用户名: 密码: 验证码:
基于多生物信息的蛋白质网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过整合多种类型的生物学信息,深入研究了动态蛋白质网络构建、关键蛋白质识别和蛋白质复合物预测等问题。
     细胞系统是高度动态的并能对环境刺激做出反应。细胞的功能及其对外界刺激的反应模式受生物网络调控。具有静态连接性的蛋白质-蛋白质相互作用网络是动态的,就这层意义而言,蛋白质实现所谓的随时间进化的功能活动性。从静态网络分析向动态转移对进一步理解分子系统是重要的。
     本文通过结合时间序列基因表达谱和蛋白质相互作用网络,构建了时间过程蛋白质相互作用网络(TC-PINs)。为了判断TC-PINs是否成功,如下验证步骤被采用:首先,一个聚类算法被分别用于从三种网络(时间过程蛋白质相互作用网络、静态蛋白质网络和伪随机网络)中识别功能模块。然后,对来自TC-PINs中的功能模块,重复的功能模块只保留一个,被大功能模块包含的小功能模块被删除。最后,匹配分析和GO富集分析被执行以比较来自不同网络的功能模块。比较分析显示,与静态蛋白质相互作用网络相比,来自TC-PINs的功能模块具有更显著的生物学意义。
     关键蛋白质对生物在各种条件下的生存至关重要。有许多实验和计算方法用于预测关键蛋白质。因为蛋白质相互作用数据存在缺陷,所以基于全局的蛋白质相互作用网络预测关键蛋白质的计算方法受到严格的限制。但是,基因表达谱有助于在一定程度上弥补这种不足。
     本文整合基因表达和蛋白质相互作用数据,提出了一种新的关键蛋白质识别方法WDC。皮尔逊相关系数(PCC, Pearson Correlation Coefficient)被用于结合蛋白质相互作用网络和基因表达谱。基于PCC和边聚类系数(ECC, Edge Clustering Coefficient),一种新的中心性测度即加权度中心性(WDC, Weighted Degree Centrality)被提出,以便获得可靠的关键蛋白质预测结果。为了评估WDC方法的性能,它被用于从酵母的蛋白质相互作用网络中预测关键蛋白质。作为比较,其他预测方法也被用于从酵母的网络中预测关键蛋白质。一些评价方法被用于分析各种预测方法产生的结果。本文显示了所有预测结果和比较分析情况。另外,WDC方法中的参数λ被详细分析,然后最佳的λ值被找到。基于λ的最佳值,WDC和另一种方法PeC的区别被讨论。这些分析结果表明WDC胜过当前的其他方法。同时,也意味着整合多源生物数据预测关键蛋白质是一种有效的方法。
     蛋白质复合物是许多生物过程得以实现的基础,它们执行大量的生物功能。不断增加的蛋白质相互作用数据使得通过计算方法预测蛋白质复合物成为可能。有许多算法在预测蛋白质复合物时,仅仅考虑了蛋白质相互作用数据,但是,来自高通量生物实验的蛋白质相互作用数据不仅具有高的假阳性率,而且还是不完整的。实际上蛋白质相互作用的这种不足大大降低了这些预测方法的精度。
     本文提出了一种新的蛋白质复合物预测方法(CMBI, Clustering based on Multiple Biological Information)。该方法整合基因表达谱、关键蛋白质信息和蛋白质相互作用网络三种生物数据进行蛋白质复合物的预测。首先,CMBI基于蛋白质相互作用网络的边聚类系数(ECC, Edge Clustering Coefficient)和基因表达谱的皮尔逊相关系数(PCC, Pearson Correlation Coefficient)重新定义了两个相互作用的蛋白质之间的功能相似性(FS,Functional Similarity)。然后,CMBI选择已知的关键蛋白质作为种子构建蛋白质复合物核。在种子扩展到核的过程中,种子的关键蛋白质邻居和功能相似性FS大于给定阈值T的邻居被添加到复合物核中。复合物核被构造以后,CMBI开始产生蛋白质复合物。复合物核的邻居被考查,如果邻居与复合物核中蛋白质的FS大于给定的阈值T,则该邻居被添加到复合物中,用同样的方法遍历复合物核的所有邻居,生成蛋白质复合物。由于一些种子有相似的邻接图,所以从这些邻接图中挖掘的复合物可能有重叠,从而导致较高的冗余。因而,CMBI算法也设计了冗余过滤子程序,以将这种冗余控制到合理的程度。另外,除关键蛋白质,CMBI也使用非关键蛋白质作为种子并将之扩展为蛋白质复合物。为了检测CMBI的性能,CMBI预测的复合物被用于和其他方法预测的复合物进行匹配分析和GO功能富集分析。最后CMBI用到的两个参数T和R被详细分析。
     匹配分析和GO分析的结果显示CMBI预测蛋白质复合物的能力明显超过了现存的蛋白质复合物挖掘方法。这意味着整合不同来源的生物学数据预测蛋白质复合物的研究是成功的。
     本文还提出了一种能用于高可信度加权蛋白质网络的通用复合物预测算法Cluster WD。
Our research work involves the construction of time course protein network, the identification of essential proteins as well as the prediction of protein complexes via the integration of multiple biological information.
     Cellular systems are highly dynamic and responsive to cues from the environment. Cellular function and response patterns to external stimuli are regulated by biological networks. A protein-protein interaction (PPI) network with static connectivity is dynamic in the sense that the nodes implement so-called functional activities that evolve in time. The shift from static to dynamic network analysis is essential for further understanding of molecular systems.
     The dissertation constructs the Time Course Protein Interaction Networks (TC-PINs) by incorporating time series gene expression into PPI networks. To decide if the dynamic networks work properly, the following steps are carried out. First, a clustering algorithm is used to create functional modules from three kinds of networks respectively:the TC-PINs, a static PPI network and a pseudorandom network. For the functional modules from the TC-PINs, both duplicate modules and nested modules are removed. Last, matching and GO enrichment analysis measures are performed on the functional modules detected from those networks to evaluate them. The comparative analysis shows that the functional modules from the TC-PINs have much more significant biological meaning than those from static PPI networks.
     Essential proteins are vital for an organism's viability under a variety of conditions. There are many experimental and computational methods developed to identify essential proteins. Computational prediction of essential proteins based on the global protein-protein interaction (PPI) network is severely restricted because of the insufficiency of the PPI data, but fortunately the gene expression profiles help to make up the deficiency.
     In the dissertation, a novel essential protein predicting method WDC is proposed. Pearson correlation coefficient (PCC) is used to bridge the gap between PPI and gene expression data. Based on PCC and Edge Clustering Coefficient (ECC), a new centrality measure, i.e., the weighted degree centrality (WDC), is developed to achieve the reliable prediction of essential proteins. WDC is employed to identify essential proteins in the yeast PPI network to estimate its performance. For comparison, other prediction technologies are also performed to identify essential proteins. Some evaluation methods are used to analyze the results from various prediction approaches. The prediction results and comparative analysis are shown in the dissertation. Furthermore, the parameter λ in the method WDC will be analyzed in detail and an optimal λ value will be found. Based on the optimal λ value, the differentiation of WDC and another prediction method PeC is discussed. The results prove that WDC outperforms other state-of-the-art ones. At the same time, the analysis also means that it is an effective way to predict essential proteins by means of integrating different data sources.
     Protein complexes are a cornerstone of many biological processes and together they form various types of molecular machinery that perform a vast array of biological functions. An increase in the amount of protein-protein interaction (PPI) data enables a number of computational methods for predicting protein complexes. At the moment, most algorithms detecting complexes only consider the PPI data. However, the PPI data from high-throughout techniques is flooded with false interactions. In fact, the insufficiency of the PPI data significantly lowers the accuracy of these methods.
     The dissertation presents a novel method CMBI to discover protein complexes via the integration of gene expression profiles, essential protein information and PPI data. First, CMBI defines the functional similarity of each pair of interacting proteins based on the edge-clustering coefficient (ECC) from the PPI network and the Pearson correlation coefficient (PCC) from the gene expression data. Second, CMBI selects essential proteins as seeds to build the protein complex cores. During the growth process, the seeds' essential protein neighbors and the neighbors whose functional similarity (FS) with the seeds are more than the threshold T will be added to the complex cores. After the complex cores are constructed, CMBI begins to generate protein complexes by attaching their direct neighbors with FS>T to the cores. In addition to the essential proteins, CMBI also uses other proteins as seeds to expand protein complexes. To check the performance of CMBI, the complexes discovered by CMBI are compared with the ones found by other techniques by matching the predicted complexes against the reference complexes. Subsequently, GO::TermFinder is used to analyze the complexes predicted by various methods. Finally, the effect of parameter T is investigated.
     The results from GO functional enrichment and matching analysis show that CMBI performs significantly better than the state-of-the-art methods. It means that it's successful to integrate different biological information to predict protein complexes in the PPI network.
     The dissertation also proposed a novel genaral algorithm for predicting protein complexes from the high-confidence protein network.
引文
[1]International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature,409:860-921,2001.
    [2]Venter, J.C., et al. The sequence of the human genome. Science,291:1304-1351,2001.
    [3]Zhu, H. and Snyder, M. Protein chip technology. Current Opinion in Chemical Biology, 7:55-63,2003.
    [4]Patterson, S.D. and Aebersold, R.H. Proteomics:the first decade and beyond. Nature Genetics,33:311-323,2003.
    [5]Alon, U. Biological networks:the tinkerer as an engineer. Science,301:1866-1867, 2003.
    [6]Hartwell, L.H., Hopfield, J.J., Leibler, S., and Murray, A.W. From molecular to modular cell biology. Nature,402:c47-c52,1999.
    [7]Jones, S. and Thornton, J.M. Principles of protein-protein interactions. Proceedings of the National Academy of Sciences,93:13-20,1996.
    [8]Koonin, E.V., Wolf, Y.I., and Karev, G.P. The structure of the rotein universe and genome evolution. Nature,420:218-223,2002.
    [9]Ofran, Y. and Rost, B. Analysing six types of protein-protein interfaces. Journal of Molecular Biology,325(2):377-387,2003.
    [10]Nooren, I. and Thornton, J.M. Diversity of protein-protein interactions. EMBO Journal,22:3486-3492,2003.
    [11]Von Mering, C., et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature,417:399-403,2002.
    [12]Phizicky, E.M. and Fields, S. Protein-protein interactions:methods for detection and analysis. Microbiological Reviews,59:94-123,1995.
    [13]Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences,98(8):4569-4574,2001.
    [14]Uetz, P., et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature,403:623-627,2000.
    [15]Gavin, A.C., et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature,415:141-147,2002.
    [16]Ho, Y., et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature,415:180-183,2002.
    [17]Ge, H. UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions. Nucleic Acids Research,28(2):e3,2000.
    [18]MacBeath, G. and Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science,289:1760-1763,2000.
    [19]Zhu, H., et al. Global analysis of protein activities using proteome chips. Science, 293:2101-2105,2001.
    [20]Wagner, A. How the global structure of protein interaction networks evolves. Proceedings. Biological sciences/The Royal Society,270:457-466,2003.
    [21]Albert, R. and Barabasi, A.L. Statistical mechanics of complex networks. Reviews of Modern Physics,74:47-97,2002.
    [22]Sprinzak, E., Sattath, S., and Margalit, H. How reliable are experimental protein-protein interaction data? Journal of Molecular Biology,327:919-923,2003.
    [23]Seidman, S.B. Network structure and minimum degree. Social Networks,5:269-287, 1983.
    [24]Watts, D.J. and Strogatz, S.H. Collective dynamics of'small-world'networks. Nature, 393:440-442,1998.
    [25]Barabasi, A.L. and Albert, R. Emergence of scaling in random networks. Science, 286:509-511,1999.
    [26]Barabasi, A.L. and Oltvai, Z.N. Network biology:understanding the cell's functional organization. Nature Reviews:Genetics,5:101-113,2004.
    [27]Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., and Barabasi, A.-L. Hierarchical organization of modularity in metabolic networks. Science, 297:1551-1555,2002.
    [28]Giot, L., et al. A protein interaction map of Drosophila melanogaster. Science, 302:1727-1736,2003.
    [29]Jeong, H., Mason, S.P., Barabasi, A.-L., and Oltvai, Z.N. Lethality and centrality in protein networks. Nature,411:41-42,2001.
    [30]Li, S., et al. A map of the interactome network of the metazoan. Science,303:540-543, 2004.
    [31]Wagner, A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Molecular Biology and Evolution,18:1283-1292,2001.
    [32]Milgram, S. The small world problem. Psychology Today,2:60,1967.
    [33]Newman, M.E. Network construction and fundamental results. Proceedings of the National Academy of Sciences,98:404-409,2001.
    [34]Sigman, M. and Cecchi, G.A. Global organization of the Wordnet lexicon. Proceedings of the National Academy of Sciences,99:1742-1747,2002.
    [35]Fell, D.A. and Wagner, A. The small world of metabolism. Nature Biotechnology, 18:1121-1122,2000.
    [36]Sole, R.V., Pastor-Satorras, R., Smith, E., and Kepler, T.B. A model of large-scale proteome evolution. Advances in Complex Systems,5:43-54,2002.
    [37]Chung, F., and Lu, L. The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences,99:15879-15882,2002.
    [38]Cohen, R., and Havlin, S. Scale-free networks are ultra small. Physical Review Letters, 90:058-701,2003.
    [39]Maslov, S. and Sneppen, K. Specificity and stability in topology of protein networks. Science,296:910-913,2002.
    [40]Bonacich, P. Power and centrality:a family of measures. American Journal of Sociology,92(5):1170-1182,1987.
    [41]Brin, S. and Page, L. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems,30:107-117,1998.
    [42]Estrada, E. and Velazquez, R. Subgraph centrality in complex networks. Physical Review E,56-103,2005.
    [43]Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry, 40:35-41,1979.
    [44]Newman, M.E.J. A measure of betweenness centrallity on random walks. arXiv:condmat,1:0309045, Sep.2003.
    [45]Sabidussi, G. The centrality index of a graph. Psychometrika,31:581-603,1966.
    [46]Newman, M.E.J. Scientific collaboration networks:shortest paths, weighted networks and centrality. Physical Review E, E64:016132,2001.
    [47]Girvan, M. and Newman, M.E.J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences,99(12):7821-7826, 2002.
    [48]Holme, P., Huss, M., and Jeong, H. Subnetwork hierarchies of biochemical pathways. Bioinformatics,19:532-538,2003.
    [49]Chen, J. and Yuan, B. Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics,22(18):2283-2290,2006.
    [50]Albert, R., Jeong, H., and Barabasi, A.L. Error and attack tolerance of complex networks. Nature,406:378-482,2000.
    [51]Hahn, M.W. and Kern, A.D. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Molecular Biology and Evolution, 22:803-806,2004.
    [52]Estrada, E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics,6:35-40,2006.
    [53]Palumbo, M., Colosimo, A., Giuliani, A., and Farina, L. Functional essentiality from topology features in metabolic networks:a case study in yeast. Federation of European Biochemical Societies Letters, pp.4642-4646,2005.
    [54]Guimera, R. and Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature,433:895-900,2005.
    [55]Schwikowski, B., Uetz, P., and Fields, S. A network of protein-protein interactions in yeast. Nature Biotechnology,18:1257-1261,2000.
    [56]Spirin, V. and Mirny, L.A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences,100(21):12123-12128, 2003.
    [57]] Bu, D., et al. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acid Research,31(9):2443-2450,2003.
    [58]Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., and Kanaya, S. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics,7(207),2006.
    [59]Bader, G.D. and Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics,4(2),2003.
    [60]Pei, P. and Zhang, A. A "seed-refine" algorithm for detecting protein complexes from protein interaction data. IEEE Transactions on Nanobioscience,6(1):43-50,2007.
    [61]Tanay, A., Sharan, R., Kupiec, M., and Shamir, R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proceedings of the National Academy of Sciences, 101(9):2981-2986,2004.
    [62]Arnau, V., Mars, S., and Marin, I. Iterative cluster analysis of protein interaction data. Bioinformatics,21(3):364-378,2005.
    [63]Rives, A.W. and Galitski, T. Modular organization of cellular networks. Proceedings of the National Academy of Sciences,100(3):1128-1133,2003.
    [64]Ashburner, M., et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics,25:25-29,2000.
    [65]King, A.D., Przulj, N., and Jurisica, I. Protein complex prediction via cost-based clustering. Bioinformatics,20(17):3013-3020,2004.
    [66]Samanta, M.P. and Liang, S. Predicting protein functions from redundancies in largescale protein interaction networks. Proceedings of the National Academy of Sciences,100(22):12579-12583,2003.
    [67]Hwang, W., Kim, T., Ramanathan, M., and Zhang, A. Bridging centrality:graph mining from element level to group level. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD08), pp.336-344,2008.
    [68]Hwang, W., Ramanathan, M., and Zhang, A. Identification of information flow modulating drug targets:a novel bridging paradigm for drug discovery. Clinical Pharmacology and Therapeutics,84(5):563-572.
    [69]Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., and Takagi, T. Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast, 18:523-531,2001.
    [70]Deng, M., Zhang, K., Mehta, S., Chen, T., and Sun, F. Prediction of protein function using protein-protein interaction data. Journal of Computational Biology, 10(6):947-960,2003.
    [71]Letovsky, S. and Kasif, S. Predicting protein function from protein/protein interaction data:a probabilistic approach. Bioinformatics,19:i197-i204,2003.
    [72]Lin, C., Jiang, D., and Zhang, A. Prediction of protein function using common neighbors in protein-protein interaction networks. In Proceedings of IEEE 6th Symposium on Bioinformatics and Bioengineering (BIBE), pp.251-260,2006.
    [73]Deng, M., Tu, Z., Sun, F., and Chen, T. Mapping gene ontology to proteins based on protein-protein interaction data. Bioinformatics,20(6):895-902,2004.
    [74]Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27-30.
    [75]Tyson JJ, Chen K, Novak B. Network dynamics and cell physiology. Nat RevMol Cell Biol 2001; 2:908-16.
    [76]Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers:dynamics of regulatory and signaling pathways in the cell. Curr OpinCell Biol 2003; 15:221-31.
    [77]de Jong H. Modeling and simulation of genetic regulatory systems:a literature review. JComputBiol 2002; 9:67-103.
    [78]Ruths D, Muller M, Tseng JT, et al. The signaling petri netbased simulator:a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks. PloS Comput Biol 2008; 4:e1000005.
    [79]Zielinski R, Przytycki PF, Zheng J, et al. The crosstalk between EGF, IGF, and Insulin cell signaling pathways—computational and experimental analysis. BMC Syst Biol 2009; 3:88.
    [80]Rubinstein A, Gurevich V, Kasulin-Boneh Z, et al. Faithful modeling of transient expression and its application to elucidating negative feedback regulation. Proc Natl Acad Sci USA 2007;104:6241-6.
    [81]Aldridge BB, Saez-Rodriguez J, Muhlich JL, et al. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput Biol 2009;5:e1000340.
    [82]Thakar J, Pilione M, Kirimanjeswara G, et al. Modeling systems-level regulation of host immune responses. PloS Comput Biol 2007;3:e109.
    [83]De Jong H, Gouze JL, Hernandez C, et al. Qualitative simulation of genetic regulatory networks using piecewise-linear models. BullMath Biol 2004;66:301-40.
    [84]Albert I, Thakar J, Li S, et al. Boolean network simulations for life scientists. SourceCode BiolMed 2008; 3:16.
    [85]Zhang R, Shah MV, Yang J, et al. Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad SciUSA 2008; 105:16308-13.
    [86]Doherty, J.M., Carmichael, L.K., and Mills, J.C. GOurmet:A tool for quantitative comparison and visualization of gene expression profiles based on gene ontology (GO) distributions. BMC Bioinformatics,7(151),2006.
    [87]Fang, Z., Yang, J., Li, Y., Luo, Q., and Liu, L. Knowledge guided analysis of microarray data. Journal of Biomedical Informatics,39:401-411,2006.
    [88]Hvidsten, T.R., Lagreid, A., and Komorowski, J. Learning rule-based models of biological process from gene expression time profiles using Gene Ontology. Bioinformatics,19(9):1116-1123,2003.
    [89]Cho, Y.-R., Hwang, W., and Zhang, A. Modularization of protein interaction networks by incorporating Gene Ontology annotations. In Proceedings of IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp.233-238,2007.
    [90]Cho, Y.-R., Hwang, W., Ramanathan, M., and Zhang, A. Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics,8(265),2007.
    [91]Tornow, S. and Mewes, H.W. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Research,31(21):6283-6289,2003.
    [92]Agrawal, H. Extreme self-organization in networks constructed from gene expression data. Physical Review Letters,89:268702-268706,2002.
    [93]Swendsen, R.H. and Wang, J.S. Nonuniversial critical dynamics in Monte Carlo simulations. Physical Review Letters,58:86-88,1987.
    [94]Deng, M., Mehta, S., Sun, F., and Chen, T. Inferring domain-domain interactions from protein-protein interactions. Genome Research,12:1540-1548,2002.
    [95]Marcotte, E.M., Pellegrini, M., Ng, H.-L., Rice, D.W., Yeates, T.O., and Eisenberg, D. Detecting protein function and protein-protein interactions from genome sequences. Science,285:751-753,1999.
    [96]Kim, W.K., Park, J., and Suh, J.K. Large scale statistical prediction of protein protein interaction by potentially interacting domain (PID) pair. Genome Informatics, 13:42-50,2002.
    [97]Chen, X., Liu, M., and Ward, R. Protein function assignment through mining crossspecies protein protein interactions. PLoS ONE,3(2):e1562,2008.
    [98]Bateman, A., Coin, L., Durbin, R., Finn, R.D., and Hollich, V. The Pfam protein families database. Nucleic Acids Research,32:D138-D141,2004.
    [99]Jansen, R., Yu, H., Greenbaum, D., Kluger, Y, Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F., and Gerstein, M. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science,302:449-453, 2003.
    [100]Karaoz, U., Murali, T.M., Letovsky, S., Zheng, Y, Ding, C., Cantor, C.R., and Kasif, S. Whole-genome annotation by using evidence integration in functional-linkage networks. Proceedings of the National Academy of Sciences,101 (9):2888-2893, 2004.
    [101]Nariai, N. and Kasif, S. Context specific protein function prediction. Genome Informatics,18:173-82,2007.
    [102]Breitkreutz, B.J., Stark, C., and Tyers, M. The GRID:the general repository for interaction datasets. Genome Biology,4(3):R23,2003.
    [103]Mewes, H.W., et al. MIPS:analysis and annotation of proteins from whole genome in 2005. Nucleic Acid Research,34:D169-D172,2006.
    [104]Domingos, P. and Pazzani, M.Onthe optimality of the simple Bayesian classifier under zero-one loss. Machine Learning,29:103-130,1997.
    [105]Troyanskaya, O.G., Dolinski, K., Owen, A.B., Altman, R.B. and Botstein, D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proceedings of the NationalAcademyof Sciences,100(14):8348-8353,2003.
    [106]Chen, Y and Xu, D. Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae. Nucleic Acids Research,32(21):6414-6424, 2004.
    [107]Lanckriet, G.R.G., Deng, M., Cristianini, N., Jordan, M.I., and Noble, W.S. Kernelbased data fusion and its application to protein function prediction in yeast. Pacific Symposium on Biocomputing,9,2004.
    [108]Barutcuoglu, Z., Schapire, R.E., and Troyanskaya, O.G. Hierarchical multi-label prediction of gene function. Bioinformatics,22:830-836,2006.
    [109]Winzeler EA, Shoemaker DD, Astromoff A, Liang H anderson K, et al.:Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999,285:901-906.
    [110]Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421:231-237.
    [111]Henkel J, Maurer S.M., Parts, property and sharing. Nat Biotechnol 2009, 27:1095-1098.
    [112]de S Cameron NM, Caplan A. Our synthetic future. Nat Biotechnol 2009, 27:1103-1105.
    [113]May M Engineering a new business. Nat Biotechnol 2009,27:1112-1120.
    [114]Pennisi E Synthetic genome brings new life to bacterium. Science 2010, 328:958-959.
    [115]Koonin EV How many genes can make a cell:the minimalgene-set concept. Annu Rev Genomics Hum Genet 2000,1:99-116.
    [116]Judson N, Mekalanos JJ. TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat Biotechnol 2000,18(7):740-5.
    [117]Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 2010;6:e1000641.
    [118]Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet 2007;43:691-698.
    [119]Acuner SE, Keskin O, Nussinov R, Gursoy A. Enriching the human apoptosis pathway by predicting the structures of protein-protein complexes. J Struct Biol 2012;10:1016.
    [120]Tzakos AG, Fokas D, Johannes C, Moussis V, Hatzimichael E, Briasoulis E. Targeting oncogenic protein-protein interactions by diversity oriented synthesis and combinatorial chemistry approaches. Molecules 2011;16:4408-4427.
    [121]Chen KC, Wang TY, Chan CH. Associations between HIV and human pathways revealed by protein-protein interactions and correlated gene expression profiles. PLoS One 2012;7:e34240.
    [122]Lee JM, Han JJ, Altwerger G, Kohn EC. Proteomics and biomarkers in clinical trials for drug development. J Proteomics 2011;74:2632-2641.
    [123]Jin R, Mccallen S, Liu C, Xiang Y, Almaas E, Zhou XH:Identify Dynamic Network Modules with Temporal and Spatial Constraints. Proc Pacific Symp Biocomputing (PSB) 14:203-214.
    [124]Przytycka TM, Singh M, Slonim DK:Toward the dynamic interactome:it's about time. Brief Bioinform 2010,11:15-29.
    [125]Tu BP, Kudlicki A, Rowicka M, McKnight SL:Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152-1158.
    [126]Simon I, Siegfried Z, Ernst J, Bar-Joseph Z:Combined static and dynamic analysis for determining the quality of time-Series expression profiles. Nature Biotechnology 2005,23(12):1503-1508.
    [127]Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJM, Cusick ME, Roth FP, Vidal M:Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004, 430(6995):88-93.
    [128]de Lichtenberg U, Jensen LJ, Brunak S, Bork P:Dynamic complex formation during the yeast cell cycle. Science 2005,307:724-727.
    [129]Qi Y, Ge H:Modularity and dynamics of cellular networks. PloS Computational Biology 2006,2:1502-1510.
    [130]Giaever G, Chu AM, Ni L, Connelly C, Riles L, V'eonneau S, Dow S, Lucau-Danila A anderson K andr'e B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Gudener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, yun Wang C, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M:Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002,418(6896):387-91.
    [131]Cullen LM, Arndt GM:Genome-wide screening for gene function using RNAi in mammalian cells. Immunol Cell Biol 2005,83(3):217-23.
    [132]Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Storms R, Boone C, Bussey H:Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 2003, 50:167-81.
    [133]Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B:The tandem affinity purification method:a general procedure of protein complex purification. Methods 2001,24(3):218-229.
    [134]Schena M, Shalon D, Davis RW, Brown PO:Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270:467-470.
    [135]Ramsay G:DNA chips:state-of-the art. Nat Biotechnol 1998,16:40-44.
    [136]He X, Zhang J:Why Do Hubs Tend to Be Essential in Protein Networks? PLoS Genet 2006,2:e88.
    [137]Zotenko E, Mestre J, O'Leary DP, Przytycka TM:Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential:Reexamining the Connection between the Network Topology and Essentiality. PLoS Comput Biol 2008,4:e1000140.
    [138]Chua Nian Hon, Tew Leong Kar, Xiao-Li Li, See-Kiong Ng:A Unified Scoring Scheme for Detecting Essential Proteins in Protein Interaction Networks. Tools with Artificial Intelligence,2008. ICTAI'08.20th IEEE International Conference on 2008,2:66-73.
    [139]Batada NN, Hurst LD, Tyers M:Evolutionary and Physiological Importance of Hub Proteins. PLoS Comput Biol 2006,2:e88.
    [140]Seo CH, Jeong-Rae K, Man-Sun K, Kwang-Hyun C:Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics 2009, btp316.
    [141]Acencio M, Lemke N:Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. BMC Bioinformatics 2009,10(290).
    [142]Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A:Identifying Hubs in Protein Interaction Networks. PLoS ONE 2009, (4)4:e5344.
    [143]Pang K, Sheng H, Ma X:Understanding Gene Essentiality by Finely Characterizing Hubs in the Yeast Protein Interaction Network. Biochemical and Biophysical Research Comm.2010,401(1):112-116.
    [144]Ning K, Ng HK, Srihari S, Leong HW, Nesvizhskii AI:Examination of the Relationship between Essential Genes in PPI Network and Hub Proteins in Reverse Nearest Neighbor Topology. BMC Bioinformatics 2010,11(505).
    [145]Joy MP, Brock A, Ingber DE, Huang S:High-betweenness Proteins in the Yeast Protein Interaction Network. J. Biomedicine and Biotechnology 2005, 2005(2):96-103.
    [146]Wuchty S, Stadler PF:Centers of Complex Networks. J. Theoretical Biology 2003, 223(1):45-53.
    [147]Bonacich P:Power and Centrality:A Family of Measures. Am. J. Sociology 1987, 92(5):1170-1182.
    [148]Stevenson K, Zelen M:Rethinking Centrality:Methods and Examples. Social Networks 1989, 11(1):1-37.
    [149]Wang J, Li M, Wang H, Pan Y:A New Method for Identifying Essential Proteins Based on Edge Clustering Coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2012,9(1):.
    [150]Chen J, Yuan B:Detecting Functional Modules in the Yeast Protein-Protein Interaction Network. Bioinformatics 2006,22:2283-2290.
    [151]Li M, Wang J, Wang H, Pan Y:Essential Proteins Discovery from Weighted Protein Interaction Networks. Proceedings of the 7th international conference on Bioinformatics research and applications 2010,6053:89-100.
    [152]M Li,H Zhang, J Wang and Y Pan:A new essential protein discovery method based on the integration of proteinprotein interaction and gene expression data. BMC Systems Biology 2012,6:15.
    [153]Rigaut G, Shevchenko A, Rutz B, Wilm M and Mann M:A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 1999,17(10):1030-1032.
    [154]Tarassov K, Messier V, Landry CR, Radinovic S, Molina MM and Shames I:An in vivo map of the yeast protein interactome. Science 2008,320(5882):1465-1470.
    [155]Schonbach C:Molecular biology of protein-protein interactions for computer scientists. Biological data mining in protein interaction networks IGI Global, USA: Li XL, Ng SK 2009,1-13.
    [156]Tong A, Drees B, Nardelli G, Bader G, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CW, Fields S, Boone C, Cesareni G:A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 2002, 295(5553):321-324.
    [157]Van Dongen S:Graph Clustering by Flow Simulation. In PhD Thesis University of Utrecht; 2000.
    [158]Enright AJ, Van Dongen S and Ouzounis CA:An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 2002,30(7):1575-1584.
    [159]Brohee S and van Helden J:Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 2006,7:488.
    [160]Krogan N, Cagney G, Yu H, Zhong G and Guo X, et al:Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006,440(7084):637-643.
    [161]Pu S, Vlasblom J, Emili A, Greenblatt J and Wodak SJ:Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics 2007, 7(6):944-960.
    [162]Hart GT, Lee I and Marcotte E:A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 2007, 8:236.
    [163]Friedel CC, Krumsiek J and Zimmer R:Boostrapping the Interactome:Unsupervised Identification of Protein Complexes in Yeast. RECOMB 2008,3-16.
    [164]Bader G and Hogue C:An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003,4:2.
    [165]Adamcsek B, Palla G, Farkas IJ, Derenyi I and Vicsek T:CFinder:locating cliques and overlapping modules in biological networks. Bioinformatics 2006, 22(8):1021-1023.
    [166]Palla G, Derenyi I, Farkas I and Vicsek T:Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435(7043):814-818.
    [167]Wu M, Li XL, Kwoh CK and Ng SK:A Core-Attachment based Method to Detect Protein Complexes in PPI Networks. BMC Bioinformatics 2009,10:169.
    [168]Liu G, Wong L and Chua HN:Complex discovery from weighted PPI networks. Bioinformatics 2009,25(15):1891-1897.
    [169]Jiang P and Singh M:SPICi:a fast clustering algorithm for large biological networks. Bioinformatics 2010,26(8):1105-1111.
    [170]Wang J, Li M, Chen J, Pan Y:A Fast Hierarchical Clustering Algorithm for Functional Modules Discovery in Protein Interaction Networks. Computational Biology and Bioinformatics, IEEE/ACM Transactions on 2011,8(3):607-620.
    [171]Nepusz T, Yu H and Paccanaro A:Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods 2012,9(5):471-475.
    [172]Bhardwaj N and Lu H:Correlation between gene expression profiles and protein-protein interactions within and across genomes. Bioinformatics 2005, 21(11):2730-2738.
    [173]Wolfe CJ, Kohane IS and Butte AJ:Systematic survey revals general applicability of 'guilt-by-association' within gene coexpression networks. BMC Bioinformatics 2005,6(79).
    [174]Feng J, Jiang R and Jiang T:A Max-Flow Based Approach to the Identification of Protein Complexes Using Protein Interaction and Microarray Data. CSB 2008, 51-62.
    [175]Maraziotis I, Dimitrakopoulou K and Bezerianos A:Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 2007,8:408.
    [176]Shatkay H, Edwards S, Wilbur WJ, Boguski M:Genes, themes, and microarray: using information retrieval for large-scale gene analysis. In Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, August 16-23, La Jolla, California Edited by:Altman R, Bailey TL, Bourne P, Gribskov M, Lengauer T, Shindyalov IN, Eyck LFT, Weissig H. AAAI Press; 2000:317-328.
    [177]Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russel PB, Superti FG:Proteome survey reveals modularity of the yeast cell machinery. Nature 2006,440:631-636.
    [178]Collins SR, Kemmeren P, Zhao XC, Greenbalt JF, Spencer F, Holstege F, Weissman J, Krogan NJ:Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 2007,6:439-450.
    [179]Zhang B, Park BH, Karpinets T, Samatova N:From pull-down data to protein interaction networks and complexes with biological relevance. Systems Biology 2008,24:979-986.
    [180]Chua H, Ning K, Sung W, Leong H, Wong L:Using indirect protein-protein interactions for protein complex prediction. J Bioinformatics and Computational Biology 2008,6:435-466.
    [181]Liu G, Li J, Wong L:Assessing and predicting protein interactions using both local and global network topological metrics. Genome Informatics 2008,22:138-149.
    [182]Dongen S:Graph clustering by flow simulation. PhD thesis University of Utrecht 2000.
    [183]Wang H, kakaradov B, Collins SR, Karotki L, Fiedler D, Shales M, Shokat KM, Walter T, Krogan NJ, Koller D:A complex-based reconstruction of the Saccharomyces cerevisiae interactome. Mol Cell Proteomics 2009,8:1361-1377.
    [184]Fridel C, Zimmer R:Identifying the topology of protein complexes from affinity purification assays. Systems Biology 2009,25:2140-2146.
    [185]Voevodski K, Yu X:Spectral affinity in protein networks. BMC Systems Biology 2009,3:112.
    [186]Radicchi F, Castellano C, Cecconi F, Loreto V and Parisi D:Defining and Identifying Communities in Networks. Proc. Nat'l Academy of Sciences USA 2004, 101(9):2658-2663.
    [187]Goh KI, Cusick ME, Valle D, Childs B, Vidal M and Barabasi AL:The human disease network. Proc. Nat'1 Academy of Sciences USA 2007,104(21):8685-8690.
    [188]Dezso Z, Oltvai ZD, Barabasi AL:Bioinformatics Analysis of Experimentally Determined Protein Complexes in the Yeast Saccharomyces cerevisiae. Genome Res 2003,13:2450-2454.
    [189]Li XL, Wu M, Kwoh CK, Ng SK:Computational approaches for detecting protein complexes from protein interaction networks:a survey. BMC Genomics 2010, 11(suppl+1):S3.
    [190]Song J, Singh M:How and when should interactome-derived clusters be used to predict functional modules and protein function? BMC Bioinformatics 2009, 25(23):3143-3150.
    [191]Bader GD, Hogue CW:An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003,4(2).
    [192]Freeman TC, Goldovsky L, Brosch M, van Dongen S, Mazi'ere P, Grocock RJ, Freilich S, Thornton J, Enright AJ:Construction, visualization, and clustering of transcription networks from microarray expression data. PLoS Computational Biology 2007,3(10):e206.
    [193]Ala U, Piro RM, Grassi E, Damasco C, Silengo L, Oti M, Provero P, Cunto FD: Prediction of human disease genes by humanmouse conserved coexpression analysis. PLoS Computational Biology 2008,4(3):e1000043.
    [194]Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS:Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America 2000,97(22):12182-12186.
    [195]Voy BH, Schar JA, Perkins AD, Saxton AM, Borate B, Chesler EJ, Branstetter LK, Langston MA:Extracting gene networks for low-dose radiation using graph theoretical algorithms. PloS Computational Biology 2006,2(7):e89.
    [196]Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P:Coexpression analysis of human genes across many microarray data sets. Genome Research 2004,14:1085-1094.
    [197]Moriyama M, Hoshida Y, Otsuka M, Nishimura S, Kato N, Goto T, Taniguchi H, Shiratori Y, Seki N, Omata M:Relevance network between chemosensitivity and transcriptome in human hepatoma cells. Molecular Cancer Therapeutics 2003, 2:199-205.
    [198]Brohee S, van Helden J:Evaluation of clustering algorithms for proteinprotein interaction networks. BMC Bioinformatics 2006,7:488.
    [199]Blatt M, Wiseman S, Domany E:Superparamagnetic clustering of data. Physical Review 1998,57(4):3767-3783.
    [200]Vlasblom J, Wodak S:Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics 2009,10:99.
    [201]Wu M, Li XL, Kwoh K:Algorithms for Detecting Protein Complexes in PPI Networks:An Evaluation Study. (Supplementary paper presented at) International Conference on Pattern Recognition in Bioinformatics (PRIB); 2008 Oct 15-17; Melbourne, Australia 2008:135-146.
    [202]Pu S, Wong J, Turner B, Cho E. Wodak SJ:Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res 2009,37(3):825-831.
    [203]Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S:Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 2006,7:207-219.
    [204]Hu H, Yan X, Huang Y, Han J, Zhou X:Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 2005, 21(suppl 1):213-221.
    [205]Boyle El, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO::TermFinder-open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 2004,20(18):3710-3715.
    [206]Daraselia N, Yuryev A, Egorov S, Mazo I, Ispolatov I:Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks. BMC Bioinformatics 2007,8:243.
    [207]Cherry JM, et al.:SGD:Saccharomyces Genome Database. Nucleic Acids Res.1998, 26(1):73-79.
    [208]Zhang R, Lin Y:DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res.2009,37(Database issue):455-458.
    [209]Holman A, Davis P, Foster J, Carlow C and Kumar S:Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi. BMC Microbiology 2009,9(243).
    [210]Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI:A sampling of the yeast proteome. Mol Cell Biol 1999,19:7357-7368.
    [211]Greenbaum D, Jansen R, Gerstein M:Analysis of mRNA expression and protein abundance data:An approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics 2002,18:586-596.
    [212]Jansen R, Greenbaum D, Gerstein M:Relating whole-genome expression data with protein-protein interactions. Genome Res 2002,12:37-46.
    [213]Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S:Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 2006,7:207.
    [214]Li X, Foo C, Ng S:Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. CSB 2007:157-168.
    [215]Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M.: 'BioGRID:a general repository for interaction datasets', Nucl. Acids Res.,2006,34, pp.535-539
    [216]Boyle El, Weng S, Gollub J, Jin H, Botstein D, Cherry JM and Sherlock G: GO::TermFinder-open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 2004,20(18):3710-3715.
    [217]Zaki, N., Berengueres, J., and Efimov, D.:'Detection of protein complexes using a protein ranking algorithm', Proteins,2012,80(10), pp.2459-68
    [218]Bader GD, Hogue CWV:Analyzing yeast protein-protein interaction data obtained from different sources. Nature Biotechnology 2002,20:991-997.
    [219]Batada N, Hurst LD, Tyers M:Evolutionary and physiological importance of hub proteins. PLoS Comp Bio 2006,2:e88.
    [220]Bader, G. D.& Hogue, C. W. An automated method for nding molecular complexes in large protein interaction networks. BMC Bioinformatics 4,2 (2003).
    [221]Jansen, R.& Gerstein, M. Analyzing protein function on a genomic scale:the importance of gold-standard positives and negatives for network prediction. Curr. Opin. Microbiol.7,535-545 (2004).
    [222]Huh, W.-K. K. et al. Global analysis of protein localization in budding yeast. Nature 425,686-691 (2003).
    [223]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, AHarris M, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G:Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000,25:25-9.
    [224]Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R:The Gene Ontology Annotation (GOA) Database:sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 2004:D262-D266.
    [225]Schlicker, A., Domingues, F.S., Rahnenfuhrer, J. And Lengauer, T., A new measure for functional similarity of gene products based on Gene Ontology, BMC Bioinformatics 2006,7:302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700