用户名: 密码: 验证码:
黄山地区大气气溶胶化学组分及其对云微物理特征的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶粒子的尺度分布、化学组分和混合状态都会对云微物理特征产生影响。本文以黄山地区为例,首先分析了于2011年6-7月在黄山顶取得的气溶胶的离子成分及可能来源,然后利用多化学组分气溶胶绝热气块分档云模式,结合云微物理参数观测资料,模拟分析了气溶胶粒子的吸湿增长特性以及对云凝结核和云微物理特征的影响。
     黄山观测期间温度较高、风速较小,且没有有效降水情况下,气溶胶质量浓度将迅速增加。气溶胶中水溶性成分占总气溶胶质量浓度的34.2%,含量最高的阴离子是SO42-(12.3μg/m3)、NO3-(2.9μg/m3),阳离子为Ca2+(2.1μg/m3)、NH4+(1.8μg/m3),有机酸占了11.37%。从后向轨迹分析结果看,气溶胶化学成分主要受北方大陆(35%)、局地污染(47%)及西南大陆气团(18%)影响。其中局地污染气团造成气溶胶可溶性组分的质量浓度最大(21μg/m3),这与低压系统控制及地面风速较低等气象因素有密切关系。
     在实际观测资料基础上,模式中采用的初始谱即同期WPS测得气溶胶谱。模拟分析不同气团影响下黄山实际气溶胶吸湿特性,发现海洋混合型气溶胶具有吸湿因子最高,Gf为1.98(相对湿度90%),城市型气溶胶吸湿性次之(Gf为1.95),含沙尘等不可溶性物质较多的气溶胶吸湿性最差(Gf为1.91)。气溶胶组分对云凝结核模拟值和观测值的差异受天气状况影响较大。较低的过饱和度下,模拟值高于晴天和雨天观测CCN值,低于雾天CCN观测值;而过饱和度大于0.6%时,实际多组分气溶胶模拟CCN值约为晴天观测值3倍左右,和雾天观测值类似。
     在气溶胶谱一定时,不同天气形势影响下,气溶胶的化学组分随尺度分布不同,对气块的最大过饱和度和气溶胶临界过饱和度产生不同的影响,进而活化出不同云滴数浓度和云滴谱。多组分气溶胶模拟的云滴数目和实际观测的量级均处于102个/cm3。气块上升速度低于0.7m/s时,含有较多不可溶物质的气溶胶对云滴数浓度的影响较大;上升速度大于0.7m/s时,气块中可凝结水增多,海盐NaCl对云滴数浓度增加的效果更显著。同一上升速度下实际多组分气溶胶模拟云滴数较纯硫酸铵多,主要体现在云滴谱第一个峰值3.0μm之前;造成云滴谱较窄,其中北方气团方案对于云滴最大粒径仅为9.92μm,变窄的程度最显著,同时纯硫酸铵气溶胶模拟云滴最大粒径为10.31μm。模拟的云滴谱与雾滴谱的观测值相比发现,液滴处于4-5μm粒径段模拟的云滴数和观测值处于一个数量级范围。
Recent studies showed that, the aerosol size spectra, chemical composition and mixed state will have an impact on the cloud microphysical characteristics. The aerosol components and cloud microphysical parameters were measured at a high-altitude background station on the summit of Mt. Huang from June to July2011, and were used as input to a multi-chemical-component (MCC) bin-resolved cloud parcel model to investigate the influence of MCC aerosols on hygroscopic growth, CCN and cloud microphysics.
     During the observation period, aerosol mass concentration at Mt. Huang will increase rapidly with high temperature, low wind and no effective precipitation. The aerosol water-soluble ion accounts for34.2%of the total mass concentration. The average SO42-anion concentration (12.3μg/m3) is the highest, followed by NO3-(2.9μg/m3). The average cation concentration is Ca2+and NH4+were2.1μg/m3and1.8μg/m3respectively. Organic acid accounts for11.37%of the water-soluble composition. The results from back trajectory cluster and aerosol ionic composition analysis show that three types of air masses affected the chemical composition of aerosol particles, including the northern continental (35%), local polluted (47%), and southwest air mass (18%). The highest aerosol mass concentration (21μg/m3) caused by local pollution, which is closely related to the low voltage system, the lower surface wind speed and other meteorological factor.
     Based on the actual observation data, the initial aerosol spectrum in the model is measured by WPS in the same period. Numerical simulation results show that the hygroscopic properties of MCC aerosol at Mt. Huang varied with the air mass. The hygroscopic growth factor of mixed aerosol is highest (Gf=1.98, RH=90%), followed by urban aerosol (Gf=1.95, RH=90%) and inclusion of insoluble component CaCO3caused by the northern continental air mass (Gf=1.91, RH=90%).
     Under different saturation simulated values and observed values are affected by weather conditions. When super saturation is lower, the CCN value simulated is higher than the sunny and rainy days observing CCN value, below the fog CCN observations. When super saturation is greater than0.6%, the CCN value simulated by MCC aerosol is about sunny days observation value of3times, and similar to observations in the fog.
     Numerical simulation results show that the effects of aerosol chemical compositions on cloud microphysical processes varied with weather conditions for the same aerosol distribution. Order of magnitude of the CDNC observation and simulated by the MCC aerosol are in the102个/cm3. It is also shown that inclusion of insoluble component CaCO3has more significant influence on CDNC when the updraft velocity is lower than0.7m/s; otherwise, NaCl dominated droplet activation process with increased condensable water. MCC aerosols led to higher cloud droplet number concentration (CDNC) than pure ammonium-sulfate aerosols under the same updraft velocity mainly represented as more droplets with sizes less than3.0μm. The MCC aerosols resulted in relatively narrow cloud droplet spectrum, especial in the northern continental air mass case (max droplet radius9.92μm), than pure ammonium-sulfate aerosols(max radius10.3μm). Compared with the observed values, the simulation of particle in4-5μm size is with the same order of magnitude.
引文
[1]McCormick R A, Ludwig J H. Climate modification by atmospheric aerosols[J]. Science (New York, NY),1967,156(780):1358.
    [2]Lohmann U., Feichter J. Global indirect aerosol effects:a review[J]. Atmospheric Chemistry and Physics,2005,5(3):715-737.
    [3]Friedman B., Herich H., Kammermann L. et al. Subarctic atmospheric aerosol composition:1. Ambient aerosol characterization[J]. Journal of Geophysical Research,2009,114(D13):D13203.
    [4]Dusek U. Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles[J]. Science,2006,312(5778):1375-1378.
    [5]杨素英.气溶胶化学组分对暖云微物理特征影响的模拟研究[D].南京市:南京信息工程大学博士学位论文,2008.
    [6]石立新,段英.华北地区云凝结核的观测研究[J].气象学报,2007,65(004):644-652.
    [7]杨军,周德平,宫福久.辽宁地区大气气溶胶粒子的垂直分布特征[J].南京气象学院学报,2000,23(2):196-203.
    [8]杨素英,马建中,胡志晋等.华北地区多化学组分气溶胶对暖云微物理特征的影响[J].中国科学:地球科学,2010,40(11):1468-1478.
    [9]Heintzenberg J, Covert D. On the distribution of physical and chemical particle properties in the atmospheric aerosol[J]. Journal of Atmospheric Chemistry,1990,10(4):383-397.
    [10]Herich H, Kammermann L, Friedman B et al. Subarctic atmospheric aerosol composition:2. Hygroscopic growth properties[J]. Journal of Geophysical Research,2009,114(D13204).
    [11]Ye X, Chen T, Hu D et al. A multifunctional HTDMA system with a robust temperature control[J]. Advances in Atmospheric Sciences,2009,26(6):1235-1240.
    [12]Ervens B, Cubison M, Andrews E et al. Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity[J]. Journal of Geophysical Research,2007,112(D10):D10S32.
    [13]颜鹏,潘小乐,汤洁等.北京市区大气气溶胶散射系数亲水增长的观测研究[J].气象学报,2008,66(1):111-119.
    [14]Winkler P, C J. The growth of atmospheric aerosol particles as a function of the relative humidity-1. Method and measurements at different location[J]. Journal de Recherches Atmospheriques,1972,1(2):618-638.
    [15]Peng C, Chan CK. The water cycles of water-soluble organic salts of atmospheric importance[J]. Atmospheric Environment,2001,35(7):1183-1192.
    [16]王轩.气溶胶吸湿特性研究[D].中国环境科学研究院硕士学位论文,2010.
    [17]Sjogren S, Gysel M, Weingartner E et al. Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures[J]. Journal of Aerosol Science,2007,38(2):157-171.
    [18]Twomey S, Squires P. The Influence of Cloud Nucleus Population on the Microstructure and Stability of Convective Clouds[J]. Tellus,1959,11(4):408-411.
    [19]Feingold G, Eberhard W, Veron D et al. First measurements of the Twomey indirect effect using ground-based remote sensors[J]. Geophysical Research Letters,2003,30(6):1287.
    [20]Ghana S, Chuang C, Easter R et al. A parameterization of cloud droplet nucleation. Part II: Multiple aerosol types[J]. Atmospheric Research,1995,36(1-2):39-54.
    [21]Phinney L, Lohmann U, Leaitch W. Limitations of using an equilibrium approximation in an aerosol activation parameterization[J]. Journal of Geophysical Research,2003,108(D12):4371.
    [22]Guibert S, Snider J, Brenguier J. Aerosol activation in marine stratocumulus clouds:1. Measurement validation for a closure study[J]. Journal of Geophysical Research,2003,108:8628.
    [23]Peng Y, Lohmann U, Leaitch R. Importance of vertical velocity variations in the cloud droplet nucleation process of marine stratus clouds[J]. Journal of Geophysical Research,2005,110(D21): D21213.
    [24]Dusek U., Covert D S., Wiedensohler A. et al. Cloud condensation nuclei spectra derived from size distributions and hygroscopic properties of the aerosol in coastal south-west Portugal during ACE-2[J]. Tellus B,2003,55(1):35-53.
    [25]Covert D, Gras J, Wiedensohler A et al. Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania[J]. Journal of Geophysical Research,1998,103(D13):16,597-516,608.
    [26]Chuang P Y., Collins D R., Pawlowska H. et al. CCN measurements during ACE-2 and their relationship to cloud microphysical properties[J]. Tellus B,2000,52(2):843-867.
    [27]Cantrell W, Shaw G, Cass G et al. Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory[J]. Journal of Geophysical Research,2001,106(D22): 28711.
    [28]Mircea M, Facchini M, Decesari S et al. The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types[J]. Tellus B,2002,54(1):74-81.
    [29]Rosenfeld D. Suppression of rain and snow by urban and industrial air pollution[J]. Science, 2000,287(5459):1793.
    [30]Feingold G, Chuang P. Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate[J]. Journal of the Atmospheric Sciences, 2002,59:2006-2018.
    [31]Snider J, Guibert S, Brenguier J et al. Aerosol activation in marine stratocumulus clouds:2. KOhler and parcel theory closure studies[J]. Journal of Geophysical Research,2003,108:8629.
    [32]Medina J, Nenes A, Sotiropoulou R et al. Cloud condensation nuclei closure during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Effects of size-resolved composition[J]. Journal of Geophysical Research,2007,112(D10):D10S31.
    [33]Pruppacher HR, Klett JD. Microphysics of Clouds and Precipitation[J]. D Reidel,1978:714
    [34]Yum S, Hudson J, Xie Y. Comparisons of cloud microphysics with cloud condensation nuclei spectra over the summertime Southern Ocean[J]. Journal of Geophysical Research,1998,103(D13): 16625.
    [35]Brenguier J, Pawlowska H, Schuller L et al. Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration[J]. Journal of the Atmospheric Sciences, 2000,57(6):803-821.
    [36]Albrecht B. Aerosols, cloud microphysics, and fractional cloudiness[J]. Science,1989,245(4923): 1227.
    [37]Hegg D, Radke L, Hobbs P. Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloud-climate hypothesis[J]. Journal of Geophysical Research,1991,96(D10):18727.
    [38]Hsieh WC, Nenes A, Flagan RC et al. Parameterization of cloud droplet size distributions: Comparison with parcel models and observations[J]. Journal of Geophysical Research,2009,114(D11): D11205.
    [39]Nenes A, Ghan S, ABDUL-RAZZAK H et al. Kinetic limitations on cloud droplet formation and impact on cloud albedo[J]. Tellus B,2001,53(2):133-149.
    [40]Ervens B, Feingold G, Kreidenweis S M. Influence of water-soluble organic carbon on cloud drop number concentration[J]. Journal of Geophysical Research,2005,110(D18):D18211.
    [41]Baker M, Corbin R, Latham J. The influence of entrainment on the evolution of cloud droplet spectra:(?). A model of inhomogeneous mixing[J]. Quarterly Journal of the Royal Meteorological Society,1980,106(449):581-598.
    [42]Erlick C, Khain A, Pinsky M et al. The effect of wind velocity fluctuations on drop spectrum broadening in stratocumulus clouds[J]. Atmospheric Research,2005,75(1-2):15-45.
    [43]Fuzzi S, Decesari S, Facchini MC et al. Overview of the inorganic and organic composition of size-segregated aerosol in Rondonia, Brazil, from the biomass-burning period to the onset of the wet season[J]. Journal of Geophysical Research,2007,112(D1).
    [44]银燕,童尧青,魏玉香等.南京市大气细颗粒物化学成分分析[J].大气科学学报,2009,32(06):723-733.
    [45]高健.大气颗粒物个数浓度,粒径分布及颗粒物生成[D].山东大学博士论文,2008.
    [46]银燕,陈晨,陈魁等.黄山大气气溶胶微观特性的观测研究[J].大气科学学报,2010,33(02):129-136.
    [47]林振毅.黄山顶大气气溶胶及云雾微观特性观测分析[D].南京信息工程大学硕士学位论文,2010.
    [48]刘新罡,张远航.大气气溶胶吸湿性质国内外研究进展[J].气候与环境研究,2010,15(06):808-816.
    [49]赵恒,王体健,江飞等.利用后向轨迹模式研究trace-P期间香港大气污染物的来源[J].热带气象学报,2009,25(02):181-186.
    [50]Deng C, Zhuang G, Huang K et al. Chemical characterization of aerosols at the summit of Mountain Tai in the middle of central east China[J]. Atmospheric Chemistry and Physics Discussions, 2010,10(9):20975-21021.
    [51]Wang Y,., Zhuang G, Zhang X et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment,2006,40(16):2935-2952.
    [52]McGann B T, Jennings S G. The efficiency with which drizzle and precipitation sized drops collide with aerosol particles[J]. Atmospheric Environment,1991,25A:791-799.
    [53]Kerminen VM, Wexler AS. Growth laws for atmospheric aerosol particles:An examination of the bimodality of the accumulation mode[J]. Atmospheric Environment,1995,29(22):3263-3275.
    [54]胡敏,赵云良,何凌燕等.北京冬、夏季颗粒物及其离子成分质量浓度谱分布[J].环境科学, 2005,26(04):1-6.
    [55]Fang CP, McMurry PH, Marple VA et al. Effect of flow-induced relative humidity changes on size cuts for sulfuric acid droplets in the microorifice uniform deposit impactor (MOUDI)[J]. Aerosol Science and Technology,1991,14(2):266-277.
    [56]Huebert B J., Wang M X, LU W X Atmospheric nitrate, sulfate, ammonium and calcium concentrations in China[J]. Tellus B,1988,40(4):260-269.
    [57]Osada K, Kido M, Nishita C et al. Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura (2770 m asl), central Japan, during the Shurin period in 2000[J]. Atmospheric Environment,2002,36(35):5469-5477.
    [58]Odabasi M, Muezzinoglu A, Bozlaker A. Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey[J]. Atmospheric Environment,2002,36(38):5841-5851.
    [59]Gao X, Yang L, Cheng S et al. Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China:Temporal variations and source apportionments[J]. Atmospheric Environment, 2011,45(33):6048-6056.
    [60]Khan MF, Shirasuna Y, Hirano K et al. Characterization of PM2.5, PM2.5-10 and PM>10 in ambient air, Yokohama, Japan[J]. Atmospheric Research,2010,96(1):159-172.
    [61]Kim HS, Huh JB, Hopke PK et al. Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004[J]. Atmospheric Environment,2007,41(32): 6762-6770.
    [62]Hueglin C, Gehrig R, Baltensperger U et al. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland[J]. Atmospheric Environment, 2005,39(4):637-651.
    [63]Gioda A, Reyes-Rodriguez GJ, Santos-Figueroa G et al. Speciation of water-soluble inorganic, organic, and total nitrogen in a background marine environment:Cloud water, rainwater, and aerosol particles[J]. Journal of Geophysical Research,2011,116(D5).
    [64]唐孝炎,张远航,邵敏.大气环境化学(第二版)[M].北京:高等教育出版社,1990:311.
    [65]Nenes A. Can chemical effects on cloud droplet number rival the first indirect effect?[J]. Geophysical Research Letters,2002,29(17).
    [66]Pruppacher HR, Klett JD. Microphysics of clouds and precipitation [M]. London; Kluwer academic publishers.1997:945.
    [67]Kim YP, Seinfeld JH, Saxena P. Atmospheric gas-aerosol equilibrium I. Thermodynamic model[J]. Aerosol Science and Technology,1993,19(2):157-181.
    [68]Peng C, Chan MN, Chan CK. The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions[J]. Environmental Science & Technology,2001,35(22): 4495-4501.
    [69]Liu X G, Zhang Y H, Wen M T et al. A Closure Study of Aerosol hygroscopic growth factor during the 2006 Pearl River Delta campaign[J]. Advances in Atmospheric Sciences,2010,27(4):947-956.
    [70]Metzger S, Lelieveld J. Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds[J]. Atmospheric Chemistry and Physics,2007,7:3163-3193.
    [71]Fischer EV, Perry KD, Jaffe DA. Optical and chemical properties of aerosols transported to Mount Bachelor during spring 2010[J]. Journal of Geophysical Research,2011,116(D18).
    [72]邱金桓,吕达仁,陈洪滨等.现代大气物理学研究进展[J].大气科学,2003,27(4):628-652.
    [73]Tang IN. Chemical and size effects of hygroscopic aerosols on light scattering coefficients[J]. Journal of Geophysical Research,1996,101:19-19.
    [74]Massling A, Stock M, Wiedensohler A. Diurnal, weekly, and seasonal variation of hygroscopic properties of submicrometer urban aerosol particles[J]. Atmospheric Environment,2005,39(21): 3911-3922.
    [75]Stokes R, Robinson R. Interactions in aqueous nonelectrolyte solutions.Ⅰ. Solute-solvent equilibria[J]. The Journal of Physical Chemistry,1966,70(7):2126-2131.
    [76]Topping D, McFiggans G, Coe H. A curved multi-component aerosol hygroscopicity model framework:Part 1:Inorganic compounds[J]. Atmospheric Chemistry and Physics,2005,5(5): 1205-1222.
    [77]Mochida M, Nishita-Hara C, Kitamori Y et al. Size-segregated measurements of cloud condensation nucleus activity and hygroscopic growth for aerosols at Cape Hedo, Japan, in spring 2008[J]. Journal of Geophysical Research,2010,115(D21):D21207.
    [78]McFiggans G, Artaxo P, Baltensperger U et al. The effect of physical and chemical aerosol properties on warm cloud droplet activation[J]. Atmospheric Chemistry and Physics,2006,6: 2593-2649.
    [79]Covert DS, Heintzenberg J. Size distributions and chemical properties of aerosol at Ny Alesund, Svalbard[J]. Atmospheric Environment,1993,27(17-18):2989-2997.
    [80]Topping D. Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE Asia[J]. Atmospheric Environment,2004,38(14):2111-2123.
    [81]Wise ME, Surratt JD, Curtis DB et al. Hygroscopic growth of ammonium sulfate/dicarboxylic acids[J]. Journal of Geophysical Research,2003,108(20):4638.
    [82]Prenni AJ, DeMott PJ, Kreidenweis SM et al. The effects of low molecular weight dicarboxylic acids on cloud formation[J]. The Journal of Physical Chemistry A,2001,105(50):11240-11248.
    [83]Gysel M, Crosier J, Topping D et al. Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2[J]. Atmospheric Chemistry and Physics, 2007,7(24):6131-6144.
    [84]Shulman M L, Jacobson M C, Carlson R J et al. Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets[J]. Geophysical Research Letters,1996,23(3): 277-280.
    [85]Lukas K, Martin G, Ernest W et al. Subarctic atmospheric aerosol composition:3. Measured and modeled properties of cloud condensation nuclei[J]. Journal of Geophysical Research,2010,115(D4): D04202.
    [86]岳岩裕,牛生杰,桑建人等.干旱区云凝结核分布及其影响因子的观测研究[J].中国环境科学,2010,30(05):593-598.
    [87]陈晨,银燕.黄山大气气溶胶观测研究[J].南京信息工程大学硕士学位论文,2009.
    [88]Hobbs PV, Bowdle DA, Radke LF. Particles in the lower troposphere over the high plains of the United States. Part Ⅱ:Cloud condensation nuclei[J]. Journal of Applied Meteorology,1985,24: 1358-1369.
    [89]Rose D, Nowak A, Achtert P et al. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China-Part 1:Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity[J]. Atmospheric Chemistry and Physics,2010,10(7):3365-3383.
    [90]Deng Z Z, Zhao C S, Ma N et al. Size-resolved and bulk activation properties of aerosols in the North China plain:the importance of aerosol size distribution in the prediction of CCN number concentration[J]. Atmospheric Chemistry and Physics Discussions,2011,11:1333-1366.
    [91]吴兑.宁夏地区6—7月降水性层状云的云滴谱特征[J].气象,1987,13(09):48-50.
    [92]吴兑,何应昌,陈桂樵等.广东省新丰江流域4—5月暖云的微物理特征[J].热带气象学报,1988,4(03):341-349.
    [93]刘晓春,毛节泰.云中液水含量与云光学厚度的统计关系研究[J].北京大学学报(自然科学版),2008,44(01):115-120.
    [94]陈丽,银燕.矿物气溶胶远程传输过程中的吸收增温效应对云和降水的影响[J].高原气象,2008,27(03):628-636.
    [95]Zhao C S, Ishizaka Y, Peng D Y. Numerical study on impacts of multi-component aerosols on marine cloud microphysical properties[J]. Journal of the Meteorological Society of Japan,2005,83(6): 977-986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700