用户名: 密码: 验证码:
颗粒物的电收集技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤产生的可吸入颗粒物粒径小、数量多、比表面积大等特征,因而在大气中停留时间长,且容易吸附各种有害的有机或无机化合物,对人体健康危害极大。因此,细颗粒物的控制尤其是燃煤电厂颗粒物控制成为了大家关注的焦点之一。我国是以燃煤为主的能源大国,电除尘器是最重要的电厂除尘设备之一,然而目前约90%的电除尘器排放在50mg/Nm3以上,未能有效地控制细颗粒物的污染。根本原因是目前运行的电除尘系统不能对PM2.5细微颗粒进行有效的荷电和由于气流离子风和振打等因素导致的二次扬尘、电气控制等因素导致的收集电场场强降低等。针对于以上因素,本文将重点研究了几种静电收集细颗粒物的控制技术,总结静电收集技术的主要技术原理、应用领域和技术突破难点,并最终寻找出一种适合目前工业除尘器安装应用的技术路线途径。
     首先研究了极板收集灰的过程以及灰的分布和堆积情况,在自行设计的闭循环试验台上研究电除尘器电极与极板灰堆积特性的相关性。本研究选用扁钢芒刺型放电极,电极间距在22 mm和330 mm间可调以及单根放电极来研究粉尘的收集规律。颗粒物入口浓度为约180 g/m3,运行电压为46kV条件下收集颗粒物,系统风量为725 m3/h。实验结果表明,电极间距与半极板宽度之比接近1:1时电流密度最大,而当极板上收集粉尘厚度4mm后,电晕电流减小约0.4mA,同时击穿电压也上升4kV。粉尘在极板上的堆积形状为矩形,其尺寸与放电极间距相对应,针尖对应位置厚度最高,边缘较薄。极板上粉尘的堆积密度约0.9g/cm3几乎不受电极间距的影响,而同一放电极间距时,出口电场灰的堆积密度则降低至入口电场的一半。当电极间距继续增大,边缘处厚度大幅度降低,第一第二电场收集的灰相对减少,从而后三电场灰厚度增加至1至2mm,不利于二次扬尘的控制。
     其次在自行设计的闭循环实验装置上进行了细颗粒物的荷电、预荷电及细颗粒的双极性预荷电凝并及收集。深入研究预荷电的原理及其影响因素,期望能够用于高气体流速10 m/s下的细颗粒荷电,并利用电除尘器现有的导流区域实现带电细颗粒物的有效地正负凝并,而不必额外添加凝并室,减少工业应用成本和设计难度。在本电除尘实验系统中,细颗粒物个数浓度收集效率最高只能达到94%-95%,而增加SCA(比集尘面积)值或增加电场数并不能提高细颗粒物的收集效率。采用双极性预荷电器后,颗粒物物的分级收集效率显著提高,在最佳运行电压情况下可以达到98%。
     最后研究了电袋复合除尘技术,分别在实验室小试以及中试实验平台上进行,电除尘器位于复合除尘器的第一电场,预先去除约80%至90%的颗粒物。电源的选型上采用了单相、三相电源对比研究了对细颗粒物的控制以及对复合除尘器的适应性。当采用三相电源替代传统单相电源时,400mm间距的除尘器实际运行电压从55kV提高到了71kV,平均电流从31mA提高到了62mA。细颗粒分级收集效率以及颗粒物的迁移速度得到显著提高,采用单相电源时细颗粒迁移速度约17cm/s,而采用三相电源时最大值能达到35cm/s。对于粒径为0.03-0.1μm和0.1-2.5μm的颗粒物,分级效率能够从85%分别提高到95%和92%;而对于粒径为2.5-8.0μm的颗粒物,则从87%提高到98%。根据实验结果分析显示,细颗粒物的分级收集效率不能直接采用Deutsch公式直接计算,而采用修正后的公式log(?)可以很好地与实际结果相吻合,α和β为修正因子。
Fine particles can stay long in atmosphere with large number, and always adsorb lots of harmful compounds. Therefore fine particle emission from the coal fired power plants has become a big problem for the harm to the human health. Coal is the primary energy source in China and electrostatic precipitation (ESP) has become the primary apparatus for particle collection. However, about 90% of the ESPs can not effectively ccapture the fine particles with the mass emission above 50mg/Nm3. For this reason, we focus our studies on the behavior of fine particle collection with ESP, and new technique to improve fine particle collection for industrial power plant.
     This paper firstly presents the characteristics of the dust layer collected with a laboratory electrostatic precipitator. Experiments are performed with different electrode distances varies from 22 mm to 330 mm, and also with a single discharge electrode. Discharge last for 40 to 50 seconds under 46kV voltage,150 g/m3 inlet dust concentration and 700 m3/h flow rate. Ash layer thickness collected on the plate is about 4 mm in average. We observed that typical shape of the collected dust is rectangle and the dust in the center is much thicker. The density at the center, however, almost keeps constant.
     In addition, a laboratory ESP together with a bipolar pre-charger has been designed for studying charge-induced agglomeration and fine particle collection. In terms of particle numbers, the ESP collection efficiency drops to its minimum of near 90% for particles with diameters of near 0.2μm and 3μm. For other particles, its value is around 94%-95%. By using the bipolar pre-charger, the grade efficiency can be significantly increased for all particle sizes due to the charge-induced particle agglomeration. The grade collection efficiency rises to about 95%-98%for all size particles.
     Industrial investigations on fine particle grade collection efficiency of an ESP are performed with a hybrid ESP and fabric filter (FF) on a 30MW coal-fired boiler. Gas flow rates, mass inlet concentration and gaseous temperature are 20000-40000Nm3/h,15g/Nm3 and 110℃, respectively. The ESP specific collection area (SCA) ranges from 10 to 20m2/m3/s. Both single-phase and three-phase transformer-rectifiers (TRs) are used for energizing the ESP. When changing the single-phase TR to the three-phase TR, the maximum average secondary voltage is increased from 55kV to 71kV and average corona current rises from 31mA to 62mA without spark breakdown. As a result, both particle grade collection efficiencyη(r) and migration velocities are significantly improved. With the single-phase TR, the velocity is around 17cm/s for all particles. With three-phase TR, its maximum value is about 35cm/s. For particles within 0.03-0.1μm and 0.1-2.5μm, the efficiencies rise from about 85% to 95% and 92%, respectively. For particles of around 2.5-8.0μm, they rise from about 87% to 98%. Moreover, experiments show that a revised Deutsch equation log(?) gives a good approximation via the average electric field Ea, the specific collection area S and two correction coefficientsαandβ.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报.2008,42(3):345-359.
    [2]《中国能源发展报告》编委会,崔民选主编.中国能源发展报告2009[M].社会科学文献出版社,2010,04月.
    [3]胡予红,孙欣,张文波.煤炭对环境的影响研究[J].中国能源2004,26(1):32-35.
    [4]国家统计局.中国统计年鉴2007[M].北京:中国统计出版社,2008.
    [5]林治卿,袭著革,杨丹凤.PM2.5的污染特征及其生物效应研究进展[J].解放军预防医学杂志.2005,4:150-152.
    [6]Pope CAⅢ, Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., and Thurston, G.D., Lung Cancer, Cardiopulmonary Mortality and Long-Term Exposure to Fine particulate Air Pollution[J]. Journal of the American Medical Association. March 6, 2002,287(9):1132-1141 (doi:10.1001/jama.287.9.1132).
    [7]Research Links Deaths with Pollutants [N]. New York Times, June 22,2000. Page A-18.
    [8]Samet J.M., Dominici F., Curriero F.C., Coursac I., and Zeger S.L., Fine Particulate Air Pollution and Mortality in 20 U.S. Cities,1987-1994[J]. The New England Jornal of Medicine. December 13,2000, Vol.343, No.24.343:1742-1749.
    [9]Sues Electric Utilities in Unprecedented Action to Enforce the Clean Air Act [EB/OL]. November 3,1999. U.S. www.usdoj.gov.
    [10]Levy. J., Spengler J. D., Hlinka D., Sullivan D.. Estimated Public Health Impacts of Criteria Pollutant Air Emissions from the Salem Harbor and Brayton Point Power Plants[M]. Commissioned by the Clean Air Task Force, May 2000.
    [11]杨复沫,马永亮,贺克斌.细微大气颗粒物PM2.5及其研究概况[J].世界环境2000,13(4):32-34.
    [12]Reethof Gerhard (PSU), McDaniel, Oliver H., Tiwary, R., Some Recent Progress In Acoustic Agglomeration Of Power Plant Fly Ash[M], United States Department of Energy, Morgantown Energy Technology Center (Report) DOE/METC,1983: 441-462.
    [13]International Standards on Particulate Control. Internal report, The 8th International Conference on Electrostatic Precipitation [J],2001.
    [14]中国环境空气质量标准,GB3095-1996
    [15]White H.J., Industrial Electrostatic Precipitation[M]. Addison-Wesley, Reading, Mass.1963.
    [16]Zaishi L.,Sanming H., and Zhe L., A Study of Wide-Spacing ESP [J]. The 4th International Conference on Electrostatic Preciitation,1990, China, Beijing:339-342.
    [17]Riehle C., and Loffler F., Can the Effective Migration Rate Increase Observed in Electrostatic Precipitators with Wide Plate-Spacings or Faster Gas Streams Really be Regarded as a Non-Deutschian phenomenon[J]. The 4th International Conference on Electrostatic Preciitation,1990, China, Beijing:104-112.
    [18]Guoshan T., and Jin G., The Development and Performance Evaluation of Wide Spacing Electrostatic Precipitator [J]. The 4th International Conference on Electrostatic Preciitation,1990, China, Beijing:343-347.
    [19]Masuda S. A Pulse Voltage Source for Electrostatic Precipitation [J]. Conference Record IEEE/IAS 1978 Annual Meeting. Toronto, Ontario.
    [20]Masuda S. and Hosokawa S., Pulse Energization System of Electrostatic Precipitator for Retrofitting Application[J]. IEEE Trans. IAS, July/August 1988, vol.24(4):708-716.
    [21]Lausen P., Henriksen H., and Petersen H. H., Energy Conserving Pulse Energization of Precipitators [J]. IEEE/IAS Annual Meeting. Cleveland, OH, 1979.
    [22]Petersen H.H., and Lausen P., Application of Energy Conserving Pulse Energization For Precipitators-Practical and Economic Aspects[J]. EPA Third Symposium on the Transfer and Utilization of Particulate Control Technology. Orlando, FL, March 1981. EPA Report EPA-600/9-82-005a, July 1982.
    [23]Petersen H.H., An Energy Conserving Pulse Energization system[J]. Conference on Electrostatic Precipitator Technology for Coal-Fired Power Plants. Nashville, TN, July 1982.
    [24]Yamamoto T., and Velkoff H., Electrohydrodynamics in an Electrostatic Precipitator[J].J. Fluid Mech.,1981, Vol.108:1-18.
    [25]Parker K.R., and Hughes G., A Visual Investigation of Corona Induced Turbulence in a Laboratory Scale Model Precipitator[J]. Proceedings of the Third International Conference on Electrostatic Precipitation, Padova, Italy, October 1987:379-399.
    [26]Blanchard D., Dumitran L.M., and Atten P., Electrodynamic Secondary Flow in an Electrostatic Precipitator and its Influence on the Transport of Small Diameter Particles[J]. Proceedings 8th international conference on Electrostatic Precipitation, May 2001, vol.l:Al-4.
    [27]Marquard J.M., and Kasper G., Characterization of unipolar electrical aerosol chargers—Part Ⅰ:A review of charger performance criteria [J]. Aerosol Science, 2006,37:1052-1068; Characterization of uni-polar electrical aerosol chargers—Part Ⅱ:Application of comparison criteria to various types of nano-aerosol charging devices [J]. Aerosol Science,2006,37:1069-1080.
    [28]Moisio M., Real time distribution measurements of combustion aerosols [D]. Phd thesis, Tampere University of Technology, Publication 279,1999.
    [29]Huang S.H. and Chen C.C., Ultrafine aerosol penetration through electrostatic precipitators [J]. Environ Sci. Technol.,2002,36:4625-4632.
    [30]Podlinski J., Kocik M., Barbucha R., Niewulis A., Mizeraczyk J. and Mizuno A., 3D PIV measurements of the EHD flow patterns in a narrow electrostatic precipitator with wire-plate or wire-flocking electrodes [J]. Czechoslovak Journal of Physics,2006, Vol.56(Suppl):B1009-1016.
    [31]Podlinski J., Dekowski J., Mizeraczyk J., Brocilo D. and Chang J.S., Electro-hydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency [J]. Journal of Electrostatics. 2006,64:259-262.
    [32]Mizuno A., Electrostatic precipitation [J]. IEEE Trans. Dielectr. Electronstatic Insulation,2000,7:615-624.
    [33]易红宏,郝吉明,段雷,李兴华,郭兴明,电厂除尘设施对PM10排放特征影响研究[J].环境科学,2006,27(10).
    [34]Crynack R., Truce R., and Harrison W., Indigo particle agglomerators reduce mass and visible emission on coal fired boilers in the US[J]. The 10th International Conference for Electrostatic Precipitation, Australia, June,2006.
    [35]唐敏康,周跃, 电除尘器中粉尘粒子的凝并[J]. 科技导报,2007年08期:23-25.
    [36]Bayless D. J., Alam M. K., Radcliff R. and Caine J., Membrane-based wet electrostatic precipitation[J]. Fuel Processing Technology,2004,85:781-798.
    [37]Poulsen K.S. and Lund C. R., Reduction of fine particulate emission from ESPs[J]. The 10th International Conference for Electrostatic Precipitation, Australia, June,2006.
    [38]Zukeran A., Looy P.C., Chakrabarti A., Berezin A.A., Jayaram S., Cross J.D., Ito T. and Chang J.S., Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes[J]. IEEE Trans on IAS,1999 35:1184-1191.
    [39]Wang R. and Yan K., Industrial demonstrations of a three-phase T/R power source with coal fired power plants [J].10th International Conference for Electrostatic Precipitation, Australia, June,2006.
    [40]Nielsen M. T., Livbjerg H., Fogh C. L., Jensen J. N., Simonsen P., Lund C., Poulsen K.and Sander B., Formation and emission of fine particles from coal-fired power plants [J]. Combust. Sci. and Tech.,2002,174:79-113.
    [41]Masuda S., Moon J.D., Electrostatic precipitation of carbon soot from diesel engine exhaust[J]. IEEE Trans. Ind. Appl.1983,19 (6):1104-1111.
    [42]Watanabe T., Suda T., Submicron size carbonic particle agglomeration by an electrostatic agglomeration apparatus[J]. Proc. Third Internat. Aerosol Conf. Kyoto, Japan,1990, vol.2,:749-752.
    [43]Watanabe T., Tochikubo F., Koizumi Y., Submicron particle agglomeration by an electrostatic agglomerator. Journal of Electrostatics [J].1995,34 (4):367-383.
    [44]Kanazawa S., Ohkubo T., Nomoto Y., Adachi T., Submicron particle agglomeration and precipitation by using a bipolar charging method[J]. J. Electrostat. 1993,29 (3):193-209.
    [45]Hautanen J., Kilpela M., Kauppinen E.I., Jokiniemi J., Lehtinen K., Electrical agglomeration of aerosol particles in an alternating electric field [J]. Aerosol Sci. Technol.1995,22 (2):181-189.
    [46]Kildeso J., Bhatia V.K., Lind L., Johnson E., Johansen A., An experimental investigation for agglomeration of aerosols in alternating electric fields[J]. Aerosol Sci. Technol.1995,23:603-610.
    [47]Laitinen A., Hautanen J., Keskinen J., Kauppinen E., Jokiniemi J., Lehtinen K., Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow[J]. J. Electrostat.1996,38:303-315.
    [48]Chang J.S., Looy P.C., Webster C., Berezin A.A., Zukeran A., Ito T., The collection of fine particles by an electrostatic precipitator with quadrupole prechargers[J]. Seventh International Conference on Electrostatic Precipitation, Kyongju, Korea,20-25 September,1998:620-627.
    [49]Kim Y.S., Lee J.B., Hwang J., Park K.S., An experimental study of electrical agglomeration of fine particles in an alternating electric field[J]. Seventh International Conference on Electrostatic Precipitation, Kyongju, Korea,20-25 September,1998:179-187.
    [50]Zukeran A., Ikeda Y., Ehara Y., Ito T., Takahashi T., Kawakami H., Takamatsu T., Agglomeration of particles by ac corona discharge, Electr. Eng. Japan,2000, 130 (1):30-37.
    [51]Ji J.H., wang J. H., Bae G.N., Kim Y.G., Particle charging and agglomeration in DC and AC electric fields[J]. J. Electrostat.2004,61:57-68.
    [52]Robert crynack, Rodney Truce, Wallis Harrison. Indigo particle agglomerators reduce mass and visible emissions on coal fired boilers in the US[J]. The 10th international conference of electrostatic precipitator, Australia 2006,12A1.
    [53]Rodney Truce, John Wilkins, Robert crynack, Wallis Harrison. Enhanced fine particle collection using the indigo agglomerator[J]. The 10th international conference of electrostatic precipitator, Australia 2006,6A2.
    [54]Koizumi Y., Kawanura M., Tochikubo F., Watanabe T., Estimation of the agglomeration coeffient of bipolar-charged aerosol particles[J]. J Electrostat, 2000,48:93-101.
    [55]Jaworek a., Krupa a., & Czech, T. Modern electrostatic devices and methods for exhaust gas cleaning:A brief review[J]. Journal of Electrostatics,2007,65(3): 133-155. doi:10.1016/j.elstat.2006.07.012.
    [56]Hautanen J., Watanabe T., Tsuchida T., Koizumi Y., Tochikubo F., Kauppinen E., Lehtinen K., Jokiniemi J., Brownian agglomeration of bipolarly charged aerosol particles[J]. Journal of Aerosol Science,1995,26:S21-S22.
    [57]Henry R.F., Podolski W.F., Saxena S.C., A review of electrostatically augmented gas cleaning devices for particulate removal [J]. IEEE Trans. Ind. Appl.1985,21 (4):939-949.
    [58]Chen C.J., Enhanced collection efficiency for cyclone by applying an external electric field[J]. Separ. Sci. Technol.2001,36(3):499-511.
    [59]Lim K.S., HKim.S., Lee K.W., Comparative performances of conventional cyclones and a double cyclone with and without an electric field[J]. J. Aerosol Sci.2004,35 (2):103-116.
    [60]Chang Ramsay, COHPAC compacts equipment into smaller denser unit[J]. Power Engineering,1996:100.
    [61]Canadas L., Navarrete B., Lupion M., Salvador L., Improvement of fine particles collection efficiency in large pulverized coal power plants, ESPs reprofitting to hybrid collectors [J]. The 9th international conference on electrostatic precipitation, ICESP 9,2004, South Africa.
    [62]Gutierrez Ortiz F.J., Navarretea B., Canadasa L. andSalvadora L.. A technical assessment of a particle hybrid collector in a pilot plant[J]. Chemical Engineering Journal,1 March 2007,127(1-3):131-142.
    [63]Yao Y., Zhao X.. Application of hybrid Electrostatic and fabric filter precipitator[J]. The 11th international conference on electrostatic precipitation, Hangzhou,China,2008,:482-484.
    [64]Huang W., Lin H., Zheng K., Wu J. and Que C..The technology development of the COEBP[J]. The 10th international conference on electrostatic precipitation, 2006,Australia,6B1.
    [65]Gebert, Rich Rinschler, Craig Polizzi, Chris Gore, W L Harig, Ulf, A New Filter System, Combining A Fabric Filter And Electrostatic Precipitator For Effective Pollution Control Behind Cement Kilns[J]. IEEE-IAS/PCA 44th Cement Technical Conference, May,2003:285-294
    [66]Miller J., Schmid H.J., Schmidt E., Schwab A.J., Local deposition of particles in a laboratory-scale electrostatic precipitator with barbed discharge electrodes[J]. Sixth International Conference on Electrostatic Precipitation,18-21 June, Budapest,1996:325-334.
    [67]Mochizuki Y., Sakakibara S., Asano H., Electrical re-entrainment of particles deposited on collecting plate in electrostatic precipitator[J]. Eighth International Conference on Electrostatic Precipitation, Birmingham, USA,14-17 May, 2001:C5-2.
    [68]Melcher J.R., Sachar K.S. and Warren E.P., Overview of Electrostatic Devices for Control of Submicrometer Particles[J].1977, vol.65:1659-1669.
    [69]Zhang Y., Kim Y. J., Lee T.G., and Biswas P., Experimental and Theoretical Studies of Ultra-Fine Particle Behaviour in Electrostatic Precipitators[J]. J ournal of Electrostatics,2000, vol.48:245-260.
    [70]Jedrusik M., Swierczok A., Teisseyre R., Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design[J].Powder Technol,2003,135-136:295-301.
    [71]Miller J., Hoferer B., Schwab A.J., The impact of corona electrode configurantion on electrostatic precipitator performance, J Electrostat,1998,44:67-75.
    [72]Brocilo D., Electrode geometry effects on the collection efficiency of submicron and ultrafine dust particles in wire-plate electrostatic precipitators[D]. Doctor thesis. McMaster university, Hamilton, Ontario 2003.
    [73]Misaka T., Oura T., Yamazaki M., Improvement of reliability for moving electrode type electrostatic precipitator[J]. The 10th International Conference on Electrostatic Precipitation, ICESP X, Australia,2006.
    [74]Park J.H., Chun Ch.H., An experimental study of the performance of the electrostatic precipitator with assistant collecting electrodes[J]. Seventh International Conference on Electrostatic Precipitation, Kyongju, Korea,20-25 September,1998:563-570.
    [75]Manyin H., Songtao L., Xianglin G., Laboratory research on collection of particles reentranied from corona electrode[J]. The10th International Conference on Electrostatic Precipitation, ICESP X, Australia,2006.
    [76]Pasic H., Membrane based electrostatic precipitation[J]. Filtr. Separ.2001,38 (9): 28-31.
    [77]Bayless D.J., Alam M.K., Radcliff R., Caine J., Membrane-based wet electrostatic precipitation[J]. Fuel Proc. Technol.2004,85:781-798.
    [78]Kuroda Y., Kawada Y., Takahashi T., Ehara Y., Ito T., Zukeran, Kono Y., Yasumoto Y., Effect of electrode shape discharge current and performance with barrier discharge electrostatic precipitator[J]. J. Electrostat.2003,57:407-415.
    [79]Triscori, Albert L. Moretti And Ronald J. Paul J. Ireland Goeff H. Thomas F. Leon Ballard, Application of wet esp to address fine PM emssion requirements from fossil-fueled combustors[J]. ICAC Clean Air Technologies and Strategies Conference 05, Baltimore, Maryland, U.S.A. March 7-10,2005,
    [80]Kumar, K. S., Analysis of wet ESP performance at Xcel Energy's Sherburne County Generating Station,7th International Conference on Electrostatic Precipitation, Birmingham, Alabama, August 2001.
    [81]Xu D., Guo S., Mu J., Experimental study on electrostatic precipitation with spraying corona discharges [J]. The10th International Conference on Electrostatic Precipitation, ICESP X, Australia,2006.
    [82]Moisio M., Real time distribution measurements of combustion aerosols[D]. Phd thesis, Tampere University of Technology, Publication 279,1999;
    [83]Zhang B., Wang R., Yan K., Industrial Applications of Three-phase T/R for Upgrading ESP Performance[J]. Electrostatic Precipitation ICESPXI, edited by Yan K., Springer-Verlag GmbH Berlin Heidelberg,2008:276-280, ISBN 978-3-540-89250-2
    [84]Parker K., Electrical operation of electrostatic precipitators[J]. IEE Power and Energy Series 41,2003, ISBN 0852961375,
    [85]Grass, Norbert et al., Application of Different Types of High-Voltage Supplies on Industrial Electrostatic Precipitators[J].2004,40(6):1513-1520.
    [86]Westerweel J., Fundamentals of digital PIV[J]. Meas. Sci. Technol.1997,8: 1379-1392;
    [87]Mizeraczyk J., Kocik M., Dekowski J., Dors M., Podlinski J., Ohkubo T. Kanazawa S., Kawasaki T., Measurements of the velocity filed the flue gas flow in an electrostatic precipitator model using PIV method[J]. Journal of Electrostatics,2001,51-52:272-277;
    [88]Podlinski J., Dekowski J., Mizeraczyk J., Brocilo D. and Chang J.S., Electro-hydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency[J]. J. Electrost.2006, 64:259-262;
    [89]Bayless D. J., Alam M. K., Radcliff R. and Caine J., Membrane-based wet electrostatic precipitation[J]. Fuel Processing Technology,2004,85:781-798;
    [90]Poulsen K.S. and Lund C. R., Reduction of fine particulate emission from ESPs[J].10th International Conference for Electrostatic Precipitation, Australia, June,2006;
    [91]Frederick E.R., How dust filter selection depends on electrostatics[J]. Chem. Eng. 1961,68:107.
    [92]Lathrache R., Fissan H.J., Neumann S., Deposition of submicron particles on electrically charged fibres[J]. J. Aerosol Sci.1986,17 (3):446-449.
    [93]Frederick E.R., Fibres electrostatics and filtration:a review of new technology[J]. J. Air Poll. Control Assoc.1980,30 (4):426-431.
    [94]Plaks N., Fabric filtration with integral particle charging and collection in combined electric and flow field. Part Ⅰ:Background, experimental work, analysis of data, and approach to the development of a mathematical engineering design model[J]. J. Electrostat.1988,20:247-266.
    [95]Wang Ch.S., Electrostatic forces in fibrous filters—a review[J]. Powder Technol. 2001,118 (1-2):166-170.
    [96]Lamb G.E., Constanza P.A., A low energy electrified filter system[J]. Filtr. Separ. 1980,17:319-322
    [97]Kwetkus B.A., Particle precharging and fabric filtration—experimental results of a corona precharger[J]. J. Electrostat.1997,41-42:657-662.
    [98]Lee J.-K., Kim S.-Ch., Shin J.-H., Lee J.-E., Ku J.-H., Shin H.-S., Perfonnance evaluation of electrostatically augmented air filters coupled with a corona precharger[J]. Aerosol Sci. Technol.2001,35 (4):785-791.
    [99]Nifuku M., Zhou Y., Kisiel A., Kobayashi T., Katoh H., Charging characteristics for electret filter materials[J]. J. Electrostat.2001,51-52:200-205.
    [100]Ji J.H., Bae G.N., Kang S.H., Hwang J., Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols[J]. J. Aerosol Sci.2003,34:1493-1504.
    [101]Inculet, I.I. Castle G.S.P., Slanina M., Duca M., Pseudoelectret filter for micrometer-sized particles in exhaust gases at 2101C[J]. IEEE Trans. Ind. Appl. 2002,38 (1):64-68.
    [102]闫克平,气体放电在气体净化领域的应用[J].科技导报2007,(25)18:69-74;
    [103]Miller J, Hoferer B, Schwab A. J. The impact of corona electrode configuration on electrostatic precipitator performance [J]. Journal of Electrostatics,1998,44: 67-75.
    [104]Jedrusik M, Swierczok A., Teisseyre R. Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design [J]. Powder Technology,2003, (135-136)2:295-301.
    [105]Self S. A, D. Choi D H, Mitchner M. and Leach R. Experimental study of collector plate rapping and reentrainment in electrostatic precipitators [J]. The 4th international conference on electrostiatic precipitation, Beijing,1990, 514-560.
    [106]中荷环保http://www.zhhb.cn/
    [107]Blanchard D, Atten P, and Dumitran L M. Correlation between current density and layer structure for fine particle deposition in a laboratory electrostatic precipitator[J]. IEEE Transaction on Industry application,2002,38:832-839.
    [108]Yuen A. W. Collector current density and dust collection in Wire-Plate Electrostatic Precipitators[D]. New South Wales:University of New South Wales, 2006.
    [109]Barbarics T, Ivanyi A.. Modelling the charge transport in ESP[J]. Compel:The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,1998,17:201-205.
    [110]Truce R., Wilkinson L.,2008. Enhanced fine particle and mercury emission control using the Indigo agglomerator. Electrostatic Precipitation, edited by Yan K., Springer-Verlag GmbH Berlin Heidelberg, ISBN 978-3-540-89250-2, 2008:206-214.
    [111]Moisio M., Keskinen J., Pietarinen K., Hautanen J., Real-time measurement of the net charge of particles as a function of diameter[J]. Proceedings of 4th International Aerosol Conference, Los Angeles, August 29,1994,2:1064.
    [112]Ristimaki J., Virtanen A., Marjamaki M., Rostedt A., Keskinen J., On-line measurement of size distribution and effective density of submicron particles[J]. Journal of Aerosol Science,2002,33 (11):1541-1557.
    [113]Cochet, R. Lois Charge des Fines Particules (Submicroniques) Etudes Theoretiques-Controles Recents Spectre de Particules. Coll. Int. la Physique des Forces Electrostatiques et Leurs Application[J]. Cent. Nat. Rech. Sci.1961,102: 331-338.
    [114]Robinson, M. Electrostatic Precipitation:Air Pollution Control Part I; Interscience Publishers[M]. John Wiley & Son, Inc.:, New York,1971; p 262.
    [115]Oglesby, Sabert. electrostatic precipitation[M]. Marcel dekker INC Press, New York.1978. ISBN:0-8247-6649-0.
    [116]Koizumi Y., Tochikubo F., Watanabe T., Bipolar-chargedsubmicron particle agglomeration[J]. Journal of Electrostatics 1995,35:55-60.
    [117]Kanazawa S, et al. Submicron particle agglomeration and precipitation by using a bipolar charging method[J]. Journal of Electrostatics 1993,29(3):193-209.
    [118]Kari E, et al. Kinematic coagulation of charged droplets in an alternating electric field[J]. Aerosol Science and Technology 1995,23(7):422-430.
    [119]Fuchs N.A. The Mechanics of Aerosols[M]. Pergamon Press,1964.
    [120]Eliasson B. et al. Coagulation of bipolarly charged aerosols in a stack coagulator[J]. J Aerosol Sci.1987,18:869-872.
    [121]Williams M. M. R, Loyalka S.K. Aerosol Science Theory and Practice[M]. New York, Pergamon Press,1991:154-215.
    [122]Riehle C., Basic and theoretical operational ESPs, in Applied Electrostatic Precipitation[M]. Edited by Parker K.R., Blackie Academic & Professional, ISBN 0751402664,1997:58
    [123]Parker K.R., Applied Electrostatic Precipitation[M]. Published by Blackie Academic & Professional, ISBN 0751402664,1997.
    [124]Philllip D. Boyle and Giovanni Paradiso. Demonstration of three phase power supply for electrostatic precipitators[J]. Proceedings of the American Power Conference, Vol.61-1, Illinois Institute of Technology, Chicago, IL.1999.
    [125]Ma J., Yang Y, Wang R., Yan K., Industrial applications of a new AVC for upgrading ESP to save energy and improve efficiency. Electrostatic Precipitation ICESPXI, edited by Yan K., Springer-Verlag GmbH Berlin Heidelberg, ISBN 978-3-540-89250-2,2008:281-283.
    [126]Masuda S. and Hosokawa S., Electrostatic Precipitation[M]. in Handbook of Electrostatic Processes, edited by J.S. Chang, A.J. Kelly and J.M. Crowley, Marcel Dekker, Inc., ISBN 0-8247-9254-8,1995:441-479.
    [127]Podlinski J., Niewulis A., Mizeraczyk J., Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator[J]. Journal of Electrostatics, May 2009, Volume 67(2-3):99-104;
    [128]Tamas Ivancsy, Istvan Kiss, Istvan Berta, Improved model for the analysis of back corona in pulse energised electrostatic precipitators[J]. Journal of Electrostatics, May 2009, Volume 67(2-3):146-149.
    [129]Paulson C., Precipitator sizing methods, In Applied Electrostatic precipitation[M]. edited by K.K.Parker, Blackie Academic & Professional, ISBN 0-7514-0266-4,1997:252-279.
    [130]Jawore A., Krupa A., Czech T., Modern electrostatic devices and methods for exhaust gas cleaning:A brief review[J]. Journal of Electrostatics,2007,65:133-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700