用户名: 密码: 验证码:
复合氧化膜对铁基高温合金抗氧化性能影响与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁基高温合金是广泛应用于航空、航天、能源、冶金和石油化工等领域的高温结构材料。现代工业的高速发展对设备材料的高温抗氧化性能提出了越来越高的要求,通过复合氧化膜的高温抗氧化性能研究,对深入认识铁基高温合金抗氧化机理,寻求合金抗氧化的新工艺、新方法,提高合金抗氧化使用温度,进一步开发研制新型高性能铁基高温合金具有重要意义。
     本文以铁基高温合金K273与耐热钢ZG40Cr24为母合金,通过Al、Si元素合金化植入的方法,采用中频感应电炉不氧化法熔炼铸造试验合金。按照国标依据氧化增重的方法对试验合金进行1100℃,500小时抗氧化试验。通过SEM扫描电镜,EDS能谱分析,X-射线衍射分析,直流双桥电阻仪,激光导热仪等多种测试技术,系统研究了氧化膜形貌、氧化膜成分对试验合金抗氧化性能的影响;复合氧化膜的热力学生成;复合氧化膜生成后阻滞基体金属进一步氧化的机制;试验合金氧化动力学规律以及氧化膜高温热稳定性、抗剥落性。最后以实验为依据,结合理论分析研制了双相铁基高温合金,对其高温抗氧化性以及高温、室温强塑性进行了综合测试。
     高温合金K273与耐热钢ZG40Cr24通过合金化植入2wt.%Si+4wt.%Al后,高温抗氧化性能均得到显著提高,1100℃氧化增重速率分别由原来的12.2557g.m-2.h-1、3.53 1 9 g.m-2.h-1降低到0.3542g.m-2.h-1、0.0633g.m-2.h-1,由原来的不抗氧化、弱抗氧化提升为强抗氧化和完全抗氧化水平。
     通过金属元素氧化热力学计算建立了复合氧化膜的生成模型。试验合金于1100℃高温下,依据氧化物吉布斯生成自由能的大小,Fe、Cr、Ni、Mn、Al、Si等金属元素不断竞争氧化与还原,最终生成了由Cr2O3,α-Al2O3,SiO2及尖晶石Fe(Ni,Mn)Cr2O4组成的复合氧化膜。该复合氧化膜结构平坦,组织致密,氧化物颗粒度均匀细小,具有优异的抗氧化性能。
     通过氧化膜形貌,物相成份,元素分布等实验表征,以及氧化膜电导性与热扩散性的测量分析,研究了复合氧化膜的抗氧化机制。复合氧化膜是由P型半导体氧化物和N型半导体氧化物高度复合而成,减少了氧化膜内部离子、电子的扩散迁移数量,大大降低了金属基体的进一步氧化反应速度;同时,氧化膜内部的P、N型半导体氧化物组成了无数个PN结,PN结具有单向电荷导通性,无数个PN结在空间上呈现无序排列,各向同性,于是复合氧化膜任意方向均为电荷非导通状态,整体表现出电绝缘性质,因此复合氧化膜阻止了电化学腐蚀的进行,合金的抗氧化耐腐蚀能力极大提高。
     Al、Si元素的加入使高温合金K273与耐热钢的氧化膜抗剥落性大大增强,1100℃ZG40Cr24试验合金氧化膜剥落速率由原来的1.2681 g.m-2.h-1降低为0,达到完全抗剥落性。这是由于a-Al2O3与Fe基体体积比值:1.5     通过对氧化增重数据的最小二乘法回归分析,复合氧化膜1100℃氧化动力学曲线严格遵循幂函数规律,幂函数方程为y=axb,(a>0,0     通过合金化元素配比,研制了一种新型双相铁基高温合金:15Cr23Ni9Al3Si2,试验合金基体由奥氏体与铁素体两相组成。1100℃高温下,试验合金表层自发生成P+N型半导体复合氧化膜,氧化增重速率为0.0576g.m-2.h-1,氧化膜剥落速率为0,达到了完全抗氧化水平。试验合金室温拉伸强度达到σb 386.7MPa,屈服强度σp0.2305.8MPa,断面收缩率ψ5.8%;1100℃高温拉伸强度达到σb 122.5MPa,屈服强度σp0.295.5MPa,断面收缩率ψ18.4%。室温及高温强塑性达到较高水平。
Ferro based supperalloys have broad prospect in the application fields of aircraft, spacecraft, energy resource, metallurgical and petrochemistry industrys. The zooming morden industry calls for critical high temperature oxidation ressitance of materials. By research of composite oxide scale on high temperature oxidation resistane, it is of great significance to understand the oxidation resistance mechanism, find new method and technology for oxidation resistance in higher temperature, and develop new unique properties ferro based supperalloys.
     Based on Ferro based supperalloy K273 and heat resistant steel ZG40Cr24, test alloys were cast by intermediate frequency induction furnace with non-oxidation method by alloying of Al and Si. The oxidation reistance at 1100℃for 500 hours of test alloys was carried out according to oxidation weight gain method by Chinese standard. By Scan Electricle Microscope, Energy Dispersive Spectroscope, X-ray Diffractor, Direct Current Resistance Meter, and Laser Thermal Conductivity, the effects of scale morphology and compositions on oxidation resistance were analyzed, the thermodynamic forming, oxidation resistance mechanism, oxidation kinetics, thermal stability and exfoliaton resistance of composite scale were studied systematically. A kind of dual phase ferro based supperalloy was developed on the experiment and theory analysis, and the high temperature oxidation resistance, high temperature and room temperature mechanical properties were examined.
     By alloy planting of 2wt.%Si and 4wt.%Al, the oxidation resistance of supperalloy K273 and heat rsistant steel ZG40Cr24 at 1100℃were both elevated remarkablely, the oxidation weight gain rate decreased from 12.2557g.m-2.h-1 and 3.5319g.m-2.h-1 to 0.3542g.m-2.h-1 and 0.0633g.m-2.h-1 respectively, the properties changed from none oxidation resistance to strong oxidation resistance for K273, and from the poor to the complete for ZG40Cr24.
     The growing modle of composite scale was established, by thermodynamics calculation of alloying elements. According to the Gibbs energy, Fe, Cr, Ni, Mn, Al, Si compete to be oxidated or deoxidated, so the composite scale made up of Cr2O3,α-Al2O3, SiO2 and spinel Fe(Ni,Mn)Cr2O4 came into being. Plane and compact structure, fine and even oxide grains endowed the composte scale with excellent high temperature oxidation resistance.
     By tests and analysis of oxides morphology, phase composition, elements distribution, electrical resistance, and thermal diffusion, the essence of composite scale oxidation resistance was fond to be that, the P type and N type semiconductor oxides in composite scale compose to be PN junctions, every PN junction is unilateral electrical conductivity, and numerous PN junctions arrange out of order in space, so the composite scale comes to be isolated on the whole, the transferring of ions and electrons in scale are hold back greatly, thus the further oxidation rate of base metal falls greatly, and the oxidation resistance of composite scale goes up markedly.
     With the adding of Al and Si, the scale exfoliation resistance of K273 and ZG40Cr24 was reinforced greatly, the scale exfoliation weight gain rate at at 1100℃descend from 1.2681g.m-2.h-1 to zero, reaching complete exfoliation reistance for ZG40Cr24 test alloy. Beacause of 1.5< PBRα-AlO3 Fe<2 and the growning of SiO2 from the out side of scale- scale/oxyzen interface, the composite scale grows whole and compact without accumulation of growing stress. At the same time, the even and fine oxides grains strengthen the scale intension by Hall-Petch theory. So the composite scale thermal stability of the boost up.
     According to the oxidation weight gains, the oxidation kinetics curves were plotted, and the equations were regressed by least squear method and none-linear curve fitting. The oxidation kinetics curves of composite scale strictly follow the power function of y=axb (a>0,0     By alloying of metal elements, a new type of dual phase ferro based supperalloy:15Cr23Ni9A13Si2 is developed. The base structure is made up of austenite and ferrite. At 1100℃, the P+N type semiconductor oxide scale comes into being spontaneously. With the oxidation wight gain rate of 0.0576 g.m-2h-1, and zero scale exfoliation, test alloy possesses complete oxidation resistance. With high temperature intension and plasticity:σb 386.7MPa,σp0.2 305.8MPa, (?)5.8%, and room temperature intension and plasticity:σb 122.5MPa,σp0.2 95.5MPa,(?)18.4%, test alloy reaches high level in mechanical properties.
引文
[1]Quets J. M., Dresher W. H.. Thermochemistry of Hot Corrosion of Supperalloys. Journal of Metals,1969,4(3):583
    [2]SIMS C.T., HAGEL W.C.. The Superalloys. New York:John Wiley & Sons,1972
    [3]张祖谦,刘志中.涡轮叶片用高温合金发展中的几个问题.国际航空,1978(4):43
    [4]胡本芙.高温合金研究的新进展.北京科技大学学报,1981,(03):57
    [5]JOSEPH R.D.. Metals Handbook,10th edition, Vol.1, Properties and Selection.1990
    [6]西姆斯C.T.,斯特劳夫N.S.,里格尔W.C..高温合金.赵杰等译.大连:大连理工大学出版社,1991
    [7]殷克勤.我国航空涡轮高温材料及工艺发展.材料工程,1997(9):3
    [8]陈荣章.北京航空材料研究院铸造高温合金发展40年.材料工程,1998(10):3
    [9]崇高,张西平,张建军等.高温工况下一种耐热耐磨新材料材料的组织性能研究.铸造技术,2001,4:54
    [10]陈荣章,王罗宝;李建华.铸造高温合金发展的回顾与展望.航空材料学报,2000,20(1): 55
    [11]丁桦,张凯峰.材料超塑性研究的现状与发展.中国有色金属学报,2004,(7):1059
    [12]Kurt P.,Rohrbach.高温合金的发展与选择.宇航材料工艺,2005,(01):38
    [13]周永军,王瑞丹.镍基超合金的发展和研究现状.沈阳航空工业学院学报,2006,2(01):84
    [14]师吕绪.中国高温合金四十年.北京:中国科学技术出版社,1996
    [15]师吕绪,仲增墉.中国高温合金40年.金属学报,1997,33(1):1
    [16]李殿魁.无钴的铁基铸造高温合金.机械工程材料,1983(02):102
    [17]B.B.谢多洛夫,全宏声.铸造高温合金熔炼工:艺中的冶金原则.航空材料学报,1991(S1):96
    [18]何国,李建国,毛协民等.单晶高温合金的发展及其改善性能的途径.材料工程,1992,(S1):85
    [19]骨继华,韩桂春,鲁国荣.稀土元素对耐热钢高温性能的影响.特殊钢,1993(4):11
    [20]陈荣章.单晶高温合金发展现状.材料工程,1995(9):3
    [21]Korostelin A.A., Nikolaev A.G.. Heat-resistant steel-aluminium wire and equipment for its production. Tyazheloe Mashinostroenie,1997(5):32
    [22]刘国志.合金元素对耐热钢组织和性能的影响.材料开发与应用,1997,12(1):17
    [23]汤鑫,刘发信,韩梅.高温合金细晶铸造技术研究.材料工程,1997(9):24
    [24]米国发,李周,张智慧,刘仲武,张国庆,田世藩.喷射沉积高温合金的显微组织及其
    力学性能[J].航空材料学报,1998,(01)
    [25]李殿魁,孙德生.GH696铁基时效硬化型高温合金的研究.上海钢研,1999(2):3
    [26]马敏团,王志选,焦晓慧.一种节镍型耐热钢的研制.热加工工艺,2003(2):44
    [27]Fu Hengzhi, Shen Jun, Li Shuangming, et al. An investigation on electromagnetic shaping and solidification behavior of supperalloys under vacuum environment. Materials Science Forum,2003,426-432(1):773,2003
    [28]杨海欧,陈静,李延民等.Rene95高温合金激光快速成形试样的力学性能.稀有金属材料与工程,2003(4):73
    [29]郝红元.新型铁基高温合金成分及组织分析.科技情报开发与经济,2006,16(15):159
    [30]谢锡善,董建新,胡尧和等.铁镍基高温耐蚀合金的研究与发展.世界钢铁,2009(1):50
    [31]T.T. Huang, B. Peterson, D.A. Shores, et al. XPS and AES studies of the high temperature corrosion mechanism of Fe-30Cr alloy. Corrosion Science,1984,24(3):167
    [32]Zhang Jinghua, Hu Zhuangqi, Xu Yongbo, et al. High cycle fatigue behavior of a single. crystal superalloy. Materials Science Progress,1993,7(4):277
    [33]陈军.不锈钢热浸镀铝后的抗氧化性能.热加工工艺,1998(6):12
    [34]殷凤仕,孙晓峰,李耀彪等.熔体过热处理对M963合金组织和高温持久性能的影响.金属学报,2003(01):24
    [35]王恩泽,徐雁平,鲍崇高等,Al2O3颗粒/耐热钢复合材料的制备及高温磨料磨损性能.复合材料学报,2004(01):67
    [36]胥国华,焦兰英,张北江等.固溶冷却速度对GH4586合金组织及850℃拉伸性能的影响.材料热处理学报,2006(02):72
    [37]金海鹏,李嘉荣.第二代单晶高温合金DD6 长期时效后的拉伸性能[J].材料工程2007(03):23
    [38]金文中.高温合金母合金锭的真空电磁铸造技术研究.稀有金属材料与工程,2007(4):113
    [39]D.G. Morris, M.A. Munoz-Morris, I. Gutierrez-Urrutia. Precipitation in ductile Fe-18A1-5Cr alloys with additions of Mo, W and C and effects on high-temperature strength. Intermetallics, 2009,17(6):404
    [40]Kofstad P. High Temperature Oxidation of Metals New York:Wiley,1966
    [41]杨山正孝.金属材料の加热と酸化.诚文堂新光社,1959
    [42]#12
    [43]T. Sims, S. Stoloff, C. Magel. Supperalloys. New York:John wiley,1987
    [44]李铁藩,金属高温氧化和热腐蚀,北京:化学工业出版社,2003:18
    [45]Wang Yonggang, He Yedong, Zhu Rizhang. Internal oxidation of Fe3AL during high temperature oxidation. Transactions of Nonferrous Metals Society of China,1998,8(1):52
    [46]Bouaouine H., Armanet F., Coddet C Study of High-Temperature Oxidation of Fe-Cr-Al and Fe-Ni-Cr-Al Alloys. National Research Council of Canada,1984:379
    [47]Tjong S.C.. High Temperature Oxidation of the Austenitic Fe-9Al-30Mn-1.0C and Duplex Fe-10Al-29Mn-0.4C Alloys. Transactions of the Japan Institute of Metals,1987,28(8):671
    [48]崔彤,王介强,王晓轩等.GH4169合金高温氧化特征,腐蚀科学与防护技术,2004,16(4):192
    [49]叶长江;李铁藩;郭建亭等.含Mo的Ni_3Al—Fe基合金在900-1100℃空气中的氧化行为.中国腐蚀与防护学报,1995,15(2):100
    [50]Inoue Tadashi Kobayashi Akio, Yamauchi Katsuhisa, Hosoya Yoshihiro. Effects of alloying elements on high temperature oxidation of 42% Ni iron-based alloy. Journal of the Iron and Steel Institute of Japan,2007,93(6):409
    [51]绢川武良司.铁と钢.1934,20:708
    [52]甲藤新.铁と钢.1935,21:452
    [53]Wendell B. Jones, J.C. Swearengen. Mechanical stability of ultrahigh strength steels. Materials Science and Engineering,1979,41(2):225
    [54]R.M. Davison, T.R. Laurin, J.D. Redmond, et al. A review of worldwide developments in stainless steels. Materials & Design,1986,7(3):111
    [55]L. Arnberg, E. Larsson, S. Savage, et al. New heat resistant tool materials produced from devitrified amorphous Fe-Cr-Mo-C-B and Fe-Cr-Mo-C-V powders. Materials Science and Engineering:A,1991,133(15):288
    [56]Tomasz Brylewski, Makoto Nanko, Toshio Maruyama, et al. Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics,2001,143(2):131
    [57]R. W. Swindeman, M. L. Santella, P. J. Maziasz, et al. Issues in replacing Cr-Mo steels and stainless steels with 9Cr-1Mo-V steel. International Journal of Pressure Vessels and Piping, 2004,81(6):507
    [58]S.Q. Wang, F. Wang, X.H. Cui, et al. Effect of secondary carbides on oxidation wear of the Cr-Mo-V cast steels. Materials Letters,2008,62(2):279
    [59]王执福,稀十高铬锰氮1000℃耐热钢研制,鉴定会资料,1984
    [60]V. Mitrovic-Scepanovic, B. MacDougall, M.J. Graham. The effect of Cl- ions on the passivation of Fe-26Cr alloy. Corrosion Science,1987,27(3):239
    [61]滕新营, 山东大学硕十学位论文:Fe-Cr-Ni-N耐热钢的研究,1996:49
    [62]孙玉福,邓想,石广新.ZG30CR30NI8SI2NRE耐热钢的抗氧化性研究.热加工工艺,2005(3):19
    [63]Thiago Fontoura de Andrade, Andrea Madeira Kliauga, Ronald Lesley Plaut, et al. Precipitation of Laves phase in a 28%Cr-4%Ni-2%Mo-Nb superferritic stainless steel. Materials Characterization,2008,59(5):503
    [64]内藤逸佐,铁と钢.1940,26:71
    [65]たとぇほ,欠岛悦次郎,铁と钢.1942,28:1102
    [66]大仓幸雄,铁と钢.1942,28:137
    [67]绢川武良司.铁と钢.1940,26:609
    [68]王执福,稀土高铬镍氮1200℃耐热钢研制.鉴定会资料,1985
    [69]刘含莲,滕新营,王执福等.Fe-Cr-Ni-N高温耐热钢的抗氧化性研究.铸造技术,2001(06):55
    [70]S. H. Cho, J. S. Zhang, Y. J. Shin, et al. Corrosion behavior of Fe-Ni-Cr alloys in the molten salt of LiCl-Li2O at high temperature. Journal of Nuclear Materials,2004,325(1):13
    [71]Bani P. Mohanty, David A. Shores. Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part I:Experimental studies. Corrosion Science,2004,46(12):2893
    [72]V.G. Prokoshkina, L.M. Kaputkina. Structure heredity, aging and stability of strengthening of Cr-Ni maraging steels. Materials Science and Engineering:A,2006,438-440:222
    [73]C. Pettersson, J. Pettersson, H. Asteman, et al. KCl-induced high temperature corrosion of the austenitic Fe-Cr-Ni alloys 304L and Sanicro 28 at 600 ℃. Corrosion Science,2006,48(6): 1368
    [74]S.V. Dobatkin, O.V. Rybal'chenko, G.I. Raab. Structure formation, phase transformations and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating. Materials Science and Engineering:A,2007,463(1-2):41
    [75]D. Rai, B. Singh, J. Singh. Characterisation of wear behaviour of different microstructures in Ni-Cr-Mo-V steel. Wear,2007,263(1-6):821
    [76]K. Shimizu, T. Naruse, Y. Xinba, et al. Erosive wear properties of high V-Cr-Ni stainless spheroidal carbides cast iron at high temperature. Wear,2009,267(1-4):104
    [77]Raluca Voicu, Jacques Lacaze, Eric Andrieu, et al. Creep and tensile behaviour of austenitic Fe-Cr-Ni stainless steels. Materials Science and Engineering:A,2009,510-511(15):185
    [78]C. Badini, F. Laurella. Oxidation of FeCrAl alloy:influence of temperature and atmosphere on scale growth rate and mechanism. Surface and Coatings Technology,2001,135(2-3):291
    [79]Wolff I M, Iorio L E, Rumpf T, et al. Oxidation and corrosion behaviour of Fe-Cr and Fe-Cr-Al alloys with minor alloying additions [J]. Materials Science and Engineering A, 1998,241:264
    [80]J. Namkung, M. C. Kim, W. W. Park. Fabrication of Fe-Cr-Al base alloy strips by melt dragging and their oxidation resistance at elevated temperature. Journal of Materials Processing Technology,2001,115(3):391
    [81]K. Messaoudi, A. M. Huntz, B. Lesage. Diffusion and growth mechanism of Al2O3 scales on ferritic Fe-Cr-Al alloys. Materials Science and Engineering A,1998,247(1-2):248
    [82]J. Namkung, M. C. Kim, W. W. Park. Fabrication of Fe-Cr-Al base alloy strips by melt
    dragging and their oxidation resistance at elevated temperature. Journal of Materials Processing Technology,2001,115(3)391
    [83]F.H. Stott, F.A. Golightly, G.C. Wood. The influence of thermal cycling on the oxidation behaviour of Fe-Cr-Al and Fe-Cr-Al-Y alloys at 1200℃. Corrosion Science,1979,19(11): 889
    [84]P.E. Gannon, C.T. Tripp, A.K. et al. Knospe, High-temperature oxidation resistance and surface electrical conductivity of stainless steels with filtered arc Cr-Al-N multilayer and/or superlattice coatings. Surface and Coatings Technology,2004,188-189:55
    [85]Y.S. Li, M. Spiegel, S. Shimada. Effect of Al/Si addition on KCl induced corrosion of 9% Cr steel. Materials Letters,2004,58(29):3787
    [86]Thad M, Adams, Paul Korinko, et al. Evaluation of oxidation and hydrogen permeation in Al-containing stainless steel alloys. Materials Science and Engineering:A,2006,424(1-2): 33-39.
    [87]Sharafi S, Farhang M R. Effect of aluminizing on surface microstructure of an HH309 stainless steel[J]. Surface and Coatings Technology,2006,200:5048-5051.
    [88]I. M. Wolff, L. E. Iorio, T. Rumpf, Oxidation and corrosion behaviour of Fe-Cr and Fe-Cr-Al alloys with minor alloying additions. Materials Science and Engineering A,1998, 241(1-2):264
    [89]孙本茂,王执福.铬铝耐热合金的研制与应用.铸造,1996(7):31
    [90]李河清.铸造Fe-Cr-Ni-Al耐热合金的研究,山东大学硕士学位论文,1997:48
    [91]S. C. Tjong. Oxidation of Fe-25Cr-4Al-Pd and Fe-25Cr-4Al-Ru alloys. Materials Characterization,1993.30(4):235
    [92]Bei Li, Peiliang Li, Limin Wang Influence of rare earths on wrinkle formation in the scale of Fe-Cr-Al alloy. Journal of the Less Common Metals,1983.93(2):277
    [93]Y. Niu, S. Wang, F. Gao, et al. The nature of the third-element effect in the oxidation of Fe-xCr-3 at.% A1 alloys in 1 atm O2 at 1000 C. Corrosion Science,2008.50(2):345
    [94]Z.G. Zhang, F. Gesmundo, P.Y. Hou,et al. Criteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al alloys. Corrosion Science,2006,48(3):741
    [95]Niu Y, Wang S, Gao F, et al. Ultra-thin aluminum oxide as a thermal oxidation barrier on metal films. Thin Solid Films,2002,415:219
    [96]Hamida Essom, Mohamed Lamine Fares. Role de la precipitation sur l'oxydation d'un alliage Fe-Cr-Al dans l'air a 1100°CThe role of precipitation in the oxidation of an Fe-Cr-Al alloy in air at 1100°C. Annales de Chimie Science des Materiaux,2002,27(4):53
    [97]P.S Sidky, M.G Hocking. The effect of pre-oxidation and thermal cycling on the corrosion behaviour of Fe-Cr-Al-based alloys in a coal gasifier atmosphere. Corrosion Science,1989, 29(6):735
    [98]国家技术监督局.高电阻电热合金.GB/T1234-1995,北京:中国标准出版社,1995
    [99]孟祥敏,章靖国,吴玉琨.快凝Fe_(60)Cr_(27)Al_(13)合金显微结构的电镜分析.电子显微学报,1994,06:473
    [100]王海涛,铸造双相铁基高温合金的研究,山东大学硕士学位论文,1998:37
    [101]S. Spindler, R. Wittmann, D. Gerthsen, et al. Dislocation properties of polycrystalline Fe-Cr-Al alloys and their correlation with mechanical properties. Materials Science and Engineering A,2000,289(1-2):151
    [101]K. P. Ngwenya, I. M. Wolff. Precipitation strengthening and age-hardening in ferritic Fe-Cr-Al-Ru alloys. Scripta Materialia,2001,44(2):201
    [102]Haitham El Kadiri, Yves Bienvenu, Kiran Solanki, et al. Creep and tensile behaviors of Fe-Cr-Al foils and laser microwelds at high temperature. Materials Science and Engineering:A,2006.421(1-2):168
    [102]J. Kopecek, P. Lejcek. Preferential growth direction in Fe-28 at.%Al-4 at.%Cr alloy. Journal of Crystal Growth,2006,287(2):267
    [103]H. Chadli, M. Retima, Y. Khenioui. Kinetics of oxidation of Fe-Cr-Al alloy Characterization by electrochemical spectroscopy of impedance in a 3% medium NaCl. Physics Procedia,2009,2(3):1015
    [104]Wen-Fung Wang, Meng-Jung Wu. effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC-Si stainless steels. Materials Science and Engineering:A,2006,425(1-2):167
    [105]I.S.Tashlykov, I. M. Belyi, O. G. Bobrovich, et al. Improvement of physical and chemical properties of steel implanted with Cr+, Ti+, Si+ ions. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1993,80(1,3):271
    [106]A. Ardehali Barani, D. Ponge, D. Raabe. Refinement of grain boundary carbides in a Si-Cr spring steel by thermomechanical treatment. Materials Science and Engineering:A,2006, 426(1-2):194
    [107]Rokuro Nishimura, Koji Yamakawa, et al. Junko Ishiga,Highly corrosion resistant stainless steel with Si implanted/deposited phase. Materials Chemistry and Physics,1998,54(1-3):289
    [108]Shuqi Guo, Yutaka Kagawa Effect of matrix modification on tensile mechanical behavior of Tyranno Si-Ti-C-O fiber-reinforced SiC matrix minicomposite at room and elevated temperatures. Journal of the European Ceramic Society,2004,24(10-11):3261
    [109]A. Barbacki, E. Mikolajski Optimization of heat treatment conditions for maximum toughness of high strength silicon steel. Journal of Materials Processing Technology,1998, 78(1-3):18
    [110]Jyotsna Dutta Majumdar Development of wear resistant composite surface on mild steel by laser surface alloying with silicon and reactive melting. Materials Letters,2008,62(27):4257
    [111]Joong-Hwan Jun, Shin-Ho Lee, et al. Young-Kook Lee, Effect of Si addition on the damping capacity of a high carbon steel.Materials Science and Engineering A,1999,267(1): 145
    [112]J. Barros, T. Ros-Yanez, O. Fischer, Texture development during the production of high Si steel by hot dipping and diffusion annealing. Journal of Magnetism and Magnetic Materials, 2006,304(2):e614
    [113]Mykola DZubinsky, Frantisek KovacMicrostructure and texture development of Fe-3%Si GO steel during high temperature annealing. Journal of Magnetism and Magnetic Materials, 254-255:388
    [114]V. E. Iordache, F. Ossart, E. Hug Magnetic characterisation of elastically and plastically tensile strained non-oriented Fe-3.2%Si steel. Journal of Magnetism and Magnetic Materials,2003,254-255:57
    [115]Xiang Chen, Yanxiang Li Fracture toughness improvement of austempered high silicon steel by titanium, vanadium and rare earth elements modification. Materials Science and Engineering:A,2007,444(1-2):298
    [116]Chun-Kan Hou Effect of silicon on the loss separation and permeability of laminated steels. Journal of Magnetism and Magnetic Materials,1996,162(2-3):280
    [117]Yanxiang Li, Xiang Chen Microstructure and mechanical properties of austempered high silicon cast steel. Materials Science and Engineering A,2001,308(1-2):277
    [118]D. Delagnes, P. Lamesle, M.H. Mathon, Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel. Materials Science and Engineering A,2005,394(1-2):435
    [119]F. J. Perez, E. Otero, M. P. Hierro, et al. Corrosion protection of 13CrMo 44 heat-resistant ferritic steel by silicon and cerium ion implantation for high-temperature applications. Surface and Coatings Technology,1998,108-109(1-3):121
    [120]D. Moseley, Y. Hu, V. Randle, T. Irons Role of silicon content and final annealing temperature on microtexture and microstructure development in non-oriented silicon steel. Materials Science and Engineering:A,2005,392(1-2):282
    [121]Susil K. Putatunda Fracture toughness of a high carbon and high silicon steel. Materials Science and Engineering A,2001,297(1-2):31
    [122]N. Chen, S. Zaefferer, L. Lahn, et al. Effects of topology on abnormal grain growth in silicon steel. Acta Materialia,2003,51(6):1755
    [123]Effect of silicon addition on recrystallization and phase transformation behavior of high-strength hot-rolled trip steel. Acta Metallurgica Sinica (English Letters),2008,21(3): 163
    [124]H. Inoue, T. Muroga, Y. Miyamoto, et al. Characteristics of point defects and their clustering processes in Fe-Mn-Cr and Fe-Mn-Si-Cr alloys. Journal of Nuclear Materials, 1992,191-194(2):1342
    [125]S.K. Huang, N. Li, Y.H. Wen, J. Teng, et al. Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy. Materials Science and Engineering:A, 2008,479(1-2):223
    [126]Advenit Makaya, Hasse Fredriksson. Study on the production of Fe-Cr-Mn-C-Si foam by nitrogen solubility difference between the liquid and solid phases. Materials Science and Engineering:A,2005,413-414:533
    [127]Jyrki Miettinen. Thermodynamic description of solution phases of systems Fe-Cr-Si and Fe-Ni-Si with low silicon contents and with application to stainless steels. Calphad,1999, 23(2):249
    [128]T.F. Tortorrelli, J.H. DeVan. Corrosion of Fe-Cr-Mn alloys in thermally convective lithium. Journal of Nuclear Materials,1986,141-143(2):579
    [129]M. Kemp, A. van Bennekom, F. P. A. Robinson. Evaluation of the corrosion and mechanical properties of a range of experimental Cr-Mn stainless steels. Materials Science and Engineering A,1995,199(2):183
    [130]A. Szummer, M. Janik-Czachor. Corrosion behaviour of low-manganese stainless steels. Corrosion Science,1993,35(1-4):317
    [131]Jozef Zrnik, Ondrej Muransky, Ondrej Stejskal, Effect of processing conditions on structure development and mechanical response of Si-Mn'TRIP'steel. Materials Science and Engineering:A,2008,483-484:71
    [132]Jozef Zrnik, Ondrej Stejskal, Zbysek Novy, et al. Structure dependence of the TRIP phenomenon in Si-Mn bulk steel. Materials Science and Engineering:A,2007,462(1-2): 253
    [133]R.F.A. Jargelius-Pettersson. Phase transformations in a manganese-alloyed austenitic stainless steel. Scripta Metallurgica et Materialia,1994,30(9):1233
    [134]A. M. Huntz, V. Bague, G. Beauple, Effect of silicon on the oxidation resistance of 9% Cr steels. Applied Surface Science,2003,207(1-4):255
    [135]Watanabe Ryoko, Ikehata Tomoharu, Takeda Mikako, et al. High-temperature Oxidation and Subscale Morphology of Si Containing Steels. Kusabiraki, Kiyoshi/Journal of the Iron and Steel Institute of Japan,2007,93(5):379
    [136]J.M. Francis, J.A. Jutson The role of silicon in determining the oxidation resistance of an austenitic steel. Materials Science and Engineering,1969,4(2-3):84
    [137]H.W. Griinling, R. Bauer The role of silicon in corrosion-resistant high temperature coatings. Thin Solid Films,1982,95(1):3
    [138]Hsu H W, Tsai W T. High temperature corrosion behavior of siliconized 310 stainless steel. Mater Chem Phys,2000,64:147-155.
    [139]Huntz A M, Bague V, Beauple G, et al. Effect of silicon on the oxidation resistance of 9% Cr steels. Appl Surf Sci,2003,207:255
    [140]Bamba G, Wouters Y, Galerie A, et al. Thermal oxidation kinetics and oxide scale adhesion of Fe-15Cr alloys as a function of their silicon content. Acta Materialia,2006,54(15):3917
    [141]F. J. Perez, M. J. Cristobal, M. P. Hierro, et al. The influence of implanted silicon on the cyclic oxidation behaviour of two different stainless steels. Surface and Coatings Technology,1999,120-121:442
    [142]Welsch G and Desai P D. Oxidation and Corrosion of Intermetallic Alloys. Metals Information Analysis Center CINDAS. Purdue University,1996,148:154
    [143]Stoosnijder M.F.. Review of High Temperature Corrosion of Metals and Alloys in Sulphidizing/Oxidizing Environments. Corrosion of Alloys. High Temperature Technology,1986,4(3):146
    [144]Bonnet G.. The Effect of Rare Earths Deposited on Steel Surfaces by Different Processes(Sol/Gel,Electrophoresis,OMCVD) on High Temperature Corrosion Behavior. Corrosion Science,1993,35(5-8):893
    [145]Kofstad P.. International Workshop on "New Fundamentals of Scale Growth. Oxidation of Metals,1989,32(1-2):125
    [146]Prescott R.. The Formation of Aluminium Oxide Scales on High-Temperature Alloys. Oxidation of Metals,1992,38(3-4):233
    [147]F. J. Perez, E. Otero, M. P. Hierro, et al. Corrosion protection of 13CrMo 44 heat-resistant ferritic steel by silicon and cerium ion implantation for high-temperature applications. Surface and Coatings Technology,1998,108-109(1-3):121
    [148]Shyh-An Lin, Ju-Tung Lee, Wen-Ta Tsai. Microstructural aspects and oxidation behavior of laser surface cladded silicon-containing stainless steels. Scripta Materialia,1998,38(4):559
    [149]A. Mosser, S.C. Srivastava, B. Carriere. Aes study of the segregation behaviour of silicon in high-silicon steel during oxidation. Surface Science,1983,133(1):L441
    [150]J.M. Francis, J.A. Jutson. The role of silicon in determining the oxidation resistance of an austenitic steel. Materials Science and Engineering,1969,4(2-3):84
    [151]P. Becquerelle, M. Hubert, B. Savage, et al. Effects of aluminium and silicon on the oxidation resistance of 13% Cr—Ti ferritic stainless steel. Materials Science and Engineering,1987,87:137
    [152]Geng Gangqiang, Wang Buqian, Peggy Y. Hou, et al. The effect of additional silicon on the corrosion and erosion-corrosion of low chromium steels. Wear,1991,50(1-2):89
    [153]V Borner, K Emmerich, K Frolich, High temperature oxidation behaviour of rapidly solidified Fe-Cr-Al ribbons. Materials Science and Engineering:A,134:1062
    [154]S.C. Tjong, L.T. Wu, N.J. Ho. Some aspects of the dislocation microstructures in fatigued Fe-Cr-Al alloys. Materials Science and Engineering,1988,100:79
    [155]L. Dumitrescu, F. Maury. A12O3 coatings on stainless steel from Al metal-organic chemical vapor deposition and thermal treatments. Surface and Coatings Technology,2000,125(1-3): 419
    [156]Katarzyna Pietrzak, Dariusz Kalinski, Marcin Chmielewski. Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina-heat resisting steel joints. Journal of the European Ceramic Society,2007,27(2-3):1281
    [157]J Le Coze, U Franzoni, O Cayla, et al. The development of high-temperature corrosion-resistant aluminium-containing ferritic steels. Materials Science and Engineering: A,1989,120-121(1):293
    [158]Naoya Masahashi, Go Kimura, Masaoki Oku, et al. Corrosion behavior of iron-aluminum alloys and its composite steel in sulfuric acid. Corrosion Science,2006,48(4):829
    [159]S. H. Flint, J. D. Brooks, P. J. Bremer Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci. Journal of Food Engineering,2000,43(4): 235
    [160]Goran Lindbergh, Baohua Zhu. Corrosion behaviour of high aluminium steels in molten carbonate in an anode gas environment. Electrochimica Acta,2001,46(8):1131
    [161]M. T. Kim, J. S. Jung. Codeposition of Al and Si onto a low carbon steel using silicon dioxide and aluminum and its hot temperature oxidation properties. Surface and Coatings Technology,2002,161(2-3):218
    [162]A. Heesemann, E. Schmidtke, F. Faupel, et al. Aluminum and silicon diffusion in Fe-Cr-Al alloys. Scripta Materialia,1999,40(5):517
    [163]J.G.E. Kariuki, M.S.J. Gani. The protection of steel by zinc/aluminium based coatings. Micron (1969),1980,11 (3-4):315
    [164]K.J. Weinmann, S.K. Kernosky. On the Formability of Aluminum-Coated Steel Sheet. CIRP Annals-Manufacturing Technology,1993,42(1):323
    [165]Garson P. Shulman, A. J. Bauman, Wolfgang Fromberg. Corrosion protection of steel using organic acid sealed anodized aluminum coatings. Metal Finishing,1996,94(6):93
    [166]A Lgamri, A Guenbour, A Ben Bachir, et al. Characterisation of electrolytically deposited alumina and yttrium modified alumina coatings on steel. Surface and Coatings Technology, 2003,162(2-3):154
    [167]F J Perez, M P Hierro, J A Trilleros. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology. Materials Chemistry and Physics,2006,97(1):50
    [168]E Huttunen-Saarivirta, F H Stott, V.Rohr Schiitze. Particle angularity effects on the elevated-temperature erosion-oxidation behaviour of aluminium diffusion coatings on 9% Cr steel, Wear,2006, (7-8):746
    [169]Min-Su HAN, Yong-Bin WOO, Seok-Cheol KO, et al.. Effects of thickness of Al thermal spray coating for STS 304. Transactions of Nonferrous Metals Society of China,2009, 19(4):925
    [170]D Chaliampalias, G Vourlias, E Pavlidou. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings. Applied Surface Science,2008, 255:3104
    [171]Ellingham H J. Society of Chemistry Industry,1944,63:125
    [172]Formhold A T. Theory of metal oxidation. Vol.1, Fundaments, North-Holland publication, Amsterdam, New York, Oxford,1976.
    [173]Leonard Jones. Transactions of faraday society.1932,28:333
    [174]Trapnell B M W. Chemisorption, Batterworty Science Publiction. London:1955.
    [175]Brunauer S. The Adorption of Gases and Vapours. Chemistry Bur of Plantt Industry, U.S.
    [176]Department of Agriculture Princeton, USA,1945
    [177]Garner W E. Chemistry of the Solid State. London, Butterworth Science Publication,1955: 487
    [178]Kroger F A, Vink H J. Solid State Physics. Ed. By Seitz F and Turnbell D. Academic Press, New York,1956,3:307
    [179]Kroger F A. The Chemistry of Imperfect Crystals. North-Holland Publishing. Co., Amasterdam, New York,1964
    [180]Kofstad P. Nonstoichiometry Diffusion and Electrical Conductivity in Binary Metal Oxides. Wiley, New York,1972
    [181]N B Pilling, R E Bedworth. The oxidation of metals in high temperature. Journal of Institute of Metals 1923,29:529
    [182]张家芸.冶金物理化学.北京:冶金工业出版社,2004:308
    [183]Gulbransen E A, Jasson S A. Heterogeneous kinetics at Elevated Temperatures. Worrell, Plenum Press, New York,1970
    [184]Wager C. Corrosion Science.1965,5:751
    [185]Janaf. Thermochemical Tables. Reprint No.60 from Journal of Physical and Chemical Referance Data,1975,4(1):175
    [186]Gulbransen E A, Andrew K F, Brassart F A. Journal of Electrochemistry society.1966,113: 834
    [187]Fick A.Pogg.Ann..1855,94:59
    [188]Wagner J B. Chemical Diffusion in Oxidation of Metals and Association Mass Transport. Publication of the Metallugical Society,1986:67
    [189]翟金坤.金属高温腐蚀.北京:北京航天航空大学出版社,1994:70
    [190]Kofstad P. Defects and Transport Properties of Metal Oxides. Oxidation of Metals,1995, 44(1-2):3
    [191]Kofstad P. Nonstiochiometry, Diffusion and Electrical Conductivity in Binary Oxides. Wily-Interscience, New York, London, Sydney, Toroto,1972:206
    [192]Paladino A E, Kingery W D. Journal of Chemistry and Physics,1962,37:597
    [193]Haul R, Dumngen G. Zeitschrift fur Elextrochemie,1962,66:636
    [194]刘秀晨,安成强崔作兴吴伟.金属腐蚀学.北京:国防工业出版社,2002:271
    [195]Tammann G, Anorg Z.. Chemistry,1920,111:78
    [196]Pilling N B, Bedworth R E. Journal of Institute Metals,1923,29:529
    [197]Manning J R. Diffusion Kinetics for Atoms in Crystals. D Van Nostrand, London,1968,114
    [198]Wagner C.Z. Physics and Chemistry.1933, B21:25
    [199]Wagner C.Z. Physics and Chemistry.1936, B32:447
    [200]Grunewald K, Wagner C.Z. Physics and Chemistry.1938, B40:455
    [201]Wagner C.Z. Atom Movement. Amer. Society metals, Cleveland,1951,153
    [202]李隆盛,铸钢及其熔炼.北京:机械工业出版社,1981:80
    [203]Wagner C. Journal of Electrochemistry Society.1952,99:396
    [204]Wagner C. Journal of Electrochemistry Society.1956,103:571
    [205]Golightly F A. The Influence of Yttrium Additions on the Oxide Scale Adhension to a Zr-Cr-Al Alloy. Oxidion of Metals,1976,10(3):163
    [206]张立新.稀土元素对Fe-Cr-Al合金高温氧化层残余应力的影响.金属学报,1980,16(3):411
    [207]Huntz A M. Applied Surface Science,1981,28(4):345
    [208]李文超,稀土元素在铁铬铝合金中的应有,中国稀土学报,1983,1(1):47
    [209]Stoosnijder M F. Review of High Temperature Corrosion of Metals and Alloys in Sulphidizing/Oxidizing Environments Corrosion of Alloys. High Temperature Technology,1986,4(3):146
    [210]曹铁梁,钇对Fe—Cr—Al合金在纯SO2气氛中高温腐蚀行为的影响.中国腐蚀与防护学报,1992,2:116
    [211]Bonnet G. The Effect of Rare Earths Deposited on Steel Surfaces by Different Processes(Sol/Gel, Electrophoresis, OMCVD) on High Temperature Corrosion Behavior. Corrosion Science,1993,35(5 ~ 8):893
    [212]Kofstad P. International Workshop on "New Fundamentals of Scale Growth. Oxidition of Metals,1989,32(1-2):125
    [213]Quadakkers W J. Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS. Applied Surface Science,1991,52(4):271
    [214]Huntz A M. Yttrium influence on the alumina growth mechanism on an FeCr23A15 alloy. Applied Surface Science,1987,28(4):345
    [215]Sharafi S, Farhang M R. Effect of aluminizing on surface microstructure of an HH309 stainless steel[J]. Surface and Coatings Technology,2006,200:5048-5051.
    [216]Niu Y, Wang S, Gao F, et al. Ultra-thin aluminum oxide as a thermal oxidation barrier on metal films. Thin Solid Films,2002,415:219
    [217]Stott F H. Materials Science Engineering,1987,87:267
    [218]J. Namkung, M. C. Kim, W. W. Park. Fabrication of Fe-Cr-Al base alloy strips by melt dragging and their oxidation resistance at elevated temperature. Journal of Materials Processing Technology,2001,115(3)391
    [219]H.W. Grunling, R. Bauer The role of silicon in corrosion-resistant high temperature coatings. Thin Solid Films,1982,95(1):3
    [220]Hsu H W, Tsai W T. High temperature corrosion behavior of siliconized 310 stainless steel. Mater Chem Phys,2000,64:147-155.
    [221]Bamba G, Wouters Y, Galerie A, et al. Thermal oxidation kinetics and oxide scale adhesion of Fe-15Cr alloys as a function of their silicon content. Acta Materialia,2006,54(15):3917
    [222]Tien J M. Metal Transaction,1972,13(6):1578
    [223]Ramanarayanan T A. Oxidition of Metals,1988,29(5-6):445
    [224]Huntz A M, Bague V, Beauple G, et al. Effect of silicon on the oxidation resistance of 9% Cr steels. Appl Surf Sci,2003,207:255
    [225]中国国家标准化管理委员会.中华人民共和国国家标准GB/T14992-2005:高温合金和金属间化合物高温材料的分类和牌号,2005
    [226]中国国家标准化管理委员会.中华人民共和国国家标准GB/T8492-2002:一般用途耐热铸钢及合金,2002
    [227]Prescott R. The Formation of Aluminium Oxide Scales on High-Temperature Alloys. Oxidition of Metals,1992,38(3-4):233
    [228]Print B A. The Reactive Elements Effect in ODS FeCrAl Alloys. Materials in high Temperature,1995,13(1):12
    [229]Parshin Y N. Protection of Metals.1990,9:76
    [230]大林干男,边激译.表面状态对Fe-Cr-Al合金反常氧化的影响.国外金属材料,1975,4:62
    [231]王安东山东大学硕士学位论文:Fe-Cr-Al耐热合金的研究,1994:44
    [232]K. Messaoudi, A. M. Huntz, B. Lesage. Diffusion and growth mechanism of Al2O3 scales on ferritic Fe-Cr-Al alloys. Materials Science and Engineering A,1998,247(1-2):248
    [233]Thad M, Adams, Paul Korinko, et al. Evaluation of oxidation and hydrogen permeation in Al-containing stainless steel alloys. Materials Science and Engineering:A,2006,424(1-2): 33
    [234]S. Spindler, R. Wittmann, D. Gerthsen, et al. Dislocation properties of polycrystalline Fe-Cr-Al alloys and their correlation with mechanical properties. Materials Science and Engineering A,2000,289(1-2):151
    [235]V.O. Abramov, F. Sommer. Structure and mechanical properties of rapidly solidified Al-(Fe,Cr) and Al-Mg-(Fe,Cr) alloys. Materials Letters,1994,20(5-6:251
    [236]Martin Sundqvist, Sture Hogmark. Effects of liquid aluminium on hot-work tool steel. Tribology International,1993,26(2):129
    [237]R.B. Bhagat. High pressure squeeze casting of stainless steel wire reinforced aluminium matrix composites. Composites,1988,19(5):393
    [238]J.L. Song, S.B. Lin, C.L. Yang, et al. Spreading behavior and microstructure characteristics of dissimilar metals TIG welding-brazing of aluminum alloy to stainless steel. Materials Science and Engineering:A,2009,509(1-2):31
    [239]郭守仁等.碳、硼、硅对GH761合金力学性能和组织的影响.“高温合金中微量元素的作用和控制”课题鉴定会论文集,北京:冶金工业出版社,1987:387
    [240]郭建亭等.硅对GH135合金力学性能和组织结构影响.“高温合金中微量元素的作用和控制”课题鉴定会论文集,北京:冶金工业出版社,1987:412
    [241]李隆盛.铸钢及其熔炼.北京:机械工业出版社,1981:124
    [242]中国国家标准化管理委员会.中华人民共和国国家标准GB/T1 3303-1991:,钢的抗氧化性能测定方法,1991
    [243]中国国家标准化管理委员会.中华人民共和国国家标准GB/T228-2002:金属材料室温拉伸试验方法,2002
    [244]中国国家标准化管理委员会.中华人民共和国国家标准GB/T4338-2006:金属材料高温拉伸试验方法,2006
    [245]张家芸.冶金物理化学.北京:冶金工业出版社,2004:309
    [246]A M Mansanares, A C Bento, N Vargas. Photoacoustics measurement of the thermal properties of two layer systems. Physical review B,1990,42(7):4477
    [247]T Tominaga, K Ito. Jounal of applied physics,1988,27:2392
    [248]C G Xu, Y G Tian. Austenite Grain Growth and Oxidation Dynamics of Steel 15Cr2NilOMoCo14 at High Temperature, Special Steel,1995,16 (6):19
    [249]Kubaschenski O, Hopkins B E. Oxidation of Metals and Alloys. London, Butternorths Science Publiction,1962
    [250]潘金星,李文雄译.离子晶体中的电子过程.北京:科学出版社,1959:264
    [251]Kofstad P. High temperature Corrosion. Elsevier Applied Science. London, New York, 1988,148
    [252]#12
    [253]Tamman G, Stahl U. Eiesn. Dusseldorf,1922,42:615
    [254]Kofstad P, Hauffe K, Kjollesdal H. Acta Chemistry Scand.,1985,12:259
    [255]Handcock P and Hurst R C. The mechanical properties and breakdown of surface oxide films at elevated temperatures. Advances in corrosion science and technology, Stachle R W and Fontana M G, Plenum press, New York,1974.
    [256]N伯克斯,G H迈耶著.赵公台,赵克清译.金属高温氧化导论,北京:冶金工业出版社,1989:132
    [257]Schute M. Materials of science and technology.1988,4:407
    [258]Robert E. Melchers Effect on marine immersion corrosion of carbon content of low alloy steels. Corrosion Science,2003,45(11):2609
    [259]Jia Guo, Shanwu Yang, Chengjia Shang, et al. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment. Corrosion Science,2009,51(2):242
    [260]王执福.碳及铬碳比对铁铬镍高温合金性能的影响.铸造,1993,11:5
    [261]A.R. Tourky, A.A. Abdul Azim, M.M. Anwar. Effect of carbon content on the corrosion and passivity of iron. Corrosion Science,1965,5(4):301
    [262]Huifen Peng, Xiaoyan Song, Aiguo Gao,et al. Microstructure and mechanical properties of the Al-added ultrahigh carbon steel. Materials Letters,2005,59(26):3330
    [263]冶金工业部钢铁研究总院.合金钢手册,北京:冶金工业出版社,1984:139
    [264]J.E. Antill, M.J. Bennett, R.F.A. Carney, et al. The effect of surface implantation of yttrium and cerium upon the oxidation behaviour of stainless steels and aluminized coatings at high temperatures. Corrosion Science,1976,16(10):729
    [265]Yingna N. Wu, Yuzo Kawahara,et al. Structure and oxidation resistance of plasma sprayed Ni-Si coatings on carbon steel. Vacuum,2006,80(11-12):1256
    [266]C.M. Abreu, M.J. Cristobal, R. Losada, et al. The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels. Electrochimica Acta,2006,51(15): 2991
    [267]Lin Zhang, Mao Wen, Masaaki Imade, et al. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta Materialia,2008,56(14):3414
    [268]Ji-ping CHEN, Yong-lin KANG, Ying-min HAO, et al. Microstructure and Properties of Ti and Ti+Nb Ultra-Low-Carbon Bake Hardened Steels. Journal of Iron and Steel Research, International,2009,16(6):33
    [269]Ashok Kumar Srivastava, Karabi Das. Microstructure and abrasive wear study of (Ti,W)C-reinforced high-manganese austenitic steel matrix composite. Materials Letters, 2008,62(24):3947
    [270]K. Khojier, H. Savaloni, H. Kangarloo, et al. Influence of annealing temperature on the nanostructure and corrosivity of Ti/stainless steel substrates. Applied Surface Science,2008, 254(8):2528
    [271]M. Schober, R. Schnitzer, H. Leitner. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel. Ultramicroscopy,2009,109(5):553
    [272]Bogdan Piekarski. Effect of Nb and Ti additions on microstructure, and identification of precipitates in stabilized Ni-Cr cast austenitic steels. Materials Characterization,2001, 47(3-4):181
    [273]Shi-chang YU, Qiu-hua ZHU, Shen-qing WU, et al. Microstructure of Steel 5Cr21Mn9Ni4N Alloyed by Rare Earth. Journal of Iron and Steel Research, International, 2006,13(2):40
    [274]M. F. Montemor, A. M. Simoes, M. G. S. Ferreira. Composition and corrosion behaviour of galvanised steel treated with rare-earth salts:the effect of the cation. Progress in Organic Coatings,2002,44(2):111
    [275]Long-Mei Wang, Qin Lin, Li-Jie Yue, Study of application of rare earth elements in advanced low alloy steels. Journal of Alloys and Compounds,2008,451(1-2),534
    [276]Xianghong Li, Shuduan Deng, Hui Fu, et al. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H2SO4 solution:Weight loss, electrochemical, UV-vis, FTIR, XPS, and AFM approaches. Applied Surface Science,2008,254(17):5574
    [277]Longmei Wang, Qin Lin, Jingwen Ji, et al. New study concerning development of application of rare earth metals in steels. Journal of Alloys and Compounds,2006,408-412: 384
    [278]Xian-Hua Cheng, Chao-Ying Xie. Effect of rare earth elements on the erosion resistance of nitrided 40Cr steel. Wear,2003,254(5-6):415
    [279]Xiang Chen, Yanxiang Li. Fracture toughness improvement of austempered high silicon steel by titanium, vanadium and rare earth elements modification. Materials Science and Engineering:A,2007,444(1-2):298
    [280]Xie Jingpei, Wang Aiqin, Wang Wenyan, et al. Effects of Rare Earths on Toughness of 31Mn2SiRE Wear-Resistance Cast Steel. Journal of Rare Earths,2006,24(1):401
    [281]Schaeffler A L. Constitution Diagram for Stainless Steel Weld Metal. Metal Progress,1949 (56):680

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700