用户名: 密码: 验证码:
轴流式风力灭火机的轴流叶轮气动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴流式风力灭火机是一种不同于现有离心式风力灭火机的新型便携式风力灭火机,其轴流叶轮是轴流式风力灭火机的核心灭火部件。因此,轴流叶轮气动性能的好坏直接关系到轴流式风力灭火机的灭火性能。本研究主要是针对轴流式风力灭火机中轴流叶轮的气动性能进行试验研究和CFD数值模拟,为设计高效率的轴流式风力灭火机提供理论依据。
     本研究的主要内容和结论如下:
     1.根据国家标准GB/T 10280-1999《便携式风力灭火机技术条件》规定的便携式风力灭火机中灭火风机性能要求(出口风量)和将来的新型轴流式风力灭火机的设计设想,设计制造了轴流式灭火风机气动性能试验装置。该试验装置可以模拟在实验室条件下轴流叶轮高速旋转驱动空气自由流动的状态。并通过更换锥形射流风筒来验证轴流叶轮在轴流风机和轴流式灭火风机的气动性能。
     2.通过对不同叶片数(5、6、7)和叶片角度(30°、34°、38°)的5种轴流叶轮构成的轴流风机进行气动性能试验,试验结果表明轴流叶轮叶片数为6、叶片角度为38°的轴流风机风量最接近设计要求,达到1406.1m3/h,全压为438.35Pa,功率为0.501kw,效率为34.15%,基本满足灭火风机的气动性能要求,并且轴功率远小于便携式风力灭火机的功率
     3.轴流风机内部流场的数值模拟结果表明:轴流叶轮叶片数Z=6,叶片角度为38°的5号轴流风机叶轮外缘速度较大,轮毂出口端低速区面积较小,叶身出口速度较大,旋转推力较大,与气动性能试验结果一致。
     4.将锥形射流风筒安装在轴流风机上形成轴流式灭火风机后,通过对不同叶片数(5、6、7)和叶片角度(30°、34°、38°)的5种轴流叶轮构成的轴流式灭火风机整机进行气动性能试验,试验结果表明轴流叶轮叶片数为6、叶片角度为38°的5号轴流式灭火风机风量最接近设计风量,达到1400.3m3/h,全压为584.61Pa,功率为0.45 kw,全压效率稍微偏低为50.44%,气动性能良好,基本满足灭火风机的气动性能要求,并且轴功率远小于便携式风力灭火机的功率要求;因此应用于轴流式风力灭火机的轴流叶轮叶片数宜取6片,叶片角度宜取38°
     5.轴流式灭火风机内部流场的数值模拟结果表明:与轴流风机相比,轴流式灭火风机中的锥形射流风筒的作用就是提高风速,加速空气射流的形成。其中轴流叶轮叶片数Z=6,叶片角度为38°的5号轴流式灭火风机轮毂出气端回流区面积较小,功率消耗较少。锥形射流风筒内部速度矢量较大,分布较密集,射流出口速度较大,风量较大,与气动性能试验结果基本一致。
Axial-flow pneumatic extinguisher is a kind of new portable extinguishers and is different from the existing centrifugal pneumatic extinguisher. Axial-flow impeller is a core fire-fighting components of axial-flow pneumatic extinguisher. Therefore, the aerodynamic performance of axial-flow impeller will have a direct effect on the fire-fighting performance of axial-flow pneumatic extinguisher. This study is mainly aimed at experimental study and CFD numerical simulation of axial-flow impeller's aerodynamic performance about axial-flow pneumatic extinguisher and the results provide a theoretical basis for the design of high-efficiency axial-flow pneumatic extinguisher.
     Main contents and conclusions are as follows:
     1.According to fire-fighting fan performance requirements provided by the national standard GB/T 10280-1999《portable pneumatic extinguishers-technical specification》such as outlet flow volume, and considering the design idea of future axial-flow pneumatic extinguisher, the axial-flow fire-fighting fan aerodynamic performance test device was designed and manufactured. The free flow of driven air about high-speed rotating axial-flow impeller of the test device under laboratory conditions can be simulated. Axial-flow fire-fighting fan aerodynamic performance test device verifies aerodynamic performance of axial-flow impeller in the axial-flow fan and axial-flow fire-fighting fan respectively through the removable cone-shaped jet duct.
     2.The aerodynamic performance tests for axial-flow fan composed of the number of different leaves (Z=5,6,7) and blade angle (30°、34°、38°) of axial-flow impeller were carried out. The experimental results indicated that:When the blade angle of axial-flow impeller is 38°, the flow volume of No.5 axial-flow fan which the blade number Z=6 is 1406.1m3/h,closest to the design requirements, total pressure is 438.35Pa, power is 0.501kw, total pressure efficiency is 34.15%,basically meets the aerodynamic performance requirements of fire-fighting fan, and shaft power is much smaller than that of a portable pneumatic extinguisher.
     3. Numerical simulation results of axial-flow fan internal flow field showed that:when the blade angle of axial impeller is 38°, the outer edge speed of No.5 axial-flow fan which the blade number Z=6 is greater, low-speed area of hub outlet is smaller, outlet velocity of blade body is larger, rotation thrust is greater, numerical simulation results are consistent with aerodynamic performance test results.
     4.Axial-flow fire-fighting fan was formed after the cone-shaped jet duct was installed in the axial-flow fan, the aerodynamic performance tests for axial-flow fire-fighting fan composed of the number of different leaves (Z=5,6,7) and blade angle (30°、34°、38°) of axial-flow impeller were carried out. The experimental results indicated that:When the blade angle of axial-flow impeller is 38°, the flow volume of No.5 axial-flow fire-fighting fan which the blade number Z=6 is 1400.3m3/h,closest to the design flow volume, total pressure is 584.61Pa, power is 0.45kw, total pressure efficiency is 50.44%, integrated aerodynamic performance is well, basically meets the aerodynamic performance requirements of fire-fighting fan, and shaft power is much smaller than that of a portable pneumatic extinguisher. Therefore, the optimum blade angle of axial-flow impeller which is applied in the axial-flow fire-fighting fan is 38°, the optimum blade number is 6.
     5. Numerical simulation results of axial-flow fire-fighting fan internal flow field showed that: compared with the axial-flow fan, the function of conical jet duct in the axial-flow fire-fighting fan is to improve the speed and accelerate the formation of the air jet. When the blade angle of axial impeller is 38°, the flow volume of No.5 axial-flow fire-fighting fan which the blade number Z=6 is greater, refluence area of hub outlet is smaller, power consumption is lower. The internal velocity vector of conical jet duct is larger, distributed intensively, jet outlet velocity is higher, numerical simulation results are consistent with aerodynamic performance test results.
引文
1. 白雪峰,吴大鹏.浅谈风力灭火机需要改进的技术和使用问题[J].林业机械与木工设备,2002,30(1):27-28.
    2. 步群.轴流通风机变环量级的设计计算[J].风机技术,1994,(2):23-25.
    3. 昌泽舟,安庆丰.轴流式通风机实用技术[M].北京:机械工业出版社,2005.
    4. 董广生,王淑妨,高昌海等.高速气流灭火能量的研究[J].林业科技,1994,19(3):25-27.
    5. 蔡增基,龙天渝.流体力学泵与风机第4版[M].北京:中国建筑工业出版社,1999.
    6. 蔡娜,李地等.小型风机气动——声学性能实验[J].流体机械,1997,26(4):3-5
    7. 陈富礼,于绍和译编.通风机气动略图和特性曲线[M].北京:煤炭工业出版社,1986.
    8. 陈建国,聂波。基于MATLAB的风机试验系统模拟仿真[J].风机技术,2005,(6):28-30.
    9. 陈坤.仿生耦合风机叶片模型降噪与增效研究[D].吉林大学,2009.
    10.陈劭.林火扑救优效组合技术研究[D].北京:北京林业大学,2007:55,57.
    11.陈松年,吴刚,万培荪等.喷雾机轴流风机系列设计[J].农业机械学报,1990,(1):48-54.
    12.丛静华,常思勤.便携式风力灭火机风机内部气流分析[J].南京林业大学学报(自然科学版),2003,27(6):56-58.
    13.邓刚.风机气动性能试验数值分析及数据处理程序设计方法[J].车辆与动力技术2001,(3):23-28.
    14.刁文庆.低噪音对旋式轴流局部通风机的实验研究[D].重庆大学,2002.
    15.褚双磊,俞国胜.轴流式风力灭火机的研究初探[J].林业机械与木工设备,2007,35(4):24-26.
    16.褚双磊,俞国胜.基于最小二乘法的轴流式灭火风机气动性能回归模型的建立[J].黑龙江农业科学,2009,(6):130-133.
    17.戴韧.轴流风机薄板叶型设计方法的比较[J].流体机械,2001,29(3):23-25.
    18.谷慧芳.喷雾轴流风机的内部流场数值模拟及结构优化[D].东华大学,2007.
    19.谷慧芳,顾平道,张曦.基于CFD的空调用轴流风机内部流场研究[J].流体机械,2007,35(11):29-33.
    20.关贞珍.基于虚拟仪器的风机性能试验自动测试系统[D].保定:河北农业大学,2002.
    21.何波.小型高速轴流风机的设计与实验验证[D].西北工业大学,2002.
    22.黄志军.高速气流灭火机理及其能量的研究[J].中国林业,2009,(2):38.
    23.黄娇健,叶增明.轴流通风机的叶型优化和参数选择[J].风机技术,2005,4
    24.黄仁楚.营林机械理论与计算[M].北京:中国林业出版社,1995.
    25.籍志方.风力灭火机的特点及评价指标[J].林业机械,1989,(1):13-14.
    26.蒋秀义.国产风力灭火机的性能和使用方法[J].山东林业科技,1994,(6):45-49.
    27.李庆宜.通风机[M].北京:机械工业出版社,1981.
    28.李伟国,王建华.轴流通风机的气动优化设计[J].能源技术,2006,1(27):4-6.
    29.李海锋,吴玉林.利用三维紊流数值模拟进行离心叶轮设计比较[J].流体机械,2001,29(9):18-21.
    30.陆明琦,顾建明.轴流通风机的性能及其测试[J].流体机械,2004,32(6):30-32.
    31.廖进昌.6MF-26风力灭火机的设计和开发[J].广西林业科学,2004,33(3):155-157.
    32.刘长生.6MF-A型风力灭火机发动机的工作原理[J].森林防火,1994,(2):27-28.
    33.刘长生.风力灭火机[M].北京:中国林业出版社,2001.
    34.刘江洲.浅谈6MF-26新型风力灭火机的原理和效能[J].陕西林业科技,2002,(4):63-64,87.
    35.刘秋洪,王学军.T35轴流通风机声学性能的分析与预测[J].风机技术,2003,(5):3-5.
    36.吕敬群,孟庆良.风力灭火机具研究概述[J].森林防火,2008,(1):40-42.
    37.许忠斌,吴松盛,毛忠夫.X探针旋转法测量风力灭火流场的实验研究[J].气动实验与测量控制,1995,9(4):20-27.
    38.孟德华.轴流风机的最佳设计[J].机电工程技术,2002,31(7):60-61.
    39.欧亚明,刘青.轴流式风机在风送式喷雾机上的选型与计算[J].中国农机化,2004,(2):24-25.
    40.潘国庆.改善风力灭火机性能的试验研究.南京林业大学学报,1990,(09):71-72.
    41.祁志鑫.机载式大功率风力灭火机的设计研究[D].东北林业大学,2009.
    42.钱瑞战,胡忭利.轴流通风机翼型的优化设计研究[J].风机技术,2003,(6):20-23.
    43.全国林业机械标准化技术委员会.GB/T 10280—1999便携式风力灭火机技术条件[S].北京:中国标准出版社,1999.
    44.全国林业机械标准化技术委员会.GB/T 10281-1999便携式风力灭火机台架试验方法[S].北京:中国标准出版社,1999.
    45.任仁良.风机效率测试仪的研制[J].仪器仪表学报,2001,3(22):309-311.
    46.沈圣豪,杨伟民.小型通风机性能自动测试系统的实现技术[J].风机技术,2002,(05):36-39.
    47.沈阳鼓风机研究所.GB/T 1236—2000工业通风机用标准化风道进行性能试验[S].北京:中国标准出版社,2000.
    48.盛大德.MBH29多用风力灭火机的研制与试验[J].林业机械,1988,(03):2-5.
    49.宋海民,肖琰,袁银兰.基于三维数值模拟的风力灭火机叶轮改进设计[J].林业机械与木工设备,2008,36(9):30-33.
    50.宋磊.轴流风机实验台设计及风机内部流动的数值研究[D].华北电力大学(北京),2008.
    51.宋玲.风机试验台的CFD流场分析与试验研究[D].新疆农业大学,2005.
    52.宋向群,沈天耀,傅汉章.风力灭火机出口后湍流场的计算[J].力学与实践,1992,14(3):35-36.
    53.宋兴关,马丽心,王立民.68B-A型手提式风力灭火机的研制[J].林业机械与木工设备,2002,30(2):16-17.
    54.宋兴关,马丽心,王立民.6SB-C型风力灭火机的研制[J].林业机械与木工设备,2002,30(3):22-23.
    55.孙中勤,王军.基于MATLAB的轴流通风机的快速成型设计[J].风机技术,2006,(3):38-40.
    56.田铖.地铁用轴流风机的CDF模拟及研究[D]天津:天津大学,2003.
    57.王福军.计算流体动力学分析—CFD软件的原理与应用[M].北京:清华大学出版社,2004.
    58.王冠群.风力灭火机的发展史[J].林业机械与木工设备,2001,29(1):31-32.
    59.王利民,丛燕,宋兴关.风力灭火机风机叶轮结构的设计选择[J].林业机械与木工设备,2002,30(6):14.
    60.王秋平.小松HB2302风力灭火机的性能分析[J].森林防火,2008,(4):19-21.
    61.王晓东.轴流风机小流量工况内部流动理论和实验研究[D].北京:中国矿业大学,2003.
    62.吴秉礼.轴流通风机气动设计的判据及其应用[J].风机技术,2004,(3):4-9.
    63.徐滨.风力灭火机灭火机理的探讨[J].森林防火,1994,(2):13-15.
    64.徐元德.自由射流原理及其在喷药机械中的应用[J].林业机械与木工设备,1983,(5):7-10.
    65.徐锦大,贾樟生等.小型联合收割机的输送风机研究设计[J].金华职业技术学院学报,2003,4(3):13-14.
    66.阎超,谢磊,李云晓,赵小虎.翼型的气动最优化设计方法和反设计方法[J].空气动力学学报,1999,19(01):60-67.
    67.杨东旭,由世俊,刘洋等.利用FLUENT软件模拟地铁专用轴流风机(二)——弯掠组合翼形叶片轴流风机[J].流体机械,2003,31(12):11-13.
    68.杨艳秋.BΠΠ-2.5型风力灭火机[J].林业机械与木工设备,1997,25(5):44.
    69.叶学民,李俊,王松岭,李春曦.带后导叶轴流式通风机内流特征的数值模拟[J].工程热物理学报,2009,24(2):163-166.
    70.袁凤东,由世俊,高立江.基于CFD的地铁用轴流风机性能模拟[J].流体机械,2006,34(5):26-30.
    71.曾庭卫,邵雪明,魏民.轴流通风机正反命题设计计算[J].风机技术,2005(6):12-14.
    72.张凤菊,于晓波,付胜利.轴流风机设计方法的探讨[J].农机化研究,2001,4:69-70.
    73.张景松,倪向臣.轴流通风机叶片形状对做功规律的影响[J].风机技术,1998,(4):12-14.
    74.张丽君,吕新民,杨兵力等.农用风机性能自动测试系统的研究[J].农机化研究,2006,(4):154-157.
    75.张耀安.小型风机的空气动力特性分析[J].微特电机,2001,(3):36-38.
    76.张耀安.小型风机气流特性测试方法探讨[J].微特电机,2003,(1):38-40.
    77.张维智,贺德馨,张兆顺.低雷诺数高升力翼型的设计和实验研究[J].空气动力学学报,1998,16(03):363-367.
    78.赵裕才.林用风力灭火机的风机性能选择与参数的确定[J].林业机械,1988,(3):15-16.
    79.周笃高,孙秀景.低压轴流风机后导叶栅结构参数的最佳选择[J].矿山机械,1996,(6):48-50.
    80.周海燕.风机性能测试系统的设计与研究[D].中国农业机械化科学研究院,2009.
    81.周丽宏,余涛等.MHJJ-A(B)型风水混合灭火机具的研制[J].林业机械与木工设备,2004,32(10):16-18.
    82.周谟仁.流体力学泵与风机(第二版)[M].北京:中国建筑工业出版社,1993.
    83.周尧振.HFM-37型风力灭火机的研制[J].林业机械与木工设备,1999,27(3):8-10.
    84.周尧振.HFM-37型风力灭火机灭火试验研究[J].林业机械与木工设备,1999,(04):11-12
    85. AGMA. Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel,ZEROL Bevel, and Spiral Bevel Gear Teeth, American National Standard[M]. Alexandria:AGMA,1986.
    86. Amano R S. Development of a turbulence near-wall model and its application to separated and reattached flows[J]. Numer Heat Transfer,1984,7:59-75.
    87. A. N. Sherstyuk and R. A. Erofeev. Determination of the Theoretical head of a centrifugal pump or compressor stage[J]. Chemical and Petroleum Engineering,2001, 37 (3):154-157.
    88. Barth T J. Numerical aspects of computing viscous high Reynolds number on unstructured meshes[A]. AIAA Paper[C],91-0721,1991.
    89. B. Lakshminarayana. An assessment of computational fluid dynamic techniques in the analysis and design of turbomachinery-the 1990 freeman scholar lecture [J]. Journal of fluids engineering, ASME, vol.113,1991.
    90. Breugelmans, F. A. E., Carels, Y. and Demuth, M. Influence of Dihedral on the Secondary Flow in a Two-Dimensional Compressor Cascade[J]. ASME, Journal of Engineering for Gas Turbines and Power,1984,106(3):578-584.
    91. Bons, J. P., Taylor, r. p., McClain, S. T. and Rivir, R. B. The many faces of turbine surface roughness[J]. ASME J. Turbomachinery.2001,123:739-748.
    92. C. Lee. A Prediction Model for the Vortex Shedding Noise From the Wake of an Airfoil or Axial Flow Fan Blades[J]. Journal of Sound and Vibration,1993,164(2):327-328.
    93. E. J. Breitbach. Recent Developments in Multiple Input Modal Andal Analysis[J]. Transactions of the ASME,1988,478(110):191-192.
    94. Fan Qi. Computerized Simulation of Meshing of Dural-involute Gearing[J]. ASME Des Eng,12,1996.
    95. Ffowcs Williams J E and Hawkings D L.Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Phil[J]. Trans. Soc.264A,1969,321-342.
    96. Gao H, Lin W L, Ye F M. CFD investigation of global performance and three dimensional flows in a water-jet axial flow pump[C].Proceedings of 2005 ASME FEDSM. 2005,:1140-1148.
    97. Garrent Turbine Co. Makers Lead in Compressor Uses[J]. Aviation Week and Space Technology.1983,215-218.
    98. Gaskell P H, Lau A C K.Curvature-compensated convective transport:SMART,a new boundedness-preserving transport algorithm[J], Int J Num Meth Fluid,1988,8:617.
    99. Gong Hee Lee,Je Hyun Baek and Hwan Joo Myung Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow fan[J]. Flow, Turbulence and Combustion,2003,70:241-265.
    100. Goto, A. Three-dimensional flow and mixing in an axial flow compressor with different with different rotor tip clearances[J]. ASME J. Turbomach.,1992,114.
    101.Grunwald J,Schnack E. Shape optimization for Fatigue Problem in Mechanical Engineering[J]. Engineering Optimization,1997,29.
    102. H. P. Hodson. Measurement of wake-generated unsteadiness in the rotor passages of axial flow turbines[J]. J. Of fluids engineering, ASME, vol.107,1985.
    103. I. J. Sharland. Source of Noise in Axial Flow Fans[J]. Journal of Sound and Vibration,1964,1,302-322.
    104. J. Blazek. Aerodynamic shape optimization of turbomachinery cascades[J]. Techniacl Report Paper 97-2131(A97-32475)AIAA,1997.
    105. Joel H Ferziger, Milovan Peric. Computational Methods for Fluid Dynamics[M]. Berlin:Springer Verlag,1996.
    106. Jones W P, Launder B E. The calculation of low-Reynoldsnumber phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer. 1973,16(6):1119-1130
    107. K. Fischer, D. thoma. Investigation of the Flow Comditions in a Centrifugal Pump[J]. Transaaction of the ASME, Vol.54, No22 1932,263-270.
    108. Liu,B., Moore,J. G.,and Moore, J. Total unsteadiness downstream of an axial compressor rotor[J]. AIAA Paper No.98-0967,1998.
    109. Mayers A J, Ward R W, Bakker A. A digital particle image velocimetry investigation of flow field instabilities of axial flow impellers [J]. Journal of Fluids Engineering-Transactions of the ASME.1997,119(3):623-632
    110. N. I. Barinov and A. A. Trofimov A Detector of The Angular Position of The guide vanes of a Compressor[J].Measurement Techiniques,2004,47(5):484-486.
    111. N. N. Petrov,N. A. Popov,E.Yu.Russkii. Scientific substantiation and development of a new series of axial fans[J]. Journal of Mining Science,2007,43(3):300-310.
    112. P. Chen, M. Soundra-Nayagam,A.N.Bolton,H. C. Simpson. Unstable flow in centrifugal fans[J]. Journal of fluids engineering, ASME, vol.118,1996.
    113. Sheam-Chyun Lin, Chia-Lieh Huang. An integrated experimental and numerical study of forward-curved centrifugal fan[J].Experimental Thermal and Fluid Science, 2002,26:421-434.
    114. Simon Hetal. Improvements in performance characteristics of single-stage and multistage centrifugal compressors by simultaneous adjustments of inlet guide vanes and diffuser vanes[J]. Journal of Turbomachinery,1987,109.
    115.Smith, L. H., Yeh, H. Swept and Dihedral Effects in Axial-Flow Turbo machinery [J]. ASME, J. of Basic Eng,1963,85(2):401-416.
    116. T. Fukano, Y. Kodama and Y. Takamatsu. Noise Generated by Low Pressure Axial Flow Fans, I:Modeling of the Turbulent Noise[J]. Journal of Sound and Vibration,1997,50(1), 63-74.
    117. T-H Shih, W W Liou, A Shabbir, J Zhu. A new k-ε eddy-viscosity model for high reynolds number turbulent flows-model development and validation[J]. Computer Fluids,1995, 24(3):227-238.
    118. Uzol O. Chow Y. C. Katz J. etal. Experimental Investigation of Unsteady Flow Flied Within a Two Stage Axial Turbomachine Using Particle Image Velocimetry[J]. Journal of Turbomachinery.2002, V124:p542-552.
    119. Van Leer B. Towards the ultimate conservative difference scheme [J], J Comp Phks,1974, (14):361.
    120. Van Albada G D, Van Leer B,Roberts W W. A comparative study of computational methods in cosmic gas dynamicd. Astron Astrophysics,1982, (108):76.
    121. Versteeg, H K, Malalasekera W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M], London, Longmangg Group Ltd,1995.
    122.Wallis,R.A.,1993, Axial Flow Fans and Ducts[M].Krieger Publishing Company, Malabar, Florida.
    123. Weiss, A. P., and Fottner, L. The influence of Load Distribution on Secondary Flow in Straight Turbine Cascades[J].ASME J. Turbomach.,117,1995.
    124. W. Saloshi,M. Masahiro, Y. Kazuhiko, T. Yoshinobu. Effects of spanwise distribution of cascade characteristics on rotating stall-a three-dimensional linear analysis. series B, JSME,1999,42 (3):145-148.
    125. Wu Y L, Guibaud M. Three-dimensional turbulent flow calculation through a hydraulic turbine runner at design and off-design operating conditions.Proc. of ISFMFE. Beijing.1996,:375-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700