用户名: 密码: 验证码:
高压电脉冲破碎废弃电路板的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废弃电路板的回收利用是实现资源循环利用的有效途径,能够在防治环境污染的同时获得可观经济效益。而破碎是制约废弃电路板资源化利用的关键因素。本文基于高压电脉冲的选择性破碎作用,实现了电路板中金属与非金属的有效解离以及金属的富集,并通过对破碎产物的粒级分布、解离特性和表面形态的分析,研究了高压电脉冲的作用机理和破碎能耗;利用X射线荧光光谱仪(XRF)对破碎产物进行了表征;利用扫描电子显微镜附加电制冷能谱仪(SEM/EDS)及气相色谱/质谱联用仪(GC/MS)对破碎产物进行了分析;借助ReaxFF反应分子动力学模拟研究了高压电脉冲破碎过程中环氧树脂热解的反应机理和反应产物,并分析了环氧树脂的热解在电路板的破碎以及金属与非金属解离过程中的作用。
     电路板的高压电脉冲破碎结果表明,破碎产物中+2mm粒级产率大,2mm以下各粒级的产率小,该结果与机械破碎的结果不同。另一方面,高压电脉冲能够在破碎电路板的同时实现对电路板中金属的富集。随着电压和脉冲个数的增加,2mm以下各粒级中铜纯度逐渐增加。当电压为170kV脉冲个数为600时,虽然-2+0.5mm粒级产率为32.39wt%,但是电路板中88.67wt%的铜都集中在该粒级。
     破碎产物的平均粒径随单位质量电路板能耗的增加而减小,而平均单体解离度主要由单个脉冲能量即电压决定;电压主要影响+2、-2+1.5mm粒级单体解离度。不同实验条件所得破碎产物中1.5mm以下各粒级的单体解离度均为100%,表明该部分细颗粒的产生过程几乎都是在铜箔与环玻布板解离过程之后。
     采用高压电脉冲进行破碎时,破碎能耗与破碎产物颗粒数量的平方根的增量成正比,建立了数量方程:E=KN(D-1.5-d-1.5)。模拟结果表明,经验公式数量方程适用于高压电脉冲破碎电路板的能耗研究,另一方面也说明在热能作用下电路板中有机物发生的化学反应是高压电脉冲破碎电路板的主要作用机理之一。
     采用SEM观察固体破碎产物表面形貌,结果表明在高压电脉冲作用下环氧树脂发生了熔融和热解反应。用GC/MS对热解过程中产生的溶于水的有机物进行了分析,结果表明高压电脉冲破碎产生的可溶有机物的种类较少,产生的二次污染较小。
     ReaxFF反应分子动力学模拟结果表明,温度和升温速率对环氧树脂和固化环氧树脂模型化合物的热解反应有较强的影响。升高反应终温和提高升温速率都能缩短引发时间。因所需活化能最低,醚键的断裂是环氧树脂模型化合物分解的引发反应,并且在所有反应条件下CH_2O皆为优先生成的产物,其它主要的小分子化合物还包括H_2O、CH_4和H_2。固化环氧树脂模型化合物的热解引发反应为含N和含O桥键的断裂。温度较低时,固化环氧树脂模型化合物热解的主要产物为H_2O,而温度较高时,H_2为主要产物,并且高温促进了含石墨烯结构且分子量较大的碳团簇的形成。在固化环氧树脂模型化合物的热解反应中,H_2O为最先生成的小分子产物,主要的小分子产物还包括CO、CH_4、CH_2O和H_2。
     ReaxFF反应分子动力学模拟首次证实了高压电脉冲破碎过程中电路板热解生成大量气体所造成的局部压力增加也是导致金属与非金属解离的主要原因。ReaxFF反应分子动力学模拟所得环氧树脂热解机理和化学反应现象与实验结果一致,说明ReaxFF反应分子动力学方法为从分子水平上研究有机物高温热解反应提供了一种有效的途径。
Resource utilization of waste printed circuit board (WPCB) is an effective way forrecycling of resources, protecting environment and obtaining considerable economicbenefits. However, the crush is the main reason for restricting resource utilization ofWPCB. On the basis of the selective crushing characteristic of high voltage pulse(HVP), the fragmental experiments were performed. The metals in WPCB wasseparated from nonmetals effectively and metal enrichment was also realized.Furthermore, the energy consumptions of various theories of comminutionmechanisms of crushing were studied, according to the distribution of size fractions,characteristic of degree of liberation and surface features of crushed products obtainedunder different experiment conditions. The crushed products were characterized by XRay Fluorescence Spectrometry (XRF) and analyzed with SEM/EDS and GC/MS. Inorder to investigate the products and detailed pyrolysis mechanisms for WPCB duringHVP crushing process, we used ReaxFF reactive force field to perform a series ofmolecular dynamics simulations (MDSs) on model compound of. According to theMDSs results, we studied the effects of pyrolysis on the fragmentation of WPCB andliberation of metals from nonmetals.
     The results show that the yield is prominent for+2mm size fraction but not for-2mm, which is different from the results of mechanical crushing process. On the otherhand, The WPCB can be crushed and the metals in WPCB can be concentratedsimultaneously. The pureness of copper in-2mm size fraction increased with thevoltage and the number of pulses of HVP. Although the yield of-2+0.5mm sizefraction was32.39wt%, in total88.67wt%of copper in WPCB was concentrated inthis fraction with voltage of170kV and600pulse.
     The average particle size decreased with the increase in energy consumption perweight of WPCB. And the average monomer dissociation degree is decided by thepulse energy of voltage.The voltage influences mainly the monomer dissociationdegree of+2,-2+1.5mm size fraction.The degree of liberation of-1.5mm size fractionfrom crushed products is100%under different experiment conditions. The resultindicate that the-1.5mm size fraction is almost produced after the separation betweencopper foil and epoxy-glass cloth laminate.
     Broken WPCB by high voltage pulse, energy consumption of fragmentation isproportional to the increment of the square root of the quantity of crushed product particles. The Number equation was established: E=KN(D-1.5-d-1.5). The result ofnon-line fitting demonstrate that the empirical formula, Number equation, applies toresearch energy consumption of process that crushed WPCB by high voltage pulse. Onthe other hand, the result show that The Chemical Reaction of organics in WPCB hasoccurred under the action of thermal energy, which could also be the main mechanismto crush WPCB.
     The surface features of solid products were studied with SEM. The results exhibitthat under the high temperature condition caused by HVP, modeling and thermaldecomposition reaction of epoxy has occurred. The compounds, which were producedin thermal decomposition, dissolved in water were analyzed with GC/MS. The resultsshow that few soluble organic matters were generated during HVP crushing process.
     ReaxFF molecular dynamics simulations (MDSs) results show that both thetemperature and the heating rate strongly affect the decomposition of epoxy resins andcured epoxy resins. both increased in final temperature and heating rate shorten theinitiation time. The results show that the decomposition of epoxy resins modelcompound is initiated by ether linkage cleavage reaction with the lowest activationenergy. We found CH_2O formation to be the first reaction to occur. Other mainsmall-molecule products observed in our simulations include H_2O, CO and H_2. ReaxFFMDSs results show that the cleavages of nitrogen-and oxygen-bridge bonds areinitiation reaction of the decomposition of cured epoxy resins model compound. Theresults show that the cleavages of nitrogen-and oxygen-bridge bonds are initiationreaction. We found that at lower temperatures the primary product is H_2O, whereas athigh temperatures H_2is dominant one and the larger carbon cluster containinggraphene-related structure prefers to formation. Furthermore, other small molecularproducts found include CH_4, HCN, NH_3and CO_2.
     ReaxFF MDSs provide that the increase of local pressure in discharge channelscaused by the pyrolysis gas during HVP crushing process is also the main factor forliberation between metals and nonmetals. The agreement of these results with availableexperimental observations demonstrates that ReaxFF can provide useful insights intothe complicated bulk thermal decomposition of organic materials under extremeconditions at the atomistic level.
引文
[1] de Marco I, Caballero B M, Chomon M J, et al. Pyrolysis of electrical and electronic wastes[J].Journal of Analytical and Applied Pyrolysis,2008,82(2):179-183.
    [2] Schluep M, Hagelueken C, Kuehr R, et al. Recycling of e-waste as a resource[R]. GermanyUnited Nations Environment Programme&United Nations University,2009:2-10.
    [3] Drohmann D, Tange L. Bromine Recycling with Energy Recovery from Plastics of E&E-Equipment as Part of an integrated waste management concept for WEEE plastics containingbrominated flame retardants: proceedings of the Electronics Goes Green2000,2000[C].
    [4]阮培华.电子信息产品步入强制环保时代:喜多?忧多?[J].高科技与产业化,2007(5):66-69.
    [5] Dimitrakakis E, Janz A, Bilitewski B, et al. Small WEEE: Determining recyclables andhazardous substances in plastics[J]. Journal of hazardous materials,2009,161(2-3):913-919.
    [6] Webb D P, Hutt D A, Whalley D C, et al. A Substrateless Process for Sustainable Manufactureof Electronic Assemblies; proceedings of the Estc2008:2nd Electronics System-IntegrationTechnology Conference, F,2008[C].
    [7] Cahill R, Grimes S M, Wilson D C. Extended producer responsibility for packaging wastes andWEEE-a comparison of implementation and the role of local authorities across Europe[J].Waste Management&Research,2011,29(5):455-479.
    [8] Bigum M, Brogaard L, Christensen T H. Metal recovery from high-grade WEEE: a life cycleassessment[J]. Journal of hazardous materials,2012,207-208:8-14.
    [9]慎义勇,米永红.电子废物的管理及处置策略[J].中国资源综合利用,2007,4:24-25.
    [10] Kang H-Y, Schoenung J M. Electronic waste recycling: A review of U.S. infrastructure andtechnology options[J]. Resources, Conservation and Recycling,2005,45(4):368-400.
    [11] Mathias Schluep, Christian Hagelueken, Kueh. R. Recycling: from E-waste to Resources[R]:UNEP and United Nations University,2009:
    [12] Kahhat R, Kim J, Xu M, et al. Exploring e-waste management systems in the United States[J].Resources, Conservation and Recycling,2008,52(7):955-964.
    [13] Chen P F. The WEEE challenge to China[M].2005.
    [14] Chen P F. WEEE recycling and legislation development in China[M].2004.
    [15]卢苇,马一太.电子电气废弃物回收利用初探[J].中国资源综合利用,2003(11):20-23.
    [16]刘育,夏北成.废旧家电的环境污染问题与对策[J].安全与环境学报,2003,3(001):44-46.
    [17] He W Z, Li G M, Ma X F, et al. WEEE recovery strategies and the WEEE treatment status inChina[J]. Journal of hazardous materials,2006,136(3):502-512.
    [18] Streicher-Porte M, Yang J X. WEEE recycling in China. Present situation and main obstaclesfor improvement[M]. Proceedings of the2007Ieee International Symposium on Electronics&the Environment, Conference Record.2007:40-45.
    [19]张湘兰,秦天宝.控制危险废物越境转移的巴塞尔公约及其最新发展:从框架到实施[J].法学评论,2003,3:93-91o94.
    [20]李嘉.巴塞尔公约[J].浙江省政法管理干部学院学报,2001(002):31-33.
    [21]冯少华.巴塞尔公约[J].黑龙江省政法管理干部学院学报,2004(002):110-112.
    [22] Lagos G E. Chile's mining and the application of the Basel convention[M].1999.
    [23] Stone H. Effects of Amendments to the Basel Convention on battery recycling[J]. Journal ofPower Sources,1999,78(1-2):251-255.
    [24] Alter H. Environmentally sound management of the recycling of hazardous wastes in thecontext of the Basel Convention[J]. Resources Conservation and Recycling,2000,29(1-2):111-129.
    [25] NAFTA trumps the Basel Convention[J]. Chemical&Engineering News,2000,78(47):34-34.
    [26] Hoffmann U, Wilson B. Requirements for, and benefits of, environmentally sound andeconomically viable management of battery recycling in the Philippines in the wake of BaselConvention trade restrictions[J]. Journal of Power Sources,2000,88(1):115-123.
    [27]胡涛,吴玉萍,张凌云.我国固体废物的管理体制问题分析[J].环境科学研究,2006,19(1):33-39.
    [28]何艳明,聂永丰.我国危险废物管理现状及发展趋势[J].环境污染治理技术与设备,2002,3(6):90-93.
    [29] Yang J X, Lu B, Xu C. WEEE flow and mitigating measures in China[J]. Waste Management,2008,28(9):1589-1597.
    [30] Yan L, Shi K H, Zhi J R. Technical Workflow Selection for WEEE Recycling Facilities inChina[M].2010.
    [31] Li Y, Wang H N, Qiang Z. Modeling of WEEE Recycling Process in China with Petri Net[M].2008.
    [32] Bi X, Thomas G O, Jones K C, et al. Exposure of Electronics Dismantling Workers toPolybrominated Diphenyl Ethers, Polychlorinated Biphenyls, and Organochlorine Pesticides inSouth China[J]. Environmental Science&Technology,2007,41(16):5647-5653.
    [33]赖芸.贵屿故事——记一电子废物拆解地[J].资源与人居环境,2006(07S):44-49.
    [34]林俊生,庄晓.贵屿:电子垃圾城的重生[J].环境经济,2005(4):19-22.
    [35]姚春霞,尹雪斌,宋静,等.电子废弃物拆解区土壤Hg和As的分布规律[J].中国环境科学,2008,28(3):246-250.
    [36]李燕,霍霞,郑良楷,等.电子垃圾拆解区新生儿脐带血铬水平[J].癌变畸变突变,2007,19(5):409-411.
    [37]徐锡金,彭琳,李玮,等.电子废弃物拆解地区儿童血铅水平[J].环境与健康杂志,2006,23(001):58-60.
    [38]孙朋,于云江,李定龙,等.电子垃圾对环境与健康的影响研究进展[J].环境与健康杂志,2008,25(005):452-455.
    [39] Hagelüken C, Meskers C. Mining our computers-opportunities and challenges to recoverscarce and valuable metals from End-of-Life electronic devices, F,2008[C]. Electronics GoesGreen.
    [40]贝新宇,鞠美庭,陈书雪.电子废弃物中贵金属的回收技术[J].环境科技,2008,21(A02):114-117.
    [41]科技部,发展改革委,工业和信息化部,等.废物资源化科技工程“十二五”专项规划[R].北京,2012:2-10.
    [42] Huang K, Guo J, Xu Z. Recycling of waste printed circuit boards: A review of currenttechnologies and treatment status in China[J]. Journal of hazardous materials,2009,164(2–3):399-408.
    [43] Lucheva B, Tsonev T, Iliev P. Recycling of Lead Solder Dross, Generated from PCBManufacturing[J]. Jom,2011,63(8):18-22.
    [44] Li J, Lu H, Guo J, et al. Recycle Technology for Recovering Resources and Products fromWaste Printed Circuit Boards[J]. Environmental Science&Technology,2007,41(6):1995-2000.
    [45]王龙基.激情创新之五环保工作是行业的重中之重[J].印制电路信息,2008(3):7,12.
    [46] Huang K, Guo J, Xu Z M. Recycling of waste printed circuit boards: A review of currenttechnologies and treatment status in China[J]. Journal of hazardous materials,2009,164(2-3):399-408.
    [47]曾峰,巩海洪,曾波.印刷电路板(PCB)设计与制作[M].电子工业出版社,2005.
    [48]孙路石.废弃印刷线路板的热解机理及产物回收利用的试验研究[D].武汉:华中科技大学,2004.
    [49]江博新,管世翾.电子废弃物回收利用领域技术开发难点问题探讨[J].再生资源研究,2006,4:17-20.
    [50] Gockmann K. Recycling of copper[J]. Canadian Mining and Metallurgical Bulletin(Canada),1992,85(958):150-154.
    [51] Richter H, Lorenz W, Bahadir M. Examination of organic and inorganic xenobiotics inequipped printed circuits[J]. Chemosphere,1997,35(1–2):169-179.
    [52]段晨龙.废弃电路板破碎机理研究[D].徐州:中国矿业大学,2007.
    [53]辜信实.印制电路用覆铜箔层压板[M].北京:化学工业出版社,2002.
    [54]温雪峰.物理法回收废弃电路板中金属富集体的研究[D].江苏徐州:中国矿业大学,2004.
    [55]黄文秀.浅谈废旧电子电器回收处理[J].电机电器技术,2002(006):15-17.
    [56]李晶莹,盛广能,孙银峰.电子废弃物中的金属回收技术研究进展[J].污染防治技术,2007,20(6):40-45.
    [57] Chang F C, Lo S L, Ko C H. Recovery of copper and chelating agents from sludge extractingsolutions[J]. Separation and Purification Technology,2007,53(1):49-56.
    [58] Xiu F-R, Zhang F-S. Recovery of copper and lead from waste printed circuit boards bysupercritical water oxidation combined with electrokinetic process[J]. Journal of hazardousmaterials,2009,165(1-3):1002-1007.
    [59] Goosey M, Kellner R. Recovery of copper from PCB manufacturing effluent using chitin andchitosan[J]. Circuit World,2012,38(1):16-20.
    [60] Veit H M, Bernardes A M, Ferreira J Z, et al. Recovery of copper from printed circuit boardsscraps by mechanical processing and electrometallurgy[J]. Journal of hazardous materials,2006,137(3):1704-1709.
    [61] Park Y J, Fray D J. Recovery of high purity precious metals from printed circuit boards[J].Journal of hazardous materials,2009,164(2-3):1152-1158.
    [62]丁一,王青,顾晓薇.中国铜资源开发利用中的物质投入[J].资源科学,2005,27(5):27-32.
    [63]张志霄,赵新田,马加德.废弃印刷电路板资源化回收利用技术探讨[J].上海环境科学,2010(001):30-34.
    [64]任彦斌,夏志东,雷永平,等.废弃印刷电路板回收处理技术简析[J].家电科技,2005(9):61-63.
    [65] Lehner T, Vikdahl A, Smelter R. Integrated recycling of non-ferrous metals at Boliden LtdRonnskar smelter; proceedings of the IEEE International Symposium on Electronics&theEnvironment, F,1998[C]. Minerals, Metals,&Materials Society.
    [66]柴晓兰,赵跃民,王春彦.电子废弃物机械回收的研究现状与发展[J].污染防治技术,2003,16(3):47-50.
    [67]温雪峰,李金惠,朱雪梅,等.我国废弃电路板资源化现状及其对策[J].矿冶,2005,14(1):66-69.
    [68] Cui J, Forssberg E. Mechanical recycling of waste electric and electronic equipment: areview[J]. Journal of hazardous materials,2003,99(3):243-263.
    [69]杨木坤.广东贵屿废旧回收拆解加工现状及看法[J].中国资源综合利用,2004(008):6-6.
    [70]黄慧诚.贵屿的教训[J].环境,2002(4):18-19.
    [71] Zhang S, Forssberg E. Mechanical separation-oriented characterization of electronic scrap[J].Resources, Conservation and Recycling,1997,21(4):247-269.
    [72]胡天觉,曾光明.从家用电器废物中回收贵金属[J].中国资源综合利用,2001(007):12-15.
    [73]李桂春,苑仁财.废印刷电路板机械回收及湿法冶金技术研究现状[J].湿法冶金,2011,30(4):272-275.
    [74]刘俊场,陈雯,王智友.废弃PCB的回收处理技术[J].有色金属加工,2009,37(6):1-3.
    [75]彭绍洪,陈烈强,甘舸,等.废旧电路板真空热解[J].化工学报,2006,57(11):2720-2726.
    [76]严丽君,黎彬,左君,等.印刷线路板含铜污泥中有价金属铜的回收[J].上海大学学报(自然科学版),2010,16(5):
    [77]张小娟.废弃线路板金属资源化分离过程研究[D].天津:天津大学,2010.
    [78]李晶莹.从废电脑线路板中回收金属铜的试验研究[J].湿法冶金,2009,28(004):225-228.
    [79]张磊,陈亮,陈东辉.废弃电子印刷线路板中Cu和Pb的浸出实验[J].环保科技,2007,13(2):25-27.
    [80]钟非文,李登新,魏金秀.从废弃印刷线路板中回收金的试验研究[J].黄金,2006,27(3):48-50.
    [81]杨涛,徐政,温建康,等.氧化亚铁硫杆菌浸出废弃线路板中铜的研究[J].环境工程学报,2009,3(005):915-918.
    [82]周培国,郑正,彭晓成,等.氧化亚铁硫杆菌浸出线路板中铜的研究[J].环境污染治理技术与设备,2007,7(12):126-128.
    [83]周培国,郑正,彭晓成,等.氧化亚铁硫杆菌浸出线路板中铜及过程中铁的变化研究[J].环境污染与防治,2007,29(2):119-122.
    [84]胡洪波,梁洁,刘月英,等.微生物吸附贵金属的研究与应用[J].微生物学通报,2002,29(3):94-97.
    [85] Brandl H, Bosshard R, Wegmann M. Computer-munching microbes: metal leaching fromelectronic scrap by bacteria and fungi[J]. Hydrometallurgy,2001,59(2-3):319-326.
    [86] Brandl H, Bosshard R, Wegmann M. Computer-munching microbes: Metal leaching fromelectronic scrap by bacteria and fungi[M]//Amils R, Ballester A. Process Metallurgy. Elsevier.1999:569-576.
    [87]陈烈强,谢明权.废印刷电路板回收处理技术的研究进展[J].广东化工,2008,35(9):100-103.
    [88]洪大剑,张德华,邓杰.废印刷电路板的回收处理技术[J].云南化工,2006,33(1):31-34.
    [89]沈志刚.废印刷电路板回收处理技术进展[J].新材料产业,2006(10):43-46.
    [90]徐政,沈志刚.废线路板的处理技术[J].中国粉体技术:信息资讯版,2005(1):6-9.
    [91]温雪峰,李金惠,朱芬芬,等.我国废弃线路板的物理处理技术评述[J].矿冶,2005,14(003):58-63.
    [92]施达彬,尹凤福,刘振宇,等.废旧印刷线路板机械处理技术[J].中国科技信息,2006(02A):81-81.
    [93]马俊伟,王真真,杨志峰,等.电选法回收利用废印刷线路板[J].环境污染治理技术与设备,2005,6(7):63-66.
    [94]柴晓兰,王春彦.机械处理废弃印刷线路板[J].江苏环境科技,2003,16(1):7-9.
    [95]温雪峰,范英宏,赵跃民,等.用静电选的方法从废弃电路板中回收金属富集体的研究[J].环境工程,2004,22(2):78-80.
    [96]刘宏亮.废弃线路板资源化分离过程研究[D].天津:天津大学,2008.
    [97]谭之海,何亚群,周国平,等.废弃线路板资源化研究现状[J].中国资源综合利用,2011,29(4):24-26.
    [98]徐敏.废弃印刷线路板的资源化回收技术研究[D].上海:同济大学,2008.
    [99]刘维桥,尚通明,雷卫宁,等.废弃印刷线路板资源化与无害化处理研究进展[J].环境科学与技术,2011,34(4):48-54.
    [100]郭杰.破碎—分选废弃电路板中非金属粉的资源化利用研究[D].上海:上海交通大学,2011.
    [101]周翠红,潘永泰,路迈西,等. ZKB剪切破碎机及其性能分析[J].选煤技术,2004(006):21-23.
    [102]薛面强,杨义晨,许振明.废弃电路板破碎—风选—高压静电分选生产线的经济分析[J].环境污染与防治,2011,33(9):87-90.
    [103]朱芬芬,李金惠,温雪峰,等.角切式破碎机破碎手机边框板刀具磨损性能的研究[J].摩擦学学报,2006,26(1):84-87.
    [104]路迈西,刘文礼,刘红缨,等.废旧印刷电(线)路板的破碎解离特性研究[J].中国粉体技术,2008(z1):212-216.
    [105]顾帼华,戚云峰.废旧印刷电路板的粉碎性能及资源特征[J].中国有色金属学报,2004,14(6):1037-1041.
    [106]路洪洲.破碎废弃印刷电路板的高压静电分选[D].上海:上海交通大学,2007.
    [107]殷进.废弃印刷电路板破碎解离与气流分选研究[D].上海:同济大学,2006.
    [108] Li J Z, Shrivastava P, Gao Z, et al. Printed circuit board recycling: A state-of-the-art survey[J].Ieee Transactions on Electronics Packaging Manufacturing,2004,27(1):33-42.
    [109] НС鲁,顾承启.电脉冲分裂是分离出完整副矿物颗粒的最佳工艺[J].地质科技动态,1992(012):31-32.
    [110] Chernet T, Marmo J. Direct comparison on mechanical and digital size analyses of KemiChromite, Finland[J]. Minerals Engineering,2003,16(11, Supplement1):1245-1249.
    [111] Bluhm H.脉冲功率系统的原理与应用[M].北京:清华大学出版社,2008.
    [112]赵跃民,王全强,焦红光,等.废弃电路板选择性破碎基础研究[J].中国矿业大学学报,2005,34(006):683-687.
    [113]段晨龙,赵跃民,叶璀玲,等.废弃电路板湿法破碎粒度特性研究[J].中国矿业大学学报,2008,37(1):88-92.
    [114]段晨龙,赵跃民,何亚群,等.废弃电路板破碎产物粒度分形分布的研究[J].中国矿业大学学报,2009,38(003):357-361.
    [115]郑建毅,何闻.脉冲功率技术的研究现状和发展趋势综述[J].机电工程,2008,25(4):1-4.
    [116]左朋.高压脉冲直流电源的应用研究[D].哈尔滨:哈尔滨工程大学,2006.
    [117] Wang B H, Xiang J L. Detecting system and power-spectral analysis of pulse signals ofhuman body[M].1998.
    [118] Kamatani M, Ihara S, Satoh S, et al. Application of an inductive energy storage pulsed-powergenerator with POS for a laser system[M]//Osinski M, Powell H T, Toyoda K. AdvancedHigh-Power Lasers.2000:793-800.
    [119] Liu G, Lee L, Lin F C, et al. Analysis and Realization of Magnetic Switch in Pulsed PowerConditioning System[J]. Ieee Transactions on Dielectrics and Electrical Insulation,2011,18(4):1143-1150.
    [120]张传胜,李殿军,杨贵龙,等.大功率TEACO[J].2009:
    [121]李晓坤.超宽带双极性高压脉冲研究[D].西安:中国科学院研究生院(西安光学精密机械研究所),2009.
    [122]朱志杰,张贵新,刘亮,等.用于产生等离子体的高压脉冲电源的研制[J].高电压技术,2007,33(2):28-31.
    [123]米伦,张鹏.程控200kV脉冲发生器的研制[J].现代电子技术,2010,33(4):
    [124]邹晓兵,朱宏林,曾乃工,等.纳秒级高压快脉冲发生器的研制[J].高电压技术,2011,37(3):787-792.
    [125]袁外,侯立安,王佑君,等.高压脉冲放电等离子体技术处理饮用水[J].中国给水排水,2008(z1):106-107.
    [126] Andres U. Development and prospects of mineral liberation by electrical pulses[J].International Journal of Mineral Processing,2010,97(1–4):31-38.
    [127] Shi F, Weh A, Manlapig E, et al. Recent developments in high voltage electrical comminutionresearch and its potential applications in the mineral industry; proceedings of the IMPC2012-XXVI International Mineral Processing Congress (ERA2010Rank A), New Dehli, India, F24-28September2012,2012[C]. Technowrites.
    [128] Yi-bo W, Shang-wu W, Xin-wu Z, et al. A Semiempirical Model for thePrebreakdown-Heating Process in the Underwater Discharge Acoustic Source[J]. PlasmaScience, IEEE Transactions on,2012,40(1):98-111.
    [129] Andres U, Bialecki R. Liberation of mineral constituents by high-voltage pulses[J]. PowderTechnology,1986,48(3):269-277.
    [130] Andres U T. Liberation study of apatite-nepheline ore comminuted by penetrating electricaldischarges[J]. International Journal of Mineral Processing,1977,4(1):33-38.
    [131]左蔚然,赵跃民,何亚群,等.电脉冲破碎技术在超纯煤制备中的应用前景[J].煤炭科学技术,2012,40(1):122-125.
    [132] Bluhm H, Frey W, Giese H, et al. Application of pulsed HV discharges to materialfragmentation and recycling[J]. Ieee Transactions on Dielectrics and Electrical Insulation,2000,7(5):625-636.
    [133] Andres U. Parameters of disintegration of rock by electrical pulses[J]. Powder Technology,1989,58(4):265-269.
    [134] Andres U, Timoshkin I, Jirestig J, et al. Liberation of valuable inclusions in ores and slags byelectrical pulses[J]. Powder Technology,2001,114(1-3):40-50.
    [135] Bluhm H, Bohme R, Frey W, et al. Industrial applications of high voltage pulsed powertechniques: developments at Forschungszentrum Karlsruhe (FZK); proceedings of the PulsedPower Conference,1997Digest of Technical Papers199711th IEEE International, F29Jun-2Jul1997,1997[C].
    [136] Giese J, Seward D, Gnos E, et al. Comparative apatite fission track study of conventionallyversus selFrag Lab fragmented samples[J]. Geochimica Et Cosmochimica Acta,2007,71(15):A322-A322.
    [137] Andres U. Electrical disintegration of rock[J]. Mineral Processing and Extractive MetullargyReview,1995,14(2):87-110.
    [138] Andres U, Timoshkin I, Soloviev M. Energy consumption and liberation of minerals inexplosive electrical breakdown of ores[J]. Transactions of the Institution of Mining andMetallurgy Section C-Mineral Processing and Extractive Metallurgy,2001,110:149-157.
    [139] Namihira T, Wang D, Akiyama H. Pulsed Power Technology for Pollution Control[J]. ActaPhysica Polonica A,2009,115(6):953-955.
    [140] Wen Y Z, Liu H J, Liu W P, et al. Degradation of organic contaminants in water by pulsedcorona discharge[J]. Plasma Chemistry and Plasma Processing,2005,25(2):137-146.
    [141]孙学兵,方胜.高压脉冲电场杀菌技术研究进展[J].食品科学,2001,22(8):84-86.
    [142]王俊,孙宝德.材料研究中的电脉冲处理技术[J].材料导报,1999,13(002):19-21.
    [143]吕然超,袁守谦,曹余良,等.金属材料应用电脉冲处理技术的研究现状[J].热加工工艺,2009(006):52-56.
    [144] Narahara S, Nakashima T, Nakashima K, et al. Evaluation of concrete made from recycledcoarse aggregates by pulsed power discharge: proceedings of the2007Ieee Pulsed PowerConference, Vols1-4,2007[C].
    [145] Inoue S, Araki J, Aoki T, et al. Coarse Aggregate Recycling by Pulsed Discharge Inside ofConcrete[J]. Acta Physica Polonica A,2009,115(6):1107-1109.
    [146] Jia M, Howard Zhang Q, Min D B. Pulsed electric field processing effects on flavorcompounds and microorganisms of orange juice[J]. Food Chemistry,1999,65(4):445-451.
    [147] Barsotti L, Merle P, Cheftel J C. Food processing by pulsed electric fields. I. Physicalaspects[J]. Food Reviews International,1999,15(2):163-180.
    [148] Wouters P C, Alvarez I, Raso J. Critical factors determining inactivation kinetics by pulsedelectric field food processing[J]. Trends in Food Science& Technology,2001,12(3–4):112-121.
    [149] Lado B H, Yousef A E. Alternative food-preservation technologies: efficacy andmechanisms[J]. Microbes and Infection,2002,4(4):433-440.
    [150] Góngora-Nieto M M, Sepúlveda D R, Pedrow P,等. Food Processing by Pulsed ElectricFields: Treatment Delivery, Inactivation Level, and Regulatory Aspects[J]. LWT-Food Scienceand Technology,2002,35(5):375-388.
    [151]张若兵,陈杰,肖健夫,等.高压脉冲电场设备及其在食品非热处理中的应用[J].高电压技术,2011,37(3):777-786.
    [152] Cheftel J C. Review: High-pressure, microbial inactivation and food preservation/Revisión:Alta-presión, inactivación microbiológica y conservación de alimentos[J]. Food Science andTechnology International,1995,1(2-3):75-90.
    [153]廖小军,钟葵,王黎明,等.高压脉冲电场对橙汁大肠杆菌和理化性质的影响效果[J].食品科学,2003,24(6):59-61.
    [154]廖小军,钟葵,王黎明,等.高压脉冲电场对酵母和大肠杆菌的杀灭效果[J].食品与发酵工业,2004,29(10):19-22.
    [155]王黎明,史梓男,关志成,等.脉冲电场非热杀菌效果分析[J].高电压技术,2005,31(2):64-66.
    [156]王黎明,程伦,关志成,等. PEF对乳杆菌和青霉菌的灭活效果研究[J].高电压技术,2007,33(2):112-115.
    [157] Anpilov A, Barkhudarov E, Christofi N, et al. Pulsed high voltage electric dischargedisinfection of microbially contaminated liquids[J]. Letters in Applied Microbiology,2002,35(1):90-94.
    [158]胡珂文,王剑平,盖铃,等.高压脉冲电场在食品加工中的应用前景[J].食品工业科技,2007,28(6):226-229.
    [159]赵武奇,殷涌光.高压脉冲电场杀菌技术研究现状及发展[J].农业工程学报,2001,17(5):139-141.
    [160]邹积岩,吴为民.脉冲电场食品处理技术[J].高电压技术,2000,26(6):31-33.
    [161]赵志军,隋继学,刘保旺.高新杀菌技术在食品工业中的应用[J].肉类工业,2003,5:14-16.
    [162] Ade-Omowaye B I O, Angersbach A, Taiwo K A,等. Use of pulsed electric fieldpre-treatment to improve dehydration characteristics of plant based foods[J]. Trends in FoodScience&Technology,2001,12(8):285-295.
    [163] Ade-Omowaye B I O, Rastogi N K, Angersbach A,等. Effects of high hydrostatic pressureor high intensity electrical field pulse pre-treatment on dehydration characteristics of redpaprika[J]. Innovative Food Science&Emerging Technologies,2001,2(1):1-7.
    [164] Eshtiaghi M N, Knorr D. High electric field pulse pretreatment: potential for sugar beetprocessing[J]. Journal of Food Engineering,2002,52(3):265-272.
    [165]罗炜,张若兵,王黎明,等.脉冲电场辅助提取花色苷及其影响[J].高电压技术,2009(006):1430-1433.
    [166]张雯,韩其国,朱英俊,等.高压脉冲电场技术在杨梅保鲜中的应用研究[J].食品工业科技,2012(002):373-375.
    [167] Yin X L, Bian W J, Shi J W.4-chlorophenol degradation by pulsed high voltage dischargecoupling internal electrolysis[J]. Journal of hazardous materials,2009,166(2-3):1474-1479.
    [168] Namihira T, Tsukamoto S, Douyan W, et al. Improvement of NOx removal efficiency usingshort-width pulsed power[J]. Plasma Science, IEEE Transactions on,2000,28(2):434-442.
    [169] Namihira T, Tsukamoto S, Wang D, et al. Influence of gas flow rate and reactor length on NOremoval using pulsed power[J]. Plasma Science, IEEE Transactions on,2001,29(4):592-598.
    [170] Namihira T, Douyan W, Katsuki S, et al. Propagation velocity of pulsed streamer dischargesin atmospheric air[J]. Plasma Science, IEEE Transactions on,2003,31(5):1091-1094.
    [171] Smulders E H W M, van Heesch B E J M, van Paasen S S V B. Pulsed power coronadischarges for air pollution control[J]. Plasma Science, IEEE Transactions on,1998,26(5):1476-1484.
    [172] Pokryvailo A, Yankelevich Y, Wolf M, et al. A high-power pulsed corona source for pollutioncontrol applications[J]. Plasma Science, IEEE Transactions on,2004,32(5):2045-2054.
    [173] Lisitsyn I V, Nomiyama H, Katsuki S, et al. Streamer discharge reactor for water treatment bypulsed power[J]. Review of Scientific Instruments,1999,70:3457.
    [174] Lei L C, Zhang Y, Zhang X W, et al. Using a novel pulsed high-voltage gas-liquid hybriddischarge continuous reactor for removal of organic pollutant in oxygen atmosphere[J]. Journalof Electrostatics,2008,66(1-2):16-24.
    [175] Sato M. Environmental and biotechnological applications of high-voltage pulsed dischargesin water[J]. Plasma Sources Science&Technology,2008,17(2):
    [176] Yang S D, Zhang L H, Cui F G, et al. Production of Hydrogen Peroxide by Pulsed HighVoltage Discharge in Water[M].2009.
    [177] Chang J S, Looy P C, Urashima K, et al. Pulsed arc discharge in water: Mechanism of currentconduction and pressure wave formations[M].2000.
    [178] Kunitomo S, Bing S. Removal of phenol in water by pulsed high voltage discharge[M].2001.
    [179] Luke P. Water treatment by pulsed streamer corona discharge[D]. Prague: Institute of plasmaphysics AS CR,2001.
    [180] Sun B, Sato M, Clements J S. Use of a pulsed high-voltage discharge for removal of organiccompounds in aqueous solution[J]. Journal of Physics D: Applied Physics,1999,32:1908-1915.
    [181] Luke P. Water treatment by pulsed streamer corona discharge[D]. PRAGUE: INSTITUTEOF CHEMICAL TECHNOLOGY, PRAGUEINSTITUTE OF PLASMA PHYSICS, AS CR2001.
    [182]阎鸿久.电能破碎技术的发展[J].有色金属(采矿部分),1975(01):52-60.
    [183] S.埃里奇博士,陈琛.电破碎公司的碎石设备[J].国外采矿技术快报,1985(19):23-24.
    [184] E.萨拉普,张可能.电力岩石破碎装置[J].国外金属矿采矿,1986(02):31-36.
    [185] Yao M-N, Fan L-L, Liu Y-N, et al. Effects of High-voltage Pulse Electric Field Treatment onthe Structure Stability of Konjac Glucomannan[J]. Chinese Journal of Structural Chemistry,2011,30(12):1833-1837.
    [186] Wang E, Shi F, Manlapig E. Pre-weakening of mineral ores by high voltage pulses[J].Minerals Engineering,2011,24(5):455-462.
    [187] Dal Martello E, Bernardis S, Larsen R B, et al. Electrical fragmentation as a novel route forthe refinement of quartz raw materials for trace mineral impurities[J]. Powder Technology,(0):
    [188] Wang E, Shi F, Manlapig E. Mineral liberation by high voltage pulses and conventionalcomminution with same specific energy levels[J]. Minerals Engineering,2012,27:28-36.
    [189] Wang E, Shi F, Manlapig E. Factors affecting electrical comminution performance[J].Minerals Engineering,2012,34:48-54.
    [190] Wang E, Shi F, Manlapig E. Experimental and numerical studies of selective fragmentation ofmineral ores in electrical comminution[J]. International Journal of Mineral Processing,2012,112-113:30-36.
    [191] Aoki T, Araki J, Maeda S, et al. Production of the recycled coarse aggregate from concretescraps; proceedings of the Pulsed Power Conference,2009IET European, F21-25Sept.2009,2009[C].
    [192] Maeda S, Shigeishi M, Namihira T, et al. Research on concrete aggregate collectiontechnology by pulsed power discharge: proceedings of the34th Conference on OUR WORLDIN CONCRETE&STRUCTURES, Singapore,2009.9.16-18[C].
    [193]刘建辉,刘敦一,张玉海,等.岩石样品破碎新方法——Slefrag高压脉冲破碎仪[J].岩石矿物学杂志,2012,31(5):767-770.
    [194]刘建远,陈尽.矿物解离问题:进展与现状[J].国外金属矿选矿,1992,29(2):1-11.
    [195]朱天乐.对选矿工艺中矿物单体解离度的探讨[J].江苏地质,1994,18(002):119-122.
    [196]杨琳琳,文书明,程坤.磨矿过程中矿物的解离行为分析及提高单体解离度的方法[J].矿冶,2006,15(2):13-16.
    [197]段希祥.提高磨矿过程矿物单体解离度及改善磨矿产品质量研究[J].有色金属:选矿部分,1998(3):33-38.
    [198]温雪峰,李金惠,邹亮,等.废印刷线路板的常温粉碎特性研究[J].矿冶,2006,14(4):57-61.
    [199]李佳.废旧印刷电路板的破碎和高压静电分离研究[D].上海:上海交通大学,2007.
    [200]付华,张光磊.材料性能学[M].北京:北京大学出版社,2010.
    [201]耿桂宏,桂阳海,郝维新.材料物理与性能学[M].北京:北京大学出版社,2010.
    [202]崔景芝,王振龙.放电通道的微观模拟及其物理性能研究[J].电加工与模具,2007(1):
    [203]吕战竹,赵福令,杨义勇.混粉电火花加工介质击穿及放电通道位形研究[J].大连理工大学学报,2008,48(3):373-377.
    [204]赵伟,任延华.电火花放电通道中带电粒子运动规律的研究[J].机械科学与技术,2001,20(5):762-763.
    [205]王元刚,赵福令,王辉.微粒对放电通道生长的影响机理研究[J].航空学报,2007,28(2):500-503.
    [206]刘书祯.印制电路板用铜箔的表面处理[J].电镀与精饰,2008(02):17-20+23.
    [207] Klapkiv M D. State of an electrolytic plasma in the process of synthesis of oxides based onaluminum[J]. Mater Sci,1996,31(4):494-499.
    [208] Xue W, Wang C, Li Y, et al. Effect of microarc discharge surface treatment on the tensileproperties of Al–Cu–Mg alloy[J]. Materials Letters,2002,56(5):737-743.
    [209]余德超,谈定生,王勇,等.印制板用铜箔表面处理工艺研究进展[J].电镀与涂饰,2006,25(12):10-17.
    [210]王尚炳,杨玉晶.破碎理论研究现状及发展综述[J].河南科技,2012(02):79.
    [211]母福生.破碎及磨矿技术在国内外的技术发展和行业展望(一)[J].矿山机械,2011,39(11):58-65.
    [212]母福生.破碎理论的研究现状及发展要求[J].硫磷设计与粉体工程,2006(04):20-23+49.
    [213]李为,詹肇麟,李松.破碎理论发展浅析[J].矿山机械,2008,36(19):96-98.
    [214]袁惠新.粉碎的理论与实践[J].粮食与饲料工业,2001(03):19-22.
    [215]赵敏,卢亚平,潘英民.粉碎理论与粉碎设备发展评述[J].矿冶,2001,10(2):36-41+30.
    [216]孙永宁,葛继,关航健.现代破碎理论与国内破碎设备的发展[J].江苏冶金,2007,35(5):5-8.
    [217]高强,张建华.破碎理论及破碎机的研究现状与展望[J].机械设计,2009,26(10):72-75.
    [218]段希祥.细磨及超细磨下的功耗规律研究[J].有色金属(选矿部分),1993(1):33-39,26.
    [219]吴明珠,熊志章,唐荣.粉碎功耗规律的研究[J].有色金属(选矿部分),1983(04):20-25.
    [220] Ho K H, Newman S T. State of the art electrical discharge machining (EDM)[J]. InternationalJournal of Machine Tools and Manufacture,2003,43(13):1287-1300.
    [221] Mohd Abbas N, Solomon D G, Fuad Bahari M. A review on current research trends inelectrical discharge machining (EDM)[J]. International Journal of Machine Tools andManufacture,2007,47(7–8):1214-1228.
    [222] Bluhm H, Bohme R, Frey W, et al. Industrial applications of high voltage pulsed powertechniques: developments at Forschungszentrum Karlsruhe (FZK), F,1997[C]. IEEE.
    [223] Bluhm H, Frey W, Giese H, et al. Application of pulsed HV discharges to materialfragmentation and recycling[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2000,7(5):625-636.
    [224] van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: A reactive force field forhydrocarbons[J]. J Phys Chem A,2001,105(41):9396-9409.
    [225] Chenoweth K, van Duin A C T, Goddard III W A. ReaxFF Reactive Force Field forMolecular Dynamics Simulations of Hydrocarbon Oxidation[J]. The Journal of PhysicalChemistry A,2008,112(5):1040-1053.
    [226] Kamat A M, van Duin A C T, Yakovlev A. Molecular Dynamics Simulations ofLaser-Induced Incandescence of Soot Using an Extended ReaxFF Reactive Force Field[J]. TheJournal of Physical Chemistry A,2010,114(48):12561-12572.
    [227] Salmon E, Behar F, Lorant F, et al. Early maturation processes in coal. Part1: Pyrolysis massbalance and structural evolution of coalified wood from the Morwell Brown Coal seam[J].Organic Geochemistry,2009,40(4):500-509.
    [228] Salmon E, van Duin A C T, Lorant F, et al. Early maturation processes in coal. Part2:Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coalstructures[J]. Organic Geochemistry,2009,40(12):1195-1209.
    [229] Strachan A, van Duin A C T, Chakraborty D, et al. Shock Waves in High-Energy Materials:The Initial Chemical Events in Nitramine RDX[J]. Physical Review Letters,2003,91(9):098301.
    [230] Strachan A, Kober E M, van Duin A C T, et al. Thermal decomposition of RDX from reactivemolecular dynamics[J]. The Journal of chemical physics,2005,122:054502.
    [231] van Duin A C T, Zeiri Y, Dubnikova F, et al. Atomistic-Scale Simulations of the InitialChemical Events in the Thermal Initiation of Triacetonetriperoxide[J]. Journal of the AmericanChemical Society,2005,127(31):11053-11062.
    [232] Chenoweth K, van Duin A C T, Dasgupta S, et al. Initiation Mechanisms and Kinetics ofPyrolysis and Combustion of JP-10Hydrocarbon Jet Fuel[J]. The Journal of PhysicalChemistry A,2009,113(9):1740-1746.
    [233] Zhang L, Duin A C T v, Zybin S V, et al. Thermal Decomposition of Hydrazines fromReactive Dynamics Using the ReaxFF Reactive Force Field[J]. The Journal of PhysicalChemistry B,2009,113(31):10770-10778.
    [234] Zhang L, Zybin S V, van Duin A C T, et al. Carbon Cluster Formation during ThermalDecomposition of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and1,3,5-Triamino-2,4,6-trinitrobenzene High Explosives from ReaxFF Reactive MolecularDynamics Simulations[J]. The Journal of Physical Chemistry A,2009,113(40):10619-10640.
    [235] Chen K, Yeh R Z. Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere[J]. Journal ofHazardous Materials1996:105-113.
    [236] Jie G, Ying-Shun L, Mai-Xi L. Product characterization of waste printed circuit board bypyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2008,83(2):185-189.
    [237] Chiang H-L, Lo C-C, Ma S-Y. Characteristics of exhaust gas, liquid products, and residues ofprinted circuit boards using the pyrolysis process[J]. Environ Sci Pollut Res,2010,17(3):624-633.
    [238] Zhou Y, Wu W, Qiu K. Recycling of organic materials and solder from waste printed circuitboards by vacuum pyrolysis-centrifugation coupling technology[J]. Waste Management,2011,31(12):2569-2576.
    [239] Salmon E, van Duin A C T, Lorant F, et al. Early maturation processes in coal. Part2:Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coalstructures[J]. Organic Geochemistry,2009,40(12):1195-1209.
    [240] Moc J, Simmie J M, Curran H J. The elimination of water from a conformationally complexalcohol: A computational study of the gas phase dehydration of n-butanol[J]. Journal ofMolecular Structure,2009,928(1–3):149-157.
    [241] Jiang D-e, van Duin A C T, Goddard W A, et al. Simulating the Initial Stage of PhenolicResin Carbonization via the ReaxFF Reactive Force Field[J]. The Journal of PhysicalChemistry A,2009,113(25):6891-6894.
    [242] Yamashita Y, ōuchi K. A study on carbonization of phenol-formaldehyde resin labelled withdeuterium and13C[J]. Carbon,1981,19(2):89-94.
    [243] Luo Y-R. Handbook of bond dissociation energies in organic compounds[M]. New York,:CRC Press,2003.
    [244] Jiang D E, van Duin A C T, Goddard W A, et al. Simulating the Initial Stage of PhenolicResin Carbonization via the ReaxFF Reactive Force Field[J]. J Phys Chem A,2009,113(25):6891-6894.
    [245] Harris P J F. Fullerene-related structure of commercial glassy carbons[J]. PhilosophicalMagazine,2004,84(29):3159-3167.
    [246] Acharya M, Strano M S, Mathews J P, et al. Simulation of nanoporous carbons: a chemicallyconstrained structure[J]. Philosophical Magazine B-Physics of Condensed Matter StatisticalMechanics Electronic Optical and Magnetic Properties,1999,79(10):1499-1518.
    [247] Mueller J E, van Duin A C T, Goddard W A. Application of the ReaxFF Reactive Force Fieldto Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition[J]. J Phys Chem C,2010,114(12):5675-5685.
    [248] Mueller J E, van Duin A C T, Goddard W A. Development and Validation of ReaxFFReactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel[J]. The Journal ofPhysical Chemistry C,2010,114(11):4939-4949.
    [249] Chen B, Wei X-Y, Yang Z-S, et al. ReaxFF Reactive Force Field for Molecular DynamicsSimulations of Lignite Depolymerization in Supercritical Methanol with Lignite-Related ModelCompounds[J]. Energy&Fuels,2012,26(2):984-989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700