用户名: 密码: 验证码:
水稻秧盘育秧精密播种机的关键技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文紧密围绕国家“十一五”科技支撑计划子课题“超级稻超低播量精准育秧播种技术及装备”和国家自然科学基金资助项目“超级稻精密播种机构的基础理论与关键技术研究”等开展研究工作。结合超级稻机械化种植的农艺要求,重点从精量取种、准确播种、孔穴精密对中控制,减少空穴等关键技术方面进行深入研究,有效地解决了超级稻超低播量机械化秧盘育秧精密播种技术及装备的关键问题。
     采用振动原理,研制了一种电磁振动种室和气动振盘相结合的振动式精密播种装置,实现播种的精确控制;利用电磁换向和气缸限位控制,研制了一种新型气力式双层滚筒精密播种器的秧盘连续输送与穴孔同步精准播种对中的控制系统,解决了秧盘育秧精密播种同步对中的难题;应用计算机视觉检测技术,提出了钵体盘视觉检测、实施空穴补种的思路,研制了钵体盘空穴视觉检测系统。本文通过关键技术的研究与应用,为超级稻秧盘育秧精密播种机的总体配置和精确控制奠定了良好基础,设计了两种不同精度的超级稻秧盘育秧精密播种机,研制出了2CYL-450型低成本振动式水稻秧盘育秧精密播种机流水线,并对该机进行了超级稻和常规稻的现场应用试验。试验结果表明,该机满足不同水稻秧盘育秧的播种要求,性能稳定可靠。
The seeding is an important step for factory tray nursing seedlings of rice. The tray nursing seedlings seeder matching with rice seedling thrower and transplanter should be developed, which is an important guarantee to realize rice planting mechanization.
     The rice nursing seedlings seeders have been research since the 1970s. With the development of the nursing seedlings technology, technique and automation level of the rice nursing seedlings pipeline gradually improve at home and abroad. From seeding accuracy, traditional mechanical seeder with great sowing rate is used for early conventional rice. Although this machine has many advantages such as simple structure and high efficiency, it has some damage for the seed. For hybrid rice, the vibration seeder and the vibration combined with pneumatic type seeder is adopted to realize precision seeding. At present, this kind of seeder has many disadvantages such as uneven seed, high cavities ratio and low sowing accuracy.
     With the constant development of new rice varieties and planting technology, original conventional rice and hybrid rice were replaced by super rice having excellent quality and high yield. Characteristics of planting technique of this rice is precision seeding, cultivating strong seedlings, wide space planting, quantitative controlling seedlings, aerobic irrigation, precision fertilization and integrated control. After having analyzing equipments for rice precision seeding of tray nursing seedlings at home and abroad, it can be conclude that available seeder is not suitable to the super rice. So technology of the rice nursing seedlings seeders must be improved.
     According to the main technical difficulties and some key technologies, the main contents and conclusions of the paper are following:
     1) By research and analysis on work principle and seeding technology about rice precision seeder at home and abroad, some key technologies in the tray nursing seedlings of super rice such as precision seeding, accuracy of throwing seeding, reducing empty hole and high efficiency need use the advanced seeding technology, control method and detection means, which can obtain better seeding property and high working reliability and improve the comprehensive technical level of the tray nursing seedlings of rice.
     2) Based on the vibration principle, the vibration combined with pneumatic type seeder is designed in detail, then basic theory and working performance about electromagnetic vibration supplying seed device and pneumatic vibration tray system are researched and analyzed. Prediction model of quantitative supplying seed based on the back-propagation neural networks is established and relative error of testing sample is less than 5%. The quantitative supplying seed model established is simulated, which provide the basis for choosing the working parameters of quantitative supplying seed device. The preferable parameters combination of pneumatic vibration tray system is obtained by using orthogonal test. Working performance of pneumatic vibration tray system is detected by the adjustment of pressure valve. Two motion types of rice seed in pneumatic vibration tray, namely downslide and jump, are presented based on the theoretical analysis of motion conditions. By the dropping seed speed optimization test , the effect rules of seed flow on seeding uniformity are presented and it can be concluded that ideal sowing condition could not be achieved in manner of single seed flowing. The optimum dropping seed speed should be chosen within the range of 1/1.50~1/1.40 times of single seed flowing, and then input gas pressure of air-style vibrator is obtained according to Fig. 2.25 and Fig. 2.26, which can ensure sowing qualified rate more than 85% and cavities ratio less than 3%. By theoretical analysis and experimental study on vibration precision seeder, precision seeding technology of super rice is solved in two aspects of the quantitative supplying seed and uniform seeding. The vibration precision seeder is developed, and it can satisfy various technical requirements.
     3) Using the magnetic directional valve and cylinder, a kind of the synchronous matching system of continuous transport tray cave and cylinder-seeder sucking hole used for the pneumatic double-drum precision seeder is developed for the first time, which achieve the cave of tray matching the hole of pneumatic cylinder-seeder in precision. Through synchrodrive calculation, synchronization transmission process between the cave of tray and the suction holes of pneumatic cylinder-seeder are finished by chain drive. Two-layer supply mechanism and synchronous matching mechanism can minimize laboring effectively and make the cave of tray match the hole of pneumatic cylinder-seeder in precision. The test results show that the qualification rate of synchronous matching mechanism is 98.2% when the productivity is 450 trays per hour. The device of continuous transport tray and cave-hole synchronous matching was developed. So a technical problem of super rice precision seeding is well solved. This system has many advantages such as simple structure, high efficiency, low cost and good working performance.
     4) To improve the seedlings survival rate of super rice precision seeding, seeding cavity detection in tray nursing seedlings of super rice based on computer vision technology and reseeding is put forward. The programmer is written and utilized on virtual LabVIEW software platform by using computer vision technology, and a series of functions such as acquisition and processing of sensor signal, acquisition and processing of tray image and data storage are finished. The mask images consistent with the tray seeding cavities and binary images of seeds are synthesized by using the image processing functions provided by vision module under red light R component plot. The binary mask images of seeds are established and seed gray average in mask image are obtained, which can be the base of identifying cavity. This tray detection system are set behind the seeding process and made application test. The test results show that cavity detection accuracy is more than 75% and these cavity data provide foundation for reseeding.
     5) The improvement-type pneumatic double-drum precision seeder used for tray nursing seedlings of rice is developed, which are configured the synchronous matching system and the seeding cavity detection technology for the first time. This machine is complete-functions, advanced technology and high seeding accuracy, but complex structure and high technologies, so it is applicable for the high precision tray nursing seedlings of super rice.
     6) The popular type (2CYL-450) rice nursing seedlings seeding pipeline is developed in this paper. This machine has advantages of simple structure, strong currency and easy adjustment, which is applicable when the tray hole is close to the drill. The test results show that at 2±1 seeds per hole, the sowing qualified rate is 90% and cavities ratio is 1.4% when the productivity is 450 trays per hour, which come up to the technical index of super rice nursing seedlings seeding. For the conventional rice, variation coefficient of supplying seed is less than 5%, which come up to the precision seeding at 5~8 seeds per hole, too. In a word, field application tests were conducted by the prototype in Pinghu city of Zhejiang province and state farms of Heilongjiang province. Tests result show that this prototype can satisfy the rice nursing seedlings seeding with a variety of trays and rice.
引文
[1]袁隆平.通过科技进步展望我国水稻的增产潜力[J].科技导报,2006 (4):卷首寄语.
    [2]程式华,胡培松.中国水稻科技发展战略[J].中国水稻科学,2008,22 (3):223-226.
    [3]张卫星,朱德峰.欧洲水稻生产系统及其发展策略[J].中国稻米,2007 (2):24-27.
    [4]焦春海.国外直播水稻生产与研究进展[J].世界农业,1994 (7):23-25.
    [5]牛盾.我国农业机械化的新形势和水稻生产机械化问题[J].农业工程学报,2000,16(4):7-10.
    [6]杨卫路.我国稻米市场形式分析与展望[J].中国稻米,2004 (3):1-2.
    [7]朱德峰,张玉屏,林贤青.浅述2008年全球水稻生产、价格和技术[J].中国稻米,2009(1):71-73.
    [8]中华人民共和国国家统计局编.中国统计年鉴[M].北京:中国统计出版社,2006.
    [9]苏荣吉.米糠深加工效益可观[J].科学种养,2007 (9):62.
    [10]王凤军,刘树军.关于米糠综合利用技术开发展望[J].粮食加工,2007,32(5):40-41.
    [11]韩秀丽,张如意,马晓建,等.米糠的综合利用及其前景[J].农产品加工(学刊),2007 (7):62-64.
    [12]袁隆平.超级杂交水稻育种研究的进展[J].中国稻米,2008(1):1-3
    [13]朱德峰,陈惠哲,徐一成.我国水稻机械种植的发展前景与对策[J].农业技术与装备,2007(1):14-15.
    [14]杜华平编著.水稻机械化生产技术手册[M].上海:上海科学技术出版社,2008.
    [15]农业部办公厅.全国水稻生产机械化十年发展规划(2006-2015年) [M].北京:农办机[2006]24号,2006.
    [16]李宝筏,张树彬.世界水稻种植模式发展[J].种植机械专辑,1997(9):1-4.
    [17]Sharma A R.Direct seeding and transplanting for rice production under flood-prone lowland conditions[J].Field Crops Research,1995(44):129-137.
    [18]周红亚,袁钊和.美国的水稻生产机械化[J].中国农机化,1999(6):41-42.
    [19]张玉屏,朱德峰.澳大利亚水稻生产标准化技术[J].中国稻米,2003(1):39-40.
    [20]宋建农,庄乃生,王立臣,等.21世纪我国水稻种植机械化发展方向[J].中国农业大学学报,2000,5(2):30-33.
    [21]于海业,马成林,陈晓光等.日本水稻栽培管理技术研究的现状[J].农业机械学报,1996,27(增):174-178.
    [22]大谷隆二,西崎邦夫,柴田洋一,横地泰宏.無代かき水稲直播栽培に関す研究(第2報)—施肥播種機の開発と評価[J].農業機械学会誌.1997,59(1):77-85.
    [23]澤村宣志,大黒正道,佐佐木豊.水稲散播直播栽培のためのトラムライン走行作業方式の開発[J].農業機械学会誌.2001,63(6):90-94.
    [24]Murugaboopathi C,etc.New Rice Growing System to Increase Labor Productivity in Japan[J].AMA,1992,23(1):15-19.
    [25]金千瑜.韩国的直播稻生产与技术[J].世界农业,1997,221(9):16-18.
    [26]焦春海.泰国水稻生产概况[J].世界农业,1995(5):16-18.
    [27]袁月明,马旭.我国水稻种植机械化的发展现状及芽播机械化的展望[J].农机化研究,2004(1):41-43.
    [28]李安宁.水稻生产机械化技术创新与政策[J].农机化研究,2003(1):1-3.
    [29]袁钊和,陈巧敏,杨新春.论我国水稻抛秧、插秧、直播机械化技术的发展[J].农业机械学报,1998,29(3):181-183.
    [30]何文洪,陈惠哲,朱德峰.不同播种量对水稻机插秧苗素质及产量的影响[J].中国稻米,2008(3):60-62.
    [31]孙涛,商文楠,金学泳,等.不同播种粒数对水稻生育及其产量的影响[J].中国农学通报,2005,21(7):134-137.
    [32]袁隆平.超级杂交稻研究[M].上海:上海科学技术出版社,2006.
    [33]程式华.中国超级稻育种研究的创新与发展[J].沈阳农业大学学报,2007,38(5):647-651.
    [34]周海波,马旭,姚亚利.水稻秧盘育苗播种技术与装备的研究现状及发展趋势[J].农业工程学报,2008,34(4):301-306.
    [35]徐一成,朱德峰,赵匀,等.超级稻精量条播与撒播育秧对秧苗素质及机插效果的影响[J].农业工程学报,2009,25(1):99-103.
    [36]王立臣,刘小伟,魏文军,等.2ZBZ-600型水稻播种设备的试验与应用[J].农机化研究,2000(1):70-72.
    [37]李志伟,邵耀坚.电磁振动式水稻穴盘精量播种机的设计与试验[J].农业机械学报,2000,31(5):32-34.
    [38]邱兵,张建军,陈忠慧.气吸振动式秧盘精播机振动部件的改进设计[J].农机化研究,2002(2):66-67.
    [39]庞昌乐,鄂卓茂,苏聪英,等.气吸式双层滚筒水稻播种器设计与试验研究[J].农业工程学报,2000,16(5):52-55.
    [40]小林悦男,小田富広,重光訳眩丧楗鄵e動式播種装置:日本,8322332A[P],1996-12-10.
    [41]刘银岭.水稻播种机的传动机构:中国,200620021542 [P].2006-8-24.
    [42]Bracy R P , andParish R L . Seeding uniformity of precision seeder.HortTedhnol. 1998,8(2):182-185.
    [43]Bracy R P,Parish R L and McCoy J E.Precision seeder uniformity varies with theoretical spacing[C].1998 ASAE Annual Meeting,ASAE Paper No.98095
    [44]He Peixiang,Yang Mingjin,Chen Jian,et al.Photoelectric controlled metering device of electromagnetic vibrating type[J].Transactions of the CSAE,2003,19(5):84-86.
    [45]刘彩玲,宋建农,张广智,等.气吸式水稻钵盘精量播种装置的设计与试验研究[J].农业机械学报,2005,36(2):43-46.
    [46]周晓峰,胡敦俊.穴盘育苗气吸式精量排种器的吸附性能[J].山东理工大学学报(自然科学版),2004,18(2):37-41.
    [47]Barut,Zeliha,Bereket.Effect of different operating parameters on seed holding in the single seed metering unit of a pneumatic planter[J].Turkish Journal of Agricultural Machinery,2004,28(6):435-441.
    [48]Far,Jafari J,Upadhyaya S K.Development and field evaluation of a hydropneumatic planter for primed vegetable seeds[J].Tuansactions of the ASAE, 1994,37(4):1069-1075.
    [48]Guarella A,Pellerano S,Pascuzzi.Experimental and Theoretical Performance of a Vacuum Seeder Nozzle for Vegetable Seeds[J].J. agric. Engng Res,1996(64):29-36.
    [50]Zulin Z , Upadhyaya S K . Hydropneumatic seeder for primed seed[J].Tuansactions of the ASAE,1998,41(2):307-314.
    [51]Karayl D,Barat Z B.Mathematical Modelling of Vacuum Pressure on a Precision Seeder[J].Biosystems Engineering,2004,87(4):437-444.
    [52]Guarella P,Pellerano A,Pascuzzi S.Experimental and theoretical performance of a vacuum seeder nozzle for vegetable seeds[J].J Agric Engng Res,1996(64):29-36.
    [53]李耀明,刘彩玲,陈进,等.水稻育苗播种装置气力吸种部件的研究[J].农业机械学报,1999,30(6):46-50,101.
    [54]盛江源,齐红彬.吸盘真空室理论流场的确定[J].吉林农业大学学报,1990,12(3):89-93.
    [55]张清华,董晓威,张吉军,等.基于稻草制造钵育秧盘水稻栽植机的研究[J].机电产品开发与创新,2004,17(3):36-38.
    [56]梶昌幸.吹零し播種方法とその装置[P].日本专利:3297308A,1991-12-27.
    [57]张晓慧,宋建农.针状气吸式水稻精密播种机的设计与试验[J].农机化研究,2008(8):87-89,111.
    [58]吴文福,左春柽,阎洪余,等.YB-2000型简塑秧盘自动精密播种生产线的研制[J].农业工程学报,2001,17(6):69-72.
    [59]叶盛,王俊.气吸式精量播种控制器:中国,200520101391.2[P],2006-10-11.
    [60]Wang Yuxing,Luo Xiwen,Xiang Weibing.Research on paddy seedling ordered pneumatic throwing transplantation[C].2002 ASAE Annual Meeting,ASAE Paper No.021060.
    [61]张晋栋,杨晓明,杜之玫,等.2BDY-500形水稻育秧盘播种机及控制电路的设计[J].农机化研究,2001,(2):81-83.
    [62]郑丁科,李志伟,蔡明辉.刮板式水稻育苗平盘播土装置的设计与试验[J].农机化研究,2006,(7):154-157.
    [63]张文坛.水稻工厂化育秧播土装置设计及床土厚度检测技术研究[D].长春:吉林大学,2007.
    [64]马瑞峻,区颖刚,王玉兴,等.穴盘水稻秧苗机械抛栽的农艺要求[J].华中农业大学学报,2003,22(1):55-59.
    [65]汪春,张锡志,丁元贺,等.基于稻草制造钵育秧盘水稻栽植机的研究[J].农业工程学报,2005,21(8):66-69.
    [66]张学义,侯经浩,臧援.电磁振动排种器的试验研究[J].农业机械学报,1992,23(1):22-27.
    [67]杨坚,阳潮声.分流式振动排种器影响因素分析[J].农业机械学报,2000,31(4):106-108.
    [68]袁锐.精密播种机开沟器对种子触土后位移的控制及部件的研究[D].长春:吉林大学,2006.
    [69]Nasr H M,Selles F.Seeding emergence as influenced by aggregate size,bulk density, and penetration resistance of the seedbed[J].Soil & Tillage Research ,1995(34):61-76.
    [70]王景升.种子学[M].北京:农业出版社,1994.
    [71]马成林.精密播种理论[M].长春:吉林科学技术出版社,1999.
    [72]赵学笃,陈元生,张守勤[M].农业物料学.北京:机械工业出版社,1986.
    [73]袁月明.气吸式水稻芽种直播排种器的理论及试验研究[D].长春:吉林大学,2005.
    [74]李志伟等.水稻芽种拌干土粉处理对机播性能的影响[J].农业工程学报,2001,17(6):73-76.
    [75]Meng Yang,Ma Xiaoyu.Fractal Descriptions of Stress-Strain Curves of Extruded Rice[J].农业工程学报,2001,17(1):133-135.
    [76]袁月明,吴明,马旭,等.水稻芽种物料特性的研究[J].吉林农业大学学报,2003,25(6):682-684.
    [77]宋建农.机用水稻育秧盘:中国,99243672[P].2000-6-21.
    [78]朱德峰,徐一成,赵匀等.钵碗连通式钵形毯状秧苗育秧盘:中国,200710069436[P].2007-6-20.
    [79]Shang G. Q,Sun C H,Chen X F,etc.Precision model of predicting FDM rapidprototype based on BP neural network[J].Key Engineering Materials,2009(392-394):891-897.
    [80]Olabi A G,Casalino G,Benyounis K Y,etc.An ANN and Taguchi algorithms integrated approach tolaser weldingthe optimization of CO2[J].Advances in Engineering Software,2006(37):643-648.
    [81]Tuncay Erzurumlu , Hasan Oktem.Comparison of response surface model with neural network in determining the surface quality of moulded parts[J].Materials and Design,2007(28):459-465.
    [82]ShenChangyu,Wang Lixia,Li Qian.Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method[J].Journal of Materials Processing Technology,2007(183):412-418.
    [83]Hasan Oktem,Tuncay Erzurumlu,Fehmi Erzincanli.Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm[J].Materials and Design,2006(27):735-744.
    [84]Ilker B T,Mustafa S.Prediction of rubberized concrete properties using artificial neural network and fuzzy logic[J].Construction and Building Materials,2008(22):532-540.
    [85]Elmar Pitschke,Markus Schinhaerl,Rolf Rascher,etc.Simulation of a complex optical polishing process using a neural network[J].Robotics and Computer-Integrated Manufacturing,2008(24):32-37.
    [86]Chauhan A M,Bhatia B S,Dhingra H S.Seed placement behaviour of sunflower[J].Agricultural Mechanization in Asia,Africa and Latin America,1999,30(4):9-12.
    [87]休斯W F,布赖顿J A.流体动力学[M].北京:科学出版社,2002.
    [88]傅巍,蔡九菊,董辉,等.颗粒流数值模拟的现状[J].材料与冶金学报,2004,3(3):172-175.
    [89]Cundall P A,Strack O D L.A discrete numerical model for granular assembles[J].Geotechniaue,1979,29(1):47-65.
    [90]Campbell C S,Brennen C E.Computer simulation of granular shearflows[J].J Fluid Mech,1985(151):167-188.
    [91]Campbell C S,Brennen C E.Chuteflows of granular materials:some computersimulations[J].J Appd Mech,1985(52):172-178.
    [92]Savage,Gravity S B.Flow of cohesionless granular materials in chutes and channels [J].J Fluid Mech,1979(92):53 -96.
    [93]Ishida,Shirai M T.Velocity distribution in the flow of solid particles in an inclined open channel[J].Chem Eng,Japan,1979(12):46-50.
    [94]Ahn Brennen H,Sabersky C E R H.Measurements of velocity,velocityfunction and stresses in chute flows of granular materials[J].ASME J Appl Mech,1991(58):792-803.
    [95]Bertrand F,Leclaire L A,Levecque G.DEM-based models for the mixing of granular materials[J].Chemical Engineering Science,2005(60):2517-2531.
    [96]Potyondy,David O,Cundall,P A.A bonded-particle model for rock [J].International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329-1364.
    [97]Shimizu Y, Cundall P A.Three-dimensional DEM simulations of bulk handling by screw conveyors[J].Journal of Engineering Mechanics,2001,127(9):864-872.
    [98]Vidal D,Ridgway C,Pianet G.,etc.Effect of particle size distribution and packing compression on fluid permeability as predicted by lattice-Boltzmann simulations [J].Computers & Chemical Engineering,2009,33(1):256-266.
    [99]Pianet G,Bertrand F,Vidal D,etc.Modeling the compression of particle packings using the discrete element method[C].TAPPI advanced coating fundamentals symposium proceedings,2008,278-288.
    [100]Doucet J,Bertrand F,Chaouki J.Experimental characterization of the chaotic dynamics of cohesionless particles:Application to a V-blender [J].Granular Matter,2008,10(2):133-138.
    [101]张洪霞,马小愚,雷得天.谷物及种子的力学——流变特性的研究进展[J].农机化研究,2004(3):177-178.
    [102]马小愚,雷得天,赵淑红等.东北地区大豆与小麦籽粒的力学——流变学性质研究[J].农业工程学报,1999,15(3):70-75.
    [103]吴青松,胡茂彬.颗粒流的动力学模型和实验研究进展[J].力学进展,2002,32(2):250-254.
    [104]于建群,申燕芳,牛序堂,等.组合内窝孔精密排种器清种过程的离散元仿真[J].农业工程学报,2008,24(5):105-108.
    [105]李志伟.电磁振动组合式水稻穴盘育秧播种机理[D].广州:华南农业大学,2002.
    [106]张石平,陈进,李耀明.振动气吸式穴盘精播装置振动条件理论分析与试验[J].农业机械学报,2008,39(7):56-59.
    [107]郑丁科,李志伟,欧颖刚.电磁振动组合式毯状秧苗播种装置的设计与试验[J].华南农业大学学报(自然科学版),2004,25(1):103-106.
    [108]瑞士菲迪瓦公司.菲迪瓦气动工业振动器[EB/OL]. http://www.findeva-cn.com/index.asp
    [109]张学义,邵耀坚,邹黎,等.电磁振动排种器种子运动分析及试验研究[J].农业工程学报,1996,12(1):81-86.
    [110]李建平,赵匀,应义斌,等.振动输送板上物料移动速度和位移的计算机模拟与试验验证[J].农业工程学报,1998,14(2):213-216.
    [111]阮竞兰,屈少敏.往复振动筛运动参数的优化研究[J].中国粮油学报,2001,16(3):60-62.
    [112]中国农业机械化科学研究院编.农业机械设计手册(下册)[M].北京:中国农业科学技术出版社,2007,966-967.
    [113]赵立新,郑立允,刘志民,等.气动振动器气吸播种机的种子振动性能研究[J].农业工程学报,2005,21(7):65-68.
    [114]李耀明,王智华,徐立章,等.油菜脱出物振动筛分运动分析及试验研究[J].农业工程学报,2007,23(9):111-114.
    [115]Tsai F C,Yan B H,Kuan C Y,etc.A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel[J].International Journal of Machine Tools & Manufacture,2008(48):932-945.
    [116]Kurt Mustafa,Bagci Eyup,Kaynak Yusuf.Application of taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes[J].International Journal of Advanced Manufacturing Technology,2009,40(5-6):458-469.
    [117]Gaitonde V N, Karnik S R,Davim J Paulo.Multiperformance optimization in turning of free-machining steel using taguchi method and utility concept[J].Journal of Materials Engineering and Performance,2009,18(3): 231-236.
    [118]Gaitonde V N,Karnik S R,Achyutha B T,etc.Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size [J].International Journal of Machine Tools & Manufacture,2007(34):1-7.
    [119]Wu Shengju,Shiah Sheauwen,Yu Weilung.Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network[J].Renewable Energy,2009,34(1):135-144.
    [120]Chi S C,Teng J Y.A fuzzy Q-analysis Taguchi method for parameter design with multiple quality characteristics[J].Experimental Techniques,2008,32(1):36-45.
    [121]Chen Haoli,Ming Jongtsai,Ciann Dongyang.Study of optimal laser parameters for cutting QFN packages by Taguchi’s matrix method[J].Optics & Laser Technology,2007(39):786-795.
    [122]Zhang J Z,Chen J C,Kirby E D.Surfaceroughness optimization inan end-milling operation using theTaguchi designmethod[J].Journal of Materials Processing Technology,2007(184):233-239.
    [123]Singh R,Khamba J S.Taguchi techniqueformodeling material removal rate in ultrasonic machining of titanium[J].MaterialsScienceandEngineering,2007(A460-461):365–369.
    [124]贾振元,顾丰,王福吉,等.基于信噪比与灰关联度的电火花微小孔加工工艺参数的优化[J].机械工程学报,2007,43(7):63-67.
    [125]张洲波,谢洪勇,胡大鹏.颗粒在斜槽中流动的实验研究[J].中国粉体技术,2001,7(6):1-4.
    [126]陈淑花,金良安,王孝通.颗粒斜槽流的实验研究与数值模拟[J].化学工程,2003,31(5):36-39.
    [127]周海波,马旭,齐龙.秧盘连续输送与穴孔同步精准播种对中装置的研究[J].吉林大学学报(工学版),2009,39(5):待发.
    [128]马旭,周海波等,秧盘连续输送的穴孔同步精准播种对中装置:中国,200720058338[P],2008-11-19
    [129]Chiu Yichich,Fon Dinsue,Wu Gangjhy.Development of an Automatic Pallet Handling System for Seeded Trays[J].Biosystems Engineering,2006,93(2):123-138.
    [130]Karayel D,Wiesehoff M,Ozmerzi A,et al.Laboratory Measurement of Seed Drill Seed Spacing and Velocity of Fall of Seeds Using High-speed Camera System[J].Computers and Electronics in Agriculture,2006(50):89-96.
    [131]Nishida K,Hiruyasu H.Characterization of combustion processes in pre-chamber and main chamber of indirect injection diesel engine by high-speed photography[C].1986 ASAE Annual Meeting,ASAE Paper No.861181.
    [132]Kamimoto T,Ahn S K,Chang Y J. Measurement of droplet diameter and fuel concentration in a non-evaporating spray by means of an image analysis of shadow photographs[C] . 1984 ASAE Annual Meeting , ASAE Paper No.840276.
    [133]张文增,孙振国等.基于高速摄像的人体上肢运动信息检测[J].生物医学工程学杂志,2002,19(1):76-79.
    [134]马旭,王剑平.用图像处理技术检测精密排种器性能[J].农业机械学报.2001,32(4):34-37.
    [135]张军,丁元法,李英,等.精密排种器性能检测技术的发展与现状[J].农机化研究,2002(3):16-17,32.
    [136]安爱琴,王玉顺,王洪强,等.基于机器视觉的精播排种器性能检测方法[J].农机化研究,2007(7):48-50.
    [137]胡建平,陆黎.磁吸式穴盘播种器图像监控系统设计[J].农业机械学报.2006,37(11):88-91.
    [138]Kim D E,Chang Y S,Kim H H,et al.An automatic seeding system using machine vision for seed line-up of cucurbitaceous vegetables[C].2006 ASABE Annual Meeting,ASAE Paper No.061206.
    [139]Blasco J,Cubero S,Gómez-Sanchís J,et al.Development of a machine for the automatic sorting of pomegranate(Punica granatum) arils based on computer vision[J].Journal of Food Engineering,2009(90):27-34.
    [140] Christopher G Hubert,Scott W McJames,Ian Mecham,et al.Digital imaging system and virtual instrument platform for measuring hydraulic conductivity of vascular endothelial monolayers[J].Microvascular Research,2006(71):135-140.
    [141]Jensen T,Apan A,Young F,et al.Detecting the attributes of a wheat crop using digitalimagery acquired from a low-altitude platform[J].Computers and Electronics in Agriculture,2007(59):66-77.
    [142]Lee Dah-Jye,Schoenberger Robert,Archibald James,et al. Development of a machine vision system for automatic dategrading using digital reflective near-infrared imaging.Journal of Food Engineering,2008(86):388-398.
    [143]Yutaka Kaizu,Kenji Imou.A dual-spectral camera system for paddy rice seedling row detection[J] . Computers and Electronics in Agriculture ,2008(63):49-56.
    [144]Lau D L,Yang R.Real-time multispectral color video synthesis using an array of commodity cameras[J].Real-Time Imag,2005,11(2):109-116.
    [145]Marchant J A,Anderson H J,Onyango C M.Evaluation of an imaging sensor for detecting vegetation using different waveband combinations[J].Computers and Electronics in Agriculture,2001,32(2):101-117.
    [146]任宪忠,马小愚.农产品粒形识别研究进展及其在工程中应用现状[J].农业工程学报,2004,20(3):276-280.
    [147]胡少兴,查红彬,马成林.基于遗传算法的种子图象目标点模式匹配.中国图象图形学报,2003,8(5):533-539.
    [148]周海波,马旭,王俊发等.超级稻育秧播种的钵体盘图像分析技术与应用研究[C].第十二届中国体视学与图像分析学术会议,2008:465-468.
    [149]齐龙,马旭,周海波.基于机器视觉的超级稻秧盘育秧播种空穴检测技术研究[J] .农业工程学报,2009,25(2):121-125.
    [150]龙华伟,顾永刚编著.LabVIEW 8.2.1与DAQ数据采集[M].北京:清华大学出版社,2008.
    [151]陈锡辉,张银鸿.Labview 8.20程序设计从入门到精通[M].北京:清华大学出版社,2007.
    [152]Kenneth R Castleman著.数字图像处理[M].北京:电子工业出版社,2004.
    [153]周海波,马旭,玉大略,等.2CYL-450型水稻秧盘育秧播种流水线的研制[J].农机化研究, 2008(11):95-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700