):342-345.
    [23]朱维申,任伟中.船闸边坡节理岩体锚固效应的模型试验研究[J].岩石力学与工程学报.2001,20(5):720-725.
    [24]李新平,宋桂红等.锚固岩体复合材料力学性质的数值模拟研究[J].武汉理工大学学报.2006,28(4):79-86.
    [25]书
    [26]唐亚鸣,张河.大型桥梁拉索损伤与健康监测.桥梁建设,2002,5:79-82
    [27]汤国栋,杨弘,朱正刚,陈兵,梁利辉.桥梁吊杆及拉索的健康诊断.公路.2000,9:36-41
    [28]方志,张智勇.斜拉桥的索力测试.中国公路学报,1997,10(1):51-57
    [29]梁磊,姜德生,罗裴,汪术文,赵王申.光纤Bragg光栅在结构健康监测中的实验研究.山东理工大学学报(自然科学版),2003,17(3):4-8
    [30]郝超,裴岷山,强士中.斜拉桥索力测试新方法-磁通量法.公路,2000,(11):30-31
    [31]张戌社,杜彦良,孙宝臣.基于光纤光栅的斜拉索振动参数监测实验研究.中国安全科学学报,2004,14(7):98-100
    [32]张戌社,杜彦良,孙宝臣.光纤Bragg光栅传感器实现斜拉桥索力实时监测的研究.中国安全科学学报,2003,13(7):77-79
    [33]姜德生,梁磊,南秋明,周雪芳,信思金.新型光纤Bragg光栅锚索预应力测系统.武汉理工大学学报,2005,23(7):15-17
    [34]柴敬,兰曙光,李继平,李毅,刘金暄.光纤Bragg光栅锚杆应力应变监测系统.西安科技大学学报,2005,25(1):1-4
    [35]金秀梅,杜彦良,孙宝臣,李小阳.用于预应力筋长期实时应力监测的光纤传感测试技术研究.中国安全科学学报,2005,11(11):108-112
    [36]Philip M Nellen, Andreas Frank, Roif BrOnnimann, et al. Fiber Optical Bragg Crating Sensors Embedded in CFRP Wire. Part of the SPIE Conference on Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, Newport Beach, California, SPIE, Vol.3670,1999:440-449
    [37]A L Kalamkarov, S B Fitzgerald, D 0 MacDonald, et al. The Mechanical Performance of Pultruded FRP Reinforcements with Embedded Fiber Optic Sensors. Composite Structures,2000, (50):69-78
    [38]欧进萍,周智.纤维增强塑料-光纤光栅复合传感筋.中国专利:CN1484056,2004-3-24
    [39]Zhou Zhi, Ou Jinping and Wang Bo. Smart FRP-OFBG Bars and Their Application in Reinforced Concrete Beams. Proceedings of the First International Conference on Structural Health Monitoring and Intelligent Infrastructure, Tokyo, Japan, A. A. Balkema Publishers,2003:861-866
    [40]周智.土木工程结构光纤光栅智能传感元件及其监测系统.哈尔滨:哈尔滨工业大学博士学位论文,2003:1-100
    [41]王勃.FRP加筋混凝土梁的力学与自感知性能研究.哈尔滨:哈尔滨工业大学博士学位论文,2004:1-140
    [42]欧进萍,周智,李惠,光纤光栅纤维增强树脂筋智能拉索.中国专利:CN1779067,2004-11-17
    [43]Zhou Zhi, Zhang Zhichun, Deng Nianchun, Ou Jinping. Applications of FRP-OFBG Sensors on Bridge Cables. Proceedings of the SPIE,2005,5765:668-677
    [44]张端良,董燕军,唐乐人等.预应力锚索锚固段周边剪应力分布特性的弹性理论分析[J].岩石力学与工程学报,2004,23(2):4735-4738
    [45]杨佑发.许绍乾.锚索抗滑桩内力计算的有限差分“K—K”法[J].岩土力学.2003,24(1):61-64.
    [46]NA KA KYAMA M, BEAUDO IN B B. A novel technique determining bond strength developed between cement paste and steel [J]. Cement and concrete Research.1987, 22 (3):4782488.
    [47]FULL ER P G, COX R H T. Mechanics load transfer from steel tendons of cement based grouted [C]. Melbourne:Published by Australasian Institute of Mining and Metallurgy,1995.
    [48]P. G. Fuller, R. H. T. Cox. Mechanics of load transfer from steel tendons to cement based grouts [C]. Proc.5th Aust. Conf. on the Mechanics of Structures and Materials, Melbourne, Australia,1975,189-203.
    [49]G.W. Hollingshead. Stress distribution in rock anchors[J]. Canadian Geotechnical Journal,1971,8:588-592.
    [50]Malek Bouteldja. Design of Cable Bolts Using Numerical Modelling[D]. Montreal, Canada:McGill University, April 2000:1-222.
    [51]B. Stillborg. Experimental investigation of steel cables for rock reinforcement in hard rock [D]. Sweden:Lulea university,1984.
    [52]I. W. Farmer & Holmberg, Stress distribution along a resin grouted rock anchor [J], Int.. Rock Mech. And Geomech.1975(12)347-351.
    [53]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188-192.
    [54]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J]..岩土工程学报,2001,23(6):696-699.
    [55]顾金才,明治清,沈俊.等预应力锚索内锚固段受力特点现场试验研究[J].岩石力学与工 程学报,1998,17(增1):788-792.
    [56]韦勇生,吕兵,孔建华等OVM压力分散型锚索在大坝坝基加固工程中的应用[J].岩土锚固2003,(2):28-32.
    [57]张景成,田宝文,王忠义等.压力分散型预应力锚索抗拉拔破坏试验[J].勘察科学技术.2004,(3):12-17.
    [58]侯庆.压力分散型锚杆工作机理与现场试验研究[D].重庆大学.2003.
    [59]尤春安.压力型锚索锚固段的受力分析[J].岩土工程学报,2004,26(6):828-831.
    [60]程良奎,范景伦,周彦清等.压力分散型(可拆芯式)锚杆的研究与应用[J].冶金工业部建筑研究总院院刊,2000,41(2):1-8.
    [61]B. Amadei, S.Saeb. Constitutive models of rock joints[J]. Rock joints, Barton and Stephanson (eds)., Balkema.1990:581-594.
    [62]何思明,田金昌,周建庭.胶结式预应力锚索锚固段荷载传递特性研究[J].岩石力学与工程学报,2006,25(1):117-121
    [63]程良奎等.GB50086-2001.2001.锚杆喷射混凝土支护技术规范[S].北京:中国计划出版社.2001,12-44.
    [64]赵长海等.SL212-98.1998.水工预应力锚固设计规范[S].北京:中国水利水电出版社.1998,1-74.
    [65]赵长海等.DL/T5176-2003.2003.水电工程预应力锚固设计规范[S].北京:中国电力出版社,2003,1-81[66]尤春安.锚固系统应力传递机理理论及应用研究[D].2007,12.
    [66]Raymond D. Mindlin, Department of Civil Engineering, Columbia University Force at a point in the Interior of a Semi-Infinite Solid [J]. Theory of Elasticity May,1936: 195-202.
    [67]H. G. poulos, E. H. Davis Elastic Solutions for Soil and Rock Mechanics John [M]. Wiley & Sons, New York,1974.
    [68]刘志明,徐年丰,周和清等.水工基础处理及滑坡治理工程的理论与实践[M].武汉:中国地质大学出版社,2003.
    [69]何思明,卢国胜,廖祖伟.群桩沉降计算理论分析[J].岩土力学,2003,24(3):435-441.
    [70]陈安敏,沈俊,顾欣.自由式锚索和全长粘结式锚索加固效果比较模型试验研究[J].岩石力学与工程学报,2005,24(15):689-2696.
    [71]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2003,174
    [72]M D Todd, G A Johnson, S T Vohra. Deployment of a Fiber Bragg Grating-based Measurement System in a Structural Health Monitoring Application. Smart Materials and Structures.2001,10 (3)
    [73]攀枝花民用机场西侧高陡挡土墙锚索基本试验[P].中国第十九冶金建设公司建筑设计 研究院.2002.
    [74]屈智炯.土的塑性力学[M].成都科技大学出版社.1987.
    [75]Huang, Y. H.. Finite element analysis of nonlinear soil media. Proceeeding of the Symposium on Application of FEM in Civil Engineering[A].1969,663-685.
    [76]李兆霞.损伤力学及其应用[M].科学出版社.2002.
    [77]张发明,刘宁,陈祖煌等.影响大吨位预应力长锚索锚固力损失的因素分析[J].岩土力学.2003,24(2):194-197.
    [78]刘志明,徐年丰,周和清等.水工基础处理及滑坡治理工程的理论与实践[M].武汉:中国地质大学出版社,2003.
    [79]苏自约,陈谦,徐祯祥等.锚固技术在岩土工程中的应用[M].北京:人民交通出版社,2006.
    [80]Chen Guozhou, Jia Jinqing. Analytical solution for compression anchor under pull load. The 3rd Sino-Janpa Symposium on Geotechnical Engineering.2007:95-112.
    [81]熊文林,何则干,陈胜宏.边坡加固中预应力锚索方向角的优化设计[J].岩石力学与工程学报.2005,24(13):2160-2165.
    [82]李炳奇.压力分散型锚索的内锚固承载体[P].中国发明专利,ZL200910178416.1
    [83]李炳奇,夏新利.滑坡治理方法的现状及展望[C].//水工混凝土建筑物检测、评估与修补加固——第十届全国水工混凝土建筑物修补加固技术交流会论文集[c].北京:海洋出版社,2009,53-57.
    [84]Li Bingqi. X-FEM Analysis of stress fields near a crack tip under compressive loads using the implicit return mapping algorithm in an elastic-plastic material [J]. Applied mechanics,2005, vol.8,461-470.
    [85]Li Bingqi. X-FEM Analysis of stress fields near a crack tip under compressive loads using the implicit return mapping algorithm in an elastic-plastic material. Applied mechanics, vol.8,2005
    [86]高永涛,张友葩,吴顺川.十质边坡抗滑桩机理分析[J].北京:北京科技大学学报,2003,25(2):117-123.
    [87]DING Xiu-li, SHENG Qian, HAN Jun, et al. Numerical simulation testing study of reinforcement mechanism of prestressed anchorage cable[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(7):980-988.
    [88]Gao Yongtao, Zhang Youpa, Wu Shunchuan. Mechanism analysis of anti-sliding piles in soil slope. Journal of University of Science and Technology Beijing,2003,25(2): 117-123.
    [89]张乐文,汪稔.岩上锚固理论研究之现状[J].岩上力学,2002,23(5):627-631.
    [90]程良奎,范景伦,韩军,等.岩十锚固[M].北京:中国建筑工业出版社,2002
    [91]刘晓明,张亮亮.考虑自由段受荷的锚杆变形和承载特性研究[J].湖南大学学报(自然科学版),2012,39(6):7-12
    [92]H. Zanni, M. Cheyrezy, and V. Maret. Investigation of Hydration and Pozszolanic Reactive Powder Concrete Using Si NMR. Cement and Concrete Research.1996,26(1): 93-100
    [93]F. Kazunori, and S. Takanori. Effects of strain rate on tensile behavior of Reactive Powder Concrete..Journal of Advanced Concrete Technology.2006,4(1): 79-84
    [94]《高强混凝土结构技术规程》CECS 104:99.中国建筑工业出版社,1999
    [95]刘小丽.新型桩锚结构设计计算理论研究晒南交通大学博士学位论文].成都:西南交通大学土木工程学院,2003,109-134
    [96]刘玉堂,翟金明,张勇.锚索的锈蚀防护及永久锚索的合理结构[J].预应力技术,2005(1):18-27
    [97]张永兴,饶枭宇,唐树名.压花锚锚固性能的试验研究与数值分析[J].岩石力学与工程学报,2008,26(3):1152-1157.
    [98]吴曙光,张永兴,康明.压力型和拉力型锚杆工作性能对比研究[J].水文地质工程地质,2008,(5):45-49.
    [99]郎鹏飞.压力分散型锚索在高边坡锚固工程中的应用[J].路基工程,2003年,(2),总第107期:26-29.
    [100]Poulin R, Pakalnis R, Peterson D, et al. Evaluation of cable bolt applications for Canadian underground mines [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(7):338.
    [101]Wang ML, Lloyd G, Hovorka 0. Development of a remote coil magneto-elastic stress sensor for steel cables [C]//SPIE 8th Annual International Symposium on Smart Structures and Material, Health Monitoring and Management of Civil Infrastructure Systems. Newport Beach:SPIE,2001.
    [102]王社良,王威,苏三庆等.铁磁材料相对磁导率变化与应力关系的磁力学模型[J].西安科技大学学报,2005,25(3):288-291.
    [103]Wang G, M Wang and Y Zhao. Application of EM Stress Sensors in Large Steel Cables[J]. Journal of Smart Structures and Systems,2006,2(2):445-467.
    [104]Yoffe G W, Krug P A, Ouellette F et al.. Passive temperature compensating package for optical fiber gratings. Appl. Opt.,1995,34 (30):6859-6861
    [105]Liu Yonghong, Ruan Yinglan, Jiang Shan et al.. A temperature insensitive fiber grating. Chinese J ournal of L asers(中国激光),1997, A24 (10):895-898 (in Chinese)
    [106]Kersey A D, Davis M A, Patrick H J et al.. Fiber grating sensors. J. Lightwave Tecchnol.,1997,15 (8):1442-1463
    [107]Liu Yunqi, Guo Zhuanyun, Zhang Ying et al.. Simultaneous pressure and temperature measurement with polymer coated fiber Bragg grating. Electron. Lett., 2000,36 (6):564-566
    [108]黄勇林,李杰,开桂云,等.光纤光栅的温度补偿[J]·光学学报,2003,23(6):677-679.
    [109]郭团,乔学光,贾振安,等.光纤光栅温度应变智能传感原理及增敏技术研究[J].物理,2003,32(3):181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700