用户名: 密码: 验证码:
感应加热电源负载感应器模型与恒频调功研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环保问题日益严重,世界各国在开发新能源、治理环境的同时,大力提倡节能、环保。固态感应加热电源因其高效、环保将得到更加广泛应用。感应加热理论虽然已经成熟,但是在工程应用中还有些问题需要解决,本文对被加热物体为空心圆柱体的负载感应器等效模型和串联谐振逆变电源恒频功率调节方式进行了深入研究。本文的主要研究内容如下:
     采用解析法推导了被加热物体为空心圆柱体负载感应器等效数学模型;通过求解被加热物体空心圆柱体涡流场分布,推导了被加热物体等效电阻R_b和等效电抗X_b解析表达式;并对(?)r_1/δ≥10(r_1:空心圆柱体内径,δ:透入深度)时的R_b和X_b进行了简化,简化后的R_b和X_b计算公式中不再含有贝塞尔函数,公式更加简单;指出当(?)r_b/δ≥10且w≥4(w:空心圆柱体厚度)时被加热物体等效电阻R_b和等效电抗X_b相等。
     推导了负载感应器等效电阻R和等效电抗X计算公式,并对其进行了仿真(采用ANSOFT MAXWELL 2D/3D有限元仿真软件进行仿真)和实验验证,仿真和实验结果表明本文推导的负载感应器数学模型正确,负载感应器等效电阻和等效电抗计算公式准确。本文推导的负载感应器等效电阻和等效电抗计算公式物理意义明确,计算公式简单,使用方便,具有较大的工程应用价值。
     从磁场角度定性分析了负载感应器等效电阻和等效电感大小与线圈匝数N、流过线圈的电流频率f、被加热物体的导磁率μ_r以及感应加热线圈半径r_3之间的关系,指导感应线圈的设计和被加热物体材料的选择;指出当被加热物体为不锈钢时,从负载感应器电效率的角度来讲,应选用铁素体或马氏体不锈钢。
     采用微分方程法推导出了采用恒频移相调功方式和恒频不对称电压消除法功率调节方式时,串联谐振逆变电源实现零压开通的最小归一化开关频率f_(emin)函数关系;并与采用傅立叶级数法推导得到的最小归一化开关频率f_(emin)解析表达式进行对比,仿真和实验结果表明采用微分方程法推导的最小归一化开关频率f_(emin)准确。
     详细分析了串联谐振逆变电源的两种恒频率功率调节方式的工作模态;从最小归一化开关频率f_(emin)、效率以及功率调节范围等方面对串联谐振逆变电源的两种恒频率调功方式进行了对比,指出恒频移相调功方式调功范围宽,适合应用在直流母线电压变化范围大,宽范围调功场合,恒频不对称电压消除法调功范围窄。当调功范围为(0.25-1)P_n(P_n为额定功率),采用恒频不对称电压消除法调功方式时电源效率比采用移相调功方式时高,尤其频率高采用MOSFET管时更是如此。
     最后从主电路拓扑、负载匹配方式和散热器选取等方面给出了4kW串联谐振逆变电源的详细设计思路。产品长期运行结果表明,设计的串联谐振逆变电源工作可靠,效率高(电效率和热效率乘积高达90%),与电热丝加热方式相比,效率提高近30%。
With the situation of energy source exhaustion and environmental pollution, manycountries around the world advocate energy-saving and environmental protection industry.Solid induction heating source is extensively applied for its high efficiency andenvironment-friendly. Although the theory of induction heating is mature, some problemsin engineering application need be solved. This dissertation studies the equivalent modelof load inductor which has a hollow cylinder as the heated object and the constantfrequency power regulation methods of the series resonant inverter power source. Theprimary contents and original contributions of this dissertation are as follows.
     This dissertation deduces the mathematical equivalent model of load inductor whichhas a hollow cylinder as the heated object based on magnetic field analysis. At first, itsolves the eddy magnetic field distribution of the heated hollow cylinder, then it deducesthe analytic expression of the heated hollow cylinder equivalent resistance R_b and equivalentreactance X_b based on Poynting theorem for the first time, and simplifies the expression ofR_b and X_b while 2~(1/2)r_1/δ≥10 (r_1 is the internal diameter of the hollow cylinder andδis the penetration depth of the hollow cylinder). The simplified computational formulaes ofR_b and X_b do not contain Bessel function so they can be easily used. And it also indicatesthat equivalent resistance is equal to the equivalent reactance of the heated object while2~(1/2)r_1/δ≥10 and w/δ≥2 (w is the thickness of the heated object) for the first time.
     This dissertation qualitatively analyzes the relation of load inductor equivalentresistance and inductance, the coil number N, the frequency of coil current f, themagnetoconductivityμ_r of the heated object and the semidiameter of the inductionheating coil r_3. The conclusion can efficiently guide the dimension design and materialselection of the induction heating coil in engineering application. In order to increaseelectrical efficiency of the load inductor, it should choose ferrite steel or martensite steelwhen the material of the heated object is made of stainless steel.
     Based on differential equation method, this dissertation deduces the analyticexpression of minimum normalization switch frequency f_(emin) of the constant frequency shift-phase power modulation method and constant frequency asymmetricalvoltage-cancellation power modulation method, respectively, while all swithes of theseries resonant inverter power source are zero voltage turn-on. It contrasts the analyticexpression of f_(emin) deduced by fourier series method with that deduced by differentialequation method. The simulation and experimental results show that the f_(emin) deducedby differential equation method is more accurate.
     The operative modes of two constant frequency power modulation methods of theseries resonant inverter power source are analyzed in detail. And minimum normalizationswitch frequency f_(emin), power efficiency and power modulation range of two constantfrequency power modulation methods are compared. The dissertation indicates that theconstant frequency shift-phase power modulation method has wide power modulationrange and is suitable for the occasion which has large variation of the direct current busvoltage and wide power modulation range, and the constant frequency asymmetricalvoltage-cancellation power modulation method has narrow power modulation range and issuitable for the occasion which has little variation of bus voltage. But the efficiency of theconstant frequency asymmetrical voltage-cancellation power modulation method is higherthan that of the constant frequency shift-phase power modulation method while the powermodulation range is within 25% to 100% power rating, especially adopting the MOSFETon the occasion of high frequency.
     At last, it gives the detailed design of a 4kW series resonant inverter power sourcewhich includes the main curcuit topology, load matching and radiator selecion. Thelong-term operation results of the product shows that the designed series resonant inverterpower source has high reliability and high efficiency. Compared with strip heater, theseries resonant inverter power source increases the efficiency about 30%.
引文
[1] 潘天明.现代感应加热装置.第一版.北京:冶金工业出版社,1996
    [2] 潘天明.工频和中频感应炉.第一版.北京:冶金工业出版社,1983
    [3] 林渭勋.可控硅中频电源.第一版.北京:机械工业出版社,1983
    [4] 约翰·戴维斯,彼得·辛普森.感应加热手册.第一版.张淑芬,柳祥训,蔡蔚望.北京:国防工业出版社,1985
    [5] 西安电炉研究所,第一机械工业部情报所编.感应加热技术应用及其设备设计经验.第一版.北京:机械工业出版社,1975
    [6] 沈锦飞,惠晶等.2MHz/1kW超高频感应加热电源.电力电子技术,2002,36(6):13-15
    [7] 王光才.电磁感应加热技术在塑料加工工业的应用.电力需求侧管理,2007,9(6):44-45
    [8] D. Miyagi, A. Saitou, N. Takahashi, et al. Improvement of zone control induction heating equipment for high-speed processing of semiconductor devices. IEEE Transactions on Magnetics, 2006, 42 (2) : 292-294
    [9] D. Miyagi, A. Saitou, N. Takahashi, et al. Improvement of zone control induction heating equipment for high-speed processing of semiconductor. Magnetics Conference, 2005:1069-1070
    [10] Sihai Chen, Mingxiang Chen, Sheng Liu. Research on Wafer Scale Bonding Method Based on Gold-tin Eutectic Solders. in: Icept 2003, Shanghai, China. 2003. 187-189
    [11] Sihai Chen, Hong Ma, Mingxiang Chen, Wafer level scale package of MEMS devices by eutectic bonding method, in: Proceeding of SPIE, San Jose, CA, USA.2004, 5343:94-100
    [12] Mingxiang Chen, Sihai Chen, Xinjian Yi. Eutectic Bonding on Large Silicon Die Using Deposited Gold-tin Multilayer Composites. In: ICEPT 2003, Shanghai, China.2003.147-150
    [13] Hsueh-An Yang, Mingching Wu, weileun Fang. Localized induction heating solder bonding for wafer level MEMS packing. Micromech. Microeng. , 2005, (15) :394-399
    [14] Andrew Cao, Liwei Lin. Selective induction heating for MEMS packaging and fabrication. Proceedings of 2001 ASME, New York, USA. 2001. 763-767
    [15] N. K. Budraa, H. W. Jackson, M. Barmatz. et al. Microwave induced direct bonding of single crystal silicon wafers, in: Proc. 12th IEEE International conference on Micro Electro Mechanical Systems, 1999. 490-492
    [16] Jason Clendenin, Steven tung, Nasser budra, et al. Microwave bonding of silicon dies with thin metal films for MEMS applications. Proceedings of IEEE-ECTC,2003.18-23
    [17] V. Rudnev, D. Loveless, R. Cook. Handbook of Induction Heating. New York:Marcel Dekker, Inc., 1998. 627-651
    [18] Mingxiang Chen, Xinjian Yi, Liulin Yuan. Selective Induction Heating for Sensor Packaging. in: 2005 ICEPT, Shenzhen, China, 2005. 587-590
    [19] Sihai Chen, Sheng Liu, Mingxiang Chen, et al. Wafer-level MEMS Package by Gold-tin Bonding Method, in: Proceedings of 2003 ASME-IMEC, Washington,USA., 2003. 169-172
    [20] 陈明祥,易新建,刘胜.基于感应加热的MEMS键合工艺研究.中国机械工程,2004.6:450-454
    [21] 陈明祥.基于感应加热的MEMS封装技术与应用研究:[博士学位论文].武汉:华中科技大学,2005
    [22] 马泽涛.白光高亮度发光二极管(HB-LED)封装研究:[硕士学位论文].武汉:华中科技大学,2005
    [23] Paul R. Stauffer, Thomas C. Cetas, Roger C. Jones. Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in Deep-Seated tumors.IEEE Transactions on Biomedical Engineering, 1984, 31 (2) : 235-251
    [24] P. R. Stauffer, P. K. Sneed, H. Hashemi, et al. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants. IEEE Transactions on Biomedical Engineering, 1994, 41 (1) : 17-28
    [25] S. Llorente, F. Monterde, J. M. Burdio, et al. A comparative study of resonant inverter topologies used in induction cookers. Applied Power Electronics Conference and Exposition (APEC) , 2002. (2) : 1168- 1174
    [26] H. W. koertzen, J. D. van Wyk, J. A. Ferreira. Design of the half-bridge series resonant converter for induction cooking. Proc. IEEE Power Electronics Specialists Conf. (PESC) , 1995:729-735
    [27] S. Wang . Induction-heated cooking appliance using new quasi resonant ZVS-PWM inverter with power factor correction. IEEE Trans. Ind. Applicat., 1998,34 (4) :705-712
    [28] H. Omori, M. Nakaoka. New single-ended resonant inverter circuit and system of induction-heating apparatus. Int. J. Electron., 1989, (67) : 277-296
    [29] J.M. Burdio, L. A. Barragan, F. Monterde, et al. Asymmetrical voltage-cancellation control for full-bridge series resonant inverters. IEEE Transaction on Power Electronics, 2004, 19 (2) : 461-469
    [30] 陈坚.电力电子学-电力电子变换和控制技术.第一版.北京:高等教育出版社,2002
    [31] Bhag Singh Guru.电磁场与电磁波.第一版.周克定,张肃文,董天临等.北京:机械工业出版社.2000
    [32] 张志远,陈辉明.感应加热电源的最新发展.1999,(3):6-7
    [33] 王英.固态高频LLC电压型感应加热谐振逆变器研究:[博士论文].杭州:浙江大学图书馆,2006
    [34] 全亚杰.感应加热电源的发展历程与动向.电焊机,2001,31(11):3-6
    [35] E.J. Dede, J Jordan, V Esteve, et al. Design Consideration for Induction Heating Current Fed Inverters with Igbo's Working at 100k Hz. IEEE Transaction on Industrial Electronics, 1993: 679-684
    [36] E. J. Dede, J. V. Gonzalez, J. A. Linares, et al. Conception of Parallel resonant Transistorized Generators for Induction Heating. Proceedings. , 3~(rd)AFRICON Conference, 1992:390-393
    [37] E. J. Dede, J. V. Gonzalez, V. Esteve, et al. State-of-Art and Future Trends in Transistorised Inverters for Induction Heating Applications. Devices, circuits and Systems, 2004, Proceedings of the Fifth IEEE International Caracas Conference on,2004:204-211
    [38] 段海雁.感应加热电源的数字化控制研究:[硕士论文].济南:山东大学图书馆.2007
    [39] 矫成.智能感应加热电源并联投切系统:[博十论文].杭州:浙江大学图书馆,2004
    [40] S. Moissseev, H. muraoka, M Nakamura, et al. Zero voltage soft switching PWM high-frequency inverter using IGBTs for induction heated fixed roller. IEE Proceedings Electric Power Applications, 2003, 150 (2) : 237-244
    [41] 王正仕,楼珍丽,陈辉明.兆赫级超高频感应加热电源电路的分析与研究.2007,27(19):80-86
    [42] 张伟军.电流型PWM整流器及其在感应加热方面的应用研究:[硕士论文].杭州:浙江大学图书馆,2007
    [43] 王剑.矩阵变换器的研究及其在感应加热中的应用:[硕士论文].杭州:浙江大学图书馆,2006
    [44] 王剑.三相-单相矩阵变换器应用于串联谐振感应加热的研究:[硕士论文].杭州:浙江大学图书馆,2007
    [45] 曾雨竹.对矩阵变换器若干问题的研究:[博士论文].杭州:浙江大学图书馆,2007
    [46] J.M. Leisten, L. Hobson. A. parallel resonant power supply for induction cooking using a GTO. Power Electronics and Variable-Speed Drives, 1991: 224- 230
    [47] I. Hirota, H. Omori, K. A. Chandra, et al.. Practical evaluations of single-ended load-resonant inverter using application-specific IGBT and driver IC for induction-heating appliance. Power Electronics and Drive Systems, 1995:531 -537
    [48] S. Wang, K. Izaki, I. Hirota, et al.. Induction-heated cooking appliance using new quasi-resonant ZVS-PWM inverter with power factor correction. IEEE Transactions on Industry Applications, 1998, 34 (4) : 705-712
    [49] Yong-Chae Jung. Dual half bridge series resonant inverter for induction heating appliance with two loads. Electronics Letters, 1999, 35 (16) : 1345-1346
    [50] J.M. Burdio, F. Monterde, J. R. Garcia, et al. A two-output series-resonant inverter for induction-heating cooking appliances. IEEE Transactions on Power Electronics,2005, 20 (4) : 815 -822
    [51] F. Monterde, P. Hernadez, J. M. Burdio, et al. A new ZVS two-output series-resonant inverter for induction cookers obtained by a synthesis method.Power Electronics Specialists Conference (PESC) , 2000, (3) : 1375-1380
    [52] S.H. Hosseini, A. Y. Goharrizi, E. Karimi. A Multi-Output Series Resonant Inverter with Asymmetrical Voltage-Cancellation Control for Induction-Heating Cooking Appliances. Power Electronics and Motion Control Conference (IPEMC) , 2006,(3) :1-6
    [53] L. Gamage, T. Ahmed, H. Sugimura, et al. Series load resonant phase shifted ZVS-PWM high-frequency inverter with a single auxiliary edge resonant AC load side snubber for induction heating super heated steamer. The Fifth International Conference on Power Electronics and Drive Systems, 2003:30 -37
    [54] H. Sugimura, Hyun-Woo Lee, A. M. Eid, et al. Series load resonant tank high frequency inverter with ZCS-PDM control scheme for induction-heated fixing roller.IEEE International Conference on Industrial Technology (ICIT) , 2005:756 - 761
    [55] J.M. Espi, E. J. Dede, R. G. Gil. Design of the L-LC resonant inverter for induction heating based on its equivalent SRI. IEEE transactions on industrial electronics,2007, 54 (6) : 3178-3187
    [56] 彭绪友.用电磁场理论解析圆柱形无芯感应炉.1978,(4):1-24
    [57] 肖国春.圆管感应加热工件内电参数的计算.工业加热.1993,114(4):19-26
    [58] G.D. Garbulsky, P. Marino, A. Pignotti. Numerical model of induction heating of steel-tube ends. IEEE Transactions on Magnetics, 1997, 33 (1) : 746-752
    [59] M.R. Almled, J. D. Lavers, BurkeP. E. Boundary element application of induction heating devices with rotational symmetry. IEEE Transactions on Magneties. 1989,25(4):3022-3024
    [60] V. B. Demidovich, H. DKomrakova, . V. I. Rudnev, et al. Space change of eddy current power by induction heating of steel cylinders. Second International Conference on Computation in Electromagnetics, 1994 : 186-188
    [61] 储乐平.感应加热磁热耦合场数值模拟及温度回归分析:[硕士学位论文] .大连:大连理工大学图书馆,2004
    [62] 杨晓光.横向磁通感应加热及其优化问题的研究:[博士学位论文] .天津:河北工业大学图书馆,2004
    [63] J. Nerg, K. Tolsa, P. Silventoinen, et al. A dynamic model for the simulation of induction heating devices. IEEE Transactions on Magnetics, 1999, 35 (5) : 3592-3594
    [64] J. Nerg, P. Silventoinen, K. Tolsa, et al. A dynamic model for the simulation of induction heating devices. Magnetics Conference, 1999:HF05 - HF05
    [65] D. Melaab, O. Longeot, L. Nicolas. Control of an induction heat treatment by the measure of power electromagnetic field computation, IEEE Conference on Electromagnetic Field Computation, 1992:TP04-TP04
    [66] D. Melaab, O. Longeot, Krahenbuhl, et al. Control of an induction heat treatment by the measure of power. IEEE Transactions on Magnetics, 1993, 29 (2) : 1558-1561
    [67] A. Boadi, Y. Tsuchida, T. Todaka, et al. Designing of suitable construction of high-frequency induction heating coil by using finite-element method. IEEE Transactions on magnetics, 2005, 41 (10) : 4048-4050
    [68] A. Boadi, H. Shimoji, T. Todaka. Designing of suitable construction of high-frequency induction coil by using finite element method. Magnetics Conference, 2005:1077-1078
    [69] N. Allen, D. Rodger, H. C. Lai, et al. Scalar-based finite element modelling of 3D eddy currents in thin moving conducting sheets. IEEE Transactions on Magnetics,1996, 32 (3) : 733-736
    [70] W. Mai, G. Henneberger. Calculation of the transient temperature distribution in a TFIH.device using the impedance boundary condition. IEEE Transactions on Magnetics, 1998, 34 (5) : 3094-3097
    [71] W. Mai, G. Henneberger. Field and temperature calculations in transverse flux inductive heating devices heating nonparamagnetic materials using surface impedance formulations for nonlinear eddy-current problems. IEEE Transactions on Magnetics, 1999, 35 (3) : 1590-1593
    [72] N. Bianchi, F. Dughiero. Optimal design techniques applied to transverse-flux induction heating systems. IEEE Transactions on Magnetics, 1995, 31 (3) :1992-1995
    [73] J. Acero, R. Alonso, J. M. Burdio. A model of losses in twisted-multistranded wires for planar windings used in domestic induction heating appliances. Applied Power Electronics Conference (APEC) ,2007:1247-1253
    [74] J. Acero, J. M. Burdio, L. A. Barragan, et al. A model of the equivalent impedance of the coupled winding-load system for a domestic induction heating application. IEEE International Symposium on Industrial Electronics (ISIE) , 2007: 491-496
    [75] H. W. E. Koertzen, J. D. van Wyk, J. A. Ferreira. An investigation of the analytical computation of inductance and AC resistance of the heat-coil for induction cookers. Industry Applications Society Annual Meeting, 1992: 1113-1119
    [76] J. Acero, R. Alonso, J. M. Burdio, et al. Analytical equivalent impedance for a planar circular induction heating system. IEEE Transactions on Magnetics, 2006, 42(1) :84-86
    [77] C. Carretero, J. Acero, R. Alonso, et al. Temperature influence on equivalent impedance and efficiency of inductor systems for domestic induction heating appliances. Applied Power Electronics Conference (APEC) , 2007: 1233-1239
    [78] J. Acero, J. M. Burdio, L. A. Barragan, et al. An electromagnetic-based model for calculating the efficiency in domestic induction heating appliances. Power Electronics Specialists Conference (PESO ,2006:1-6
    [79] J. Acero, J. M. Burdio, L. A. Barragan, et al. Modeling and Calculation of the Efficiency for Low-cost Round-wire Planar Windings in Domestic Induction Heating Applications. Power Electronics Specialists Conference (PESO , 2007:1411-1416.
    [80] J. Acero, R. Alonso, L. A. Barragan, et al. Magnetic vector potential based model for eddy-current loss calculation in round-wire planar windings. IEEE Transactions on Magnetics, 2006, 42 (9) : 2152-2158
    [81] J. Acero, P. J. Hernandez, J. M. Burdio, et al. Simple resistance calculation in litz-wire planar windings for induction cooking appliances. IEEE Transactions on Magnetics, 2005, 41 (4) : 1280-1288
    [82] Byun. Jin-Kyu, Choi. Kyung, Rob, Hee-Suce, et al. Optimal design procedure for a practical induction heating cooker. IEEE Transactions on Magnetics, 2000, 36 (4):1390-1393
    [83] S. H. Hosseini, A. M. Kashtiban, G. Alizadeh. Particle Swarm Optimization and Finite-Element Based Approach for Induction Heating Cooker Design. SICE-ICASE, 2006, International Joint Conference. 2006:4624-4627
    [84] P. Hernandez, F. Monterde, J. M. Burdio. Power loss optimisation of foil coils for induction cooking. Industrial Electronics Society (IECON) , 1998, Proceedings of the 24th Annual Conference of the IEEE, 1998:371-374
    [85] P. Hernandez, F. Monterde, J. M. Burdio, et al. Power losses distribution in the litz-wire winding of an inductor for an induction cooking appliance. Industrial Electronics Society (IECON) , 2002, 28th Annual Conference of theIEEE, 2002:1134-1137
    [86] J. Acero, R. Alonso, J. M. Burdio, et al. Enhancement of induction heating performance by sandwiched planar windings. Electronics Letters, 2006, 42 (4) :241-242
    [87] 李金刚.电压型负载谐振变换器谐振槽路参数优化设计与负载匹配的研究:[博士论文] .西安:西安理工大学图书馆,2006
    [88] Viriya, P. S. Sittichok, K. Matsuse. Analysis of high-frequency induction cooker with variable frequency power control. Power Conversion Conference (PCC) ,2002, (3) :1502-1507
    [89] 吕宏.PWM&PFM控制感应加热技术研究:[硕士学位论文].杭州:浙江大学图书馆,2003
    [90] 袁俊国.高频功率变换及其在感应加热中的应用:[博士论文].杭州:浙江大学图书馆,2000
    [91] L. Grajales, J. A. Sabate, F. C. Lee, et al. Design of a 10 kW, 500 kHz phase-shift controlled series-resonant inverter for induction heating. Industry Applications Society Annual Meeting, 1993: 843 - 849
    [92] 林渭勋.现代电力电子电路.第一版.杭州:浙江大学出版社,2002
    [93] 王立乔,黄玉水,王长久,等.基于新型移相控制的感应加热电源的研究.电力电子技术,2000,(1):3-5
    [94] J. Essadaoui, P. Sicard, E. Ngandui, et al. Power inverter control for induction heating by pulse density modulation with improved power factor. Electrical and Computer Engineering (CCECE) , 2003:515 - 520
    [95] 颜文旭,沈锦飞,惠晶,等.脉冲均匀调制功率控制串联谐振式逆变器.电力电 子技术,2004,38(4):43-45
    [96] 刘勇,何湘宁,张仲超.脉冲密度调制串联谐振型塑料薄膜表面处理电源的研制.中国电机工程学报,2005,25(16):158-162
    [97] 徐应年,赵阳,康勇,等.简单、高效串联谐振逆变电源研究.高电压技术,2008,34(1):187-195
    [98] 徐应年,赵阳,康勇.数字恒频移相调功串联谐振逆变电源的研制.高电压技术,2008,34(8):1698-1703
    [99] S.A. Gonzalez, M. I. Valla, C. H. Muravchik. Analysis and design of clamped-mode resonant converters with variable load. IEEE Transactions on Industrial Electronics,2001, 48 (4) :812-819
    [100] J. M. Burdio, L. A. barragan, F. Monterde, et al. Asymmetrical voltage-cancellation control for full-bridge series resonant inverters. IEEE Transactions on Power Electronics, 2004, 19 (2) : 461-469
    [101] J. M. Burdio, F. Monterde, Jose R. garcia, et al. a two-o utput series-resonant inverter for induction-heating cooking application. IEEE Transactions on Power Electronics, 2005, 20 (4) : 815-821
    [102] Jung-Chien Li, Yan-Pei Wu. Closed-form expressions for the frequency-domain model of the series resonant converter. IEEE Transactions on Power Electronics,1990,5 (3) : 337-345
    [103] P. P. Roy, S. R. Doradla, S. Deb. Analysis of the series resonant converter using a frequency domain model. Power Electronics Specialists Conference ( PESC ), 1991 :482-489
    [104] P. Jain, D. Bannard, M. Cardella. A phase-shift modulated double tuned resonant DC/DC converter: analysis and experimental results. Applied Power Electronics Conference and Exposition, 1992:90 - 97
    [105] A. K. S. Bhat. A unified approach for the steady-state analysis of resonant converters. IEEE Transaction on industrial electronics, 1991, 38 (4) : 251-259
    [106] Ashoka K. S . Bhat. A Generalized steady-state analysis of resonant converters using two-port model and Fourier-Series approach. IEEE Transactions on Power Electronics, 1998, 5 (3) : 142-151
    [107] Chin. Chang, Joseph Chang, Gert W. bruning. Analysis of the self-oscillating series resonant inverter for elcetronic ballasts. IEEE Transactions on Power Electronics,1999, 14 (3) : 533-540
    [108] Louis R. Nerone. A mathematical model of the class D converter for compact fluorescent ballasts. IEEE Transactions on Power Electronics, 1995, 10(6):708-715
    [109] J. M. Alonso, C. Blanco, E. Lopez, et al. Analysis, design, and optimization of the LCC resonant inverter as a high-intensity discharge lamp ballast. IEEE Transactions on Power Electronics, 1998, 13 (3) : 573 - 585
    [110] 刘颖.圆柱函数.北京:国防工业出版社,1983
    [111] 卡兰塔罗夫,采依特林.电感计算手册.第一版.陈汤铭译.北京:机械工业出版社,1992
    [112] Janssen H, H. J. M. Simulation of coupled electromagnetic and heat dissipation problems. IEEE Transactions on Magneties. 1994, 30 (5) : 3331-3334
    [113] 刘国强,赵凌志,蒋继娅.ANSOFT工程电磁场有限元分析.第一版.北京:电 子工业出版社,2006
    [114] 《钢铁材料手册》总编辑委员会.钢铁材料手册第5卷不锈钢.第一版.北京:中国标准出版社,2002
    [115] 方昆儿,黄英.机械工程材料实用手册.沈阳:东北大学出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700