用户名: 密码: 验证码:
多酸型电致变色材料的性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致变色材料以其在显示器、灵巧窗、汽车观后镜等领域的应用潜力而引起了广泛的关注。多金属氧酸盐(多酸,英文缩写POMs),一类无机金属氧化物构成的簇合物,以其多样的结构和独特的氧化还原性能在电致变色领域展现出了广阔的发展前景。本论文工作采用交替沉积技术构筑了多酸为电活性组分的膜材料,并研究了其电致变色性能。具体内容如下:
     1利用交替沉积自组装技术将单取代Dawson多酸P2W17、中性红(NR)和聚电解质(PAH)构筑成复合膜。紫外可见吸收光谱确定了复合膜的增长是非常有序的。扫描电镜照片表明薄膜表面是均匀和平整的。该薄膜可以呈现出由粉红色到蓝紫色到深蓝紫色的颜色变化,即实现了可调变颜色的过程。而且,不同的颜色也可以代表不同的存储信号。这种复合膜材料在可调变的电致变色器件和数据存储器件方面具有潜在的应用。
     2采用交替沉积方法将Dawson型多酸P2W18,PAH和TiO2制备成了电致变色复合膜材料。紫外可见吸收光谱,扫描电镜,循环伏安法,计时电流用于表征了复合膜材料。紫外可见吸收光谱和循环伏安法均可证明P2W18和TiO2被成功的构筑到薄膜中。将TiO2构筑到薄膜中后,这种复合膜的电致变色稳定性明显加强了。吸光度和电流密度变化显示出薄膜的稳定性明显提高。显然,TiO2的存在加强了薄膜和基底的附着力,从而提高了膜的稳定性。这种复合膜具有较高的光反差、适当的响应时间、较低的操作电压以及良好的稳定性可能满足电致变色器件的需求。
     3将交替沉积和电聚合技术结合,构筑了Dawson型多酸P2W18和聚(3,4-乙烯二氧噻吩)(PEDOT)的复合膜。首先,采用交替沉积技术将P2W18和PAH制备成膜;然后,再利用电聚合技术沉积了PEDOT膜。将P2W18和PEDOT两种阴极着色材料进行复合后,得到了电致变色性能加强的膜材料,在650 nm处的光反差为54.7%,且循环1500圈后稳定性没有明显降低。而且,其变色范围几乎覆盖整个可见区。光谱电化学表明,这两种材料均保留了各自的电致变色性能,从而提高了光反差。聚电解质PAH以盘卷的结构有利于薄膜稳定性的提高。实验结果表明:多酸在提高PEDOT变色性能方面发挥了重要作用;交替沉积和电聚合技术结合开辟了构筑多酸和PEDOT薄膜材料的新方法。
     4利用交替沉积技术将Dawson型多酸P2W18、碳纳米管(CNTs)、壳聚糖(CS)三元组分构筑成了纳米复合膜。CS作为阳离子电解质用来分散CNTs,得到CS-CNTs的复合物,然后采用交替沉积法与P2W18制备成薄膜。该膜材料的电致变色性能提高了,其在620 nm的光反差可达到20.3%,着色效率为91.5%。而且,将CNTs构筑到膜中,复合膜的厚度和表面粗糙度明显增加了。显然,CNTs的存在影响了膜结构,从而提高了复合膜的光反差和着色效率。研究结果说明CNTs在提高多酸电致变色性能方面发挥着重要作用。
Electrochromic materials have received much attention in chemistry and materials science owing to their potential applications in smart windows, displays and car rear-view mirrors. Polyoxometalates (POMs) represent a well-known class of structurally well-defined metal oxide nanoclusters. POMs are promising candidates due to their diverse structures and good reversible redox activity.
     In this paper, we focus on the fabrication of POMs-based film materials by layer-by-layer method (LbL) and investigation of the electrochromic performances.
     1 We successfully fabricated the multilayer film composed of the polyoxometalate cluster K10[P2W17O61] (P2W17), Neutral Red (NR) and polyallylamine hydrochloride (PAH) by the LbL method. The characterization of UV-vis spectroscopy reveals that POM, PAH and NR were constantly deposited in the ultrathin films. The surface morphology was investigated by SEM, which is uniform and smooth. This composite film demonstrates color changes from deep pink to light purple, then to dark purple-blue, achieving tunable color of electrochromic material. Furthermore, the different color can be considered as different spectral signal. Therefore, the composite film may become a promising candidate for application in tunable-color electrochromic devices and data-storage devices.
     2 We reported the preparation of multilayer film consisting of tungstophosphate (P2W18), PAH and TiO2 by the LbL technique. The composite film was characterized by UV-vis spectrum, scanning electron micrpscopy (SEM), cyclic voltammetry (CV) and chronoamperomtric (CA). The characterizations of UV-vis spectrum and CV confirm the incorporation of P2W18 and TiO2 into the composite film. The composite film displays enhanced electrochromic stability due to the presence of TiO2. The performance of high optical contrast, suitable response time and low operation potential and long-term stability should be promising to meet the requirement for electrochromic devices.
     3 A composite film containing P2W18, PAH and poly(3,4-ethylenedioxythiophene) (PEDOT) was fabricated by smart combination of LbL with electro-polymerization methods. The multilayer film is synthesized by forming P2W18 layer with PAH using the LbL technique, followed by deposition of PEDOT layer using electro-polymerization in aqueous solution. From the experimental results, the composite film displays enhanced electrochromic performance by combination of PEDOT with P2W18, resulting in the optical contrast of 54.7% at 600 nm and the absorbance without noticeable change upon 1500 cycles. Furthermore, the film provides broader absorption throughout the visible region. Spectroelectrochemical investigation demonstrates that both PEDOT and P2W18 synchronously contribute to electrochromic coloration. The existence of polyelectrolyte PAH in a condensed, coiled conformation is responsible for enhanced stability. These results demonstrate the essential role of POMs in improving functionality on PEDOT. The smart combination of LbL and electro-polymerization methods provides a convenient means to create new materials based on both PEDOT and POMs.
     4 We successfully constructed a nanocomposite film containing P2W18, carbon nanotubes (CNTs) and chitosan (CS) by LbL method. Chitosan was chosen as cationic polyelectrolyte for dispersing CNTs to form a stable CS-CNTs composite, which was assembled with anionic P2W18. The composite material displays enhanced electrochromic performance, with the optical contrast of 20.3% and coloration efficiency of 91.5 cm2 C-1 at 620 nm. Furthermore, the film displays the increased thickness and surface roughness by incorporation of CNTs into the P2W18 film. Obviously, the presence of CNTs has the strong influence on the multilayer structure, leading to high optical contrast and coloration efficiency. The results demonstrate the essential role of CNTs in enhancing electrochromism on POMs.
引文
[1]Deb S K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications[J]. Sol. Energy Mater. Sol. Cells, 2008, 92(2):245-258.
    [2]Dautremont-Smith W C, Beni G, Schiavone L M, et al. Solid-state electrochromic cell with anodic iridium oxide film electrodes[J]. Appl Phys Lett, 1979, 35(7): 565-567.
    [3]Green M, Richman D. A solid state electrochromic cell-the RbAg415/WO3 system[J]. Thin Solid Films, 1974, 24(2): S45-S46.
    [4] Faughnan B W, Crandall R S, Lampert M A. Model for the bleaching of WO3 electrochromic films by an electric field[J]. Appl Phys Lett, 1975, 27(5): 275-277.
    [5] Burke L D, Murphy O J. Electrochromic behaviour of electrodeposited cobalt oxide films[J]. J Electroanal Chem, 1980, 112(2): 379-382.
    [6] Hünig S, Kemmer M, Wenner H, et al. Violene/cyanine hybrids: A generaln structure for electrochromic systems[J]. Chem Eur J,1999, 5(7): 1969-1973.
    [7] Xia C, Advincula R C, Baba A, et al. In situ investigations of the electrodeposition and electrochromic properties of poly(3,4-ethylenedioxythiphene) ultrathin films bu electrochemical-surface Plasmon spectroscopy[J]. Langmuir, 2002, 18(9): 3555-3560.
    [8] Perepichka D F, Bryce M R, Batsanov A S, et al. Engineering a remarkably low HOMO-LUMO gap by covelent linkage of a strongπ-acceptor-tetrathiafulvalene-σ-polynitrofluorene diads: Their amohoteric redox behavior, electron transfer and spectroscopic properties[J]. Chem Eur J, 2002, 8(20): 4656-4669.
    [9] Sonmez G, Sonmez H B, Shen C K F, et al. Red, green, and blue colors in polymeric electrochromics[J]. Adv Mater, 2004, 16(21): 1905-1908.
    [10] Aragoni M C, Arca M, Devillanova F A, et al. [M(R-dmet)2]bis(1,2-dithiolenes): A promising new class intermediate between [M(dmit)2] and [M(R,R/-timdt)2] (M = Ni, Pd, Pt)[J]. Inorg Chem, 2005, 44(26): 9610-9612.
    [11] Baran D, Balan A, Celebi S. Processable multipurpose conjugated polymer for electrochromic and photovoltaic applications[J]. Chem Mater, 2010, 22(9): 2978-2987.
    [12] Xiong S X, Phua S L, Dunn B S, et al. Covalently bonded polyaniline-TiO2 hybrids: A facile approach to highly stable anodic electrochromic materials with low oxidation potentials[J]. Chem Mater, 2010, 22(1): 255-260.
    [13] Invernale M A, Ding Y J, Sotzing G A. All-organic electrochromic spandex[J]. Acs Appl Mater Interfaces, 2010, 2(1): 296-300.
    [14] Nikolou M, Dyer A L, Steckler T T, et al. Dual n- and p- type dopable electrochromic devices employing transparent carbon nanotube electrodes[J]. Chem Mater, 2009, 21(22): 5539-5547.
    [15] Li M, Patra A, Sheynin Y, et al. Hexyl-derivatized poly(3,4-ethylenedioxyselenophene): novel highly stable organic electrochromic material with high contrast ratio, high coloration efficiency and low-switching voltage[J]. Adv Mater, 2009, 21(): 1707-1711.
    [16] Xiong C, Aliev A E, Gbade B, et al. Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics[J]. ACS Nano, 2008, 2(2): 293-301.
    [17] Bueno P R, Gabrielli C Perrot H. Coloring ionic trapping states in WO3 and Nb2O5 electrochromic materials[J]. Electrachim Acta, 2008, 53(17): 5533-5539.
    [18] Weng W, Higuchi T, Masao S, et al. A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity[J]. Angew Chem Int Ed, 2010, 49(23): 3956-3959.
    [19] Yuan Y F, Xia X H, Wu J B, et al. Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition[J]. Electrachim Acta, 2011, 56(3): 1208-1212.
    [20] Comstock D J, Christense S T, Elam J W, et al. Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition[J]. Electrochem Chommum, 2010, 12(11): 1543-1546.
    [21] Wang H H, Yan M M, Jiang Z Y. Electrochromic properties of rhodium oxide films prepared by a sol-geo method[J]. Thin Solid Film, 2001, 401(1-2): 211-215.
    [22] Shen P K, Tseung A C C. Study of electrodeposited tungsten trioxide thin films[J]. J Mater Chem, 1992, 2(11): 1141–1147.
    [23] Agnihotry S A, Sharma R, Kar M, et al. Towards electrochromic stability in sol-gel-derived tungsten oxide films: cyclic voltammetric and spectrophotometric investigation[J]. Sol Energy Mater Sol Cell, 2006, 90(1): 15-24.
    [24]Bellac D L, Azens A, Granqvist C G. Angular selective transmittance through electrochromic tungsten oxide films made by oblique angle sputtering[J]. Appl Phys Lett, 1995, 66(14): 1715–1716.
    [25]Velevska J, Ristova M. Electrochromic properties of NiOx prepared by low vacuum evaporation[J]. Sol Energy Mater Sol Cells, 2002, 73(2): 131-139.
    [26] Granqvist C G. Electrochrmoic tungsten oxide films: review of progress 1993–1998[J]. Energy Mater Sol Cells, 2000, 60(30): 201–262.
    [27] Deb S K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications[J]. Solar Energy Materials and Solar Cells, 2008, 92(2): 245–258.
    [28] ?Brien N A, Gordon J, Mathew H. Electrochromic coating-applications and manufacturing issues[J]. Thin Solid Films, 1999, 345(2): 312-318.
    [29] Park S Y, Lee J M, Noh C, et al. Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies[J]. J Mater Chem, 2009, 19(42): 7959-7964.
    [30] Kondrachova L, Hahn B P. Vijayaraghavan G, et al., Cathodic Electrodeposition of Mixed Molybdenum Tungsten Oxides from Peroxo-polymolybdotungstate Solutions[J]. Langmuir, 2006, 22(25):10490-10498.
    [31] Nah Y- C, Ghicov A, Kim D, et al. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties[J]. J Am Chem Soc, 2008, 130(48): 16154–16155.
    [32]Wu M-S, Yang C-H. Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition[J]. Appl Phys Lett, 2007, 91(3): 033109.
    [33] Livage J, Ganguli D. Sol-gel electrochromic coatings and devices: A review[J]. Sol Energy Mater Sol Cells, 2001, 68(3-4): 365-381.
    [34] Ferreira F F, Avenda?o E. Reversible electronic charge transfer between Au nanoparticles and electrochromic NiO matrices upon electrochemical cycling[J]. J Phys Chem C, 2007, 111(44): 16608-16612.
    [35] Agnihotry S A, Singh P, Joshi A G. Electrodeposited Prussian blue films: Annealing effect[J]. Electrochim Acta, 2006, 51(20): 4291-4301.
    [36] Sommani P R, Radhakrishnan S. Electrochromic materials and devices: present and future[J]. Mater Chem Phys, 2002, 77(1): 117-133.
    [37] DeLongchamp D M, Hammond P T. High-contrast electrochromism and controllable dissolution of assembled prussian blue nanocomposites[J]. Adv Funct Mater, 2004, 14(3): 224-232.
    [38] Baioni A P, Vidotti M, Fiorito P A, et al. Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes[J]. langmuir, 2007, 23(12), 6796-6800.
    [39] Chidichimo G, Benedittis M D, Lanzo J. Solid thermoplastic laminable electrochromic film[J]. Chem Mater, 2007, 19(3): 353-358.
    [40] Jain V, Khiterer M, Montazami R, et al. High-contrast solid-State electrochromic devices of viologen-bridged polysilsesquioxane nanoparticles fabricated by layer-by-layer assembly[J]. ACS Appl Mater Interfaces, 2009, 1(1): 83-89.
    [41] Cao L-C, Mou M, Wang Y C. Hyperbranched and viologen-functionalized polyglycerols: preparation, photo- and electrochromic performance[J]. J Mater Chem, 2009, 19(21): 3412-3418.
    [42] Zhang J D, Lu F L, Huang H C. Near infrared electrochromism of lutetium phthalocyanine[J]. Synth Met, 2005, 148(2): 123-126.
    [43] PauportéT, Bedioui F, Lincot D. Nanostructured zinc oxide-chromophore hybrid films with multicolored electrochromic properties[J]. J Mater Chem, 2005, 15(15): 1552-1559.
    [44]Akkurt B, Koca A, Hamuryudan E. Synthesis, in situ spectroelectrochemistry and in situ electrocolorimetry of electrochromic octakis(chloroethylsufanyl) phthalocyaninatomanganese(Ⅲ) chloride[J]. New J Chem, 2009, 33(11): 2248-2254.
    [45] Tsuie B, Reddinger J L, Sotzing G A, et al. Electroactive and luminescent polymers: New fluorene-heterocycle-based hybrids[J]. J Mater Chem, 1999, 9(9): 2189-2200.
    [46] Is O D, Koyuncu F B, Koyuncu S, et al. A new imine coupled pyrrole-carbazole-pyrrole polymer: Electro-optical properties and electrochromism[J]. Polymer, 2010, 51(8): 1663-1669.
    [47] Nie G, Zhou L, Guo Q, et al. A new electrochromic material from an idole derivative and its application in high-quality electrochromic devices[J]. Electrochem Commun, 2010, 12(1): 160-163.
    [48]李新贵,夏宇,黄美荣.导电高分子的电致变色性及其在智能窗上的应用[J].材料开发与应用,2004, 19(2): 31-44.
    [49]黄美荣,章家立,李新贵。导电聚合物电致变色掺杂特征及表征参数[J].化学研究与应用,2006,18(7): 753-757.
    [50] Rowley N, Mortimer R. New electrochromic materials[J]. Sci Prog, 2002, 85(3): 243-262.
    [51] Carpi F, Rossi D D. Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials[J]. Opt Laser Technol, 2006, 38(4-6): 292-305
    [52] Mortimer R J. Organic electrochromic materials[J]. Electrochim Acta, 1999, 44(18): 2971-2981.
    [53] Pozo-Gonzalo C, Salsamendi M, Pomposo J A, et al. Influence of the introduction of short alkyl chains in poly(2-(2-thienyl)-1H-pyrrole) on its electrochromic behavior[J]. Macromolecules, 2008, 41(19): 6886-6894.
    [54] Dyer A L, Craig M R, Babiarz J E, et al. Rrange and red to transmissive electrochromic polymers based on electron–rich dioxythiophenes[J]. Macromolecules, 2010, 43(10): 4460-4467.
    [55] Invernale M A, Seshadri V, Mamagun D M D, et al. Polythieno[3,4-b]thiophene as an optically transpatent ion-storage layer[J]. Chem Mater, 2009, 21(14): 3332-3336.
    [56] Gorodesky B, Branda N R. Bidirectional ring-opening and ring-closing of cationic 1,2-dithienylcyclopentene molecular switched triggered with light or electricity[J]. Adv Funt Mater, 2007, 17(5): 786-796.
    [57] Berridge R, Wright S P, Skabara P J, et al. Electrochromic properties of a fast switching, dual colour polythiiophene bearing non-planar dithiinoquinoxaline units[J]. J Mater Chem, 2007, 17(3): 225-231.
    [58] Fabretto M, Zuber K, Hall C, et al. The role of water in the synthesis and performance of vapour phase polymerized PEDOT electrochromic devices[J]. J Mater Chem, 2009, 19(42): 7871-7878.
    [59] Bhandari S, Deepa M, Srivastava A K. Post-polymerization functionalization of poly(3,4-ethylenedioxythiphene)-polystyrene sulfonate films by composition/morphology control[J]. J Mater Chem, 2009, 19(16): 2336-2348.
    [60] Deepa M, Awadhia A, Bhandari S. Electrochromic performance of a poly(3,4-ethylenedioxythiophene)-prussian blue device encompassomg a free standing proton electrolyte film[J]. Electrochim Acta, 2008, 53(24): 7266-7275.
    [61] Deepa M, Awadhia A, Bhandari S. Electrochemistry of poly(3,4-ethylenedioxythiophene-polyaniline/prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film[J]. Phys Chem Chem Phys, 2009, 11(27): 5674-5685.
    [62] Bhandari S, Deepa M, Srivastava A K, et al. Poly(3,4-ethylenedioxythiophene)-multiwalled carbon nanotube composite films: structure-directed amplified electrochromic response and improved redox activity[J]. J Phys Chem B 2009, 113(28): 9416-9428.
    [63] Delongchamp D M, Hammond P T. Layer-by-layer assembly of PEDOT/polyaniline electrochromicdevices[J]. Adv Mater, 2001, 13(19): 1455-1459.
    [64] Delongchamp D M, Kastantin M, Hammond P T. High-contrast electrochromism from layer-by-layer polymer films[J]. 2003, 15(8): 1575-1586.
    [65] Delongchamp D M, Hammond P T. Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian blue nanocpmposite thin film[J]. Chem Mater, 2004, 16(23): 4799-4805.
    [66] Jia P T, Argun A A, Xu J W, et al. Enhanced electrochromic switching in multilayer thin films of polyaniline-tethered silsesquioxane nanocafe[J]. Chem Mater, 2009, 21(19): 4434-4441.
    [67] Jia P T, Argun A A, Xu J W, et al. High-contrast electrochromic thin films via layer-by-layer assembly of starlike and sulfonated polyaniline[J]. Chem Mater, 2010, 22(22): 6085-6091.
    [68] Mortimer R J, Dyer A L, Reynolds J R. Electrochromic organic and polymeric materials for display applications[J]. Displays, 2006, 27(1): 2-18.
    [69] Han F S, Higuchi M, Kurth D G. Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials[J]. Adv Mater 2007, 19(22): 3928-3931.
    [70] Han F S, Higuchi M, Kurth D G. Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridined and metal ions: photophusical, electrochemical, and electrochromic properties[J]. J Am Chem Soc, 2008, 130(6): 2073-2081.
    [71] Pope M T.杂多和同多金属氧酸盐[M].王恩波等译.长春:吉林大学出版社, 1991.
    [72] Pope M T, Müller A. Polyoxometalate Chemistry[M]. Kluwer: Dordrecht, 2001. 1–10.
    [73] Hill C L (Guest Editor). Chem Rev, 1998, 98(1): 1–390.
    [74]王恩波,李阳光,鹿颖,et al.多酸化学概论[M].长春:东北师范大学出版社, 2009.
    [75] Berzelius. [J]. J Pogg Ann, 1826, 6: 369.
    [76] Pope M T.杂多和同多金属氧酸盐[M].王恩波等译.长春:吉林大学出版社, 1991.
    [77] Pauling L. J Am Chem Soc, 1929, 5: 2868.
    [78] Keggin. [J]. J F Proc R Soc, 1934, 144A: 75.
    [79] Long D-L, Tsunashima R, Cornin L, Polyoxometalates: Building blockd for functional nanoscale systems[J]. Angew Chem Int Ed, 2010, 49(10): 1736-1758.
    [80] Besson C, Musarv D, Lahootun V, et al. Vicinal Dinitridoruthenium-substituted polyoxometalatesγ-[XW10O38{RuN}2]6- (X = Si or Ge)[J]. Chem Eur J, 2009, 15(39): 10233-10243.
    [81] Li C, Jiang Z X, Gao J B, et al. Ultra-deep desulfurization of diesel: oxidation with a recoverable catalyst assembled in emulsion[J]. Chem Eur J, 2004, 10(9): 2277-2280.
    [82] Liu S Q, Kurth D G, Volkmer D. Polyoxometalates as pH-sensitive probes in self-assembled multilayers[J]. Chem Comm, 2002, (9): 976-977.
    [83] Rhule J T, Hill C L, Judd D A. Polyoxometalates in medicine[J]. Chem Rev, 1998, 98(): 327-357.
    [84] Long D-L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices[J]. Chem Soc Rev, 2007, 36: 105-121.
    [85] Dolbecq A, Dumas E, Mayer C R, et al. Hybrid organic-inorganic polyoxometalates compounds: From structural diversity to applications[J]. Chem Rev, 2010, 110(10): 6009-6048.
    [86]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.
    [87] Yamase T. Photo- and electrochromism of polyoxometalates and related materials[J]. Chem Rev, 1998, 98(1): 307-325.
    [88] Tell B, Wagner S. Electrochemichromic cells based on phosphotungstic acid[J]. Appl Phys Lett, 1978, 33(9): 837-838.
    [89] Tell B, Wull F. Electrochromic effects in solid phosphotungstic acid and phosphomolybdic acid[J]. J Appl Phys, 1979, 50(9): 5944-5946.
    [90] Yamase T, Sasaki Y, Motowaki T. Electrochromic film derived from cathodic deposition of polyoxometalates[J]. Inorg Chim Acta, 1986, 121(1):L19-L22
    [91] ?tangar U L, Orel B, Hutchins M G. Electrochromism of phosphotungstic acid incorporated in titanium alkoxide xerogel films[J]. SPIE, 1994, 2255: 261-272.
    [92] Byker H J, Hill C L. US 5 471 337, 1995.
    [93] Byker H J, Hill C L. US 5 671 082, 1997.
    [94] Pan B H, Lee J Y. Immobilisation of phosphomolybdic (PM) acid by Nafion and the electrochromism of the resulting PM-Nafion films[J]. J Mater Chem, 1997, 7(2): 187-191.
    [95] You X Z, Shan B Z, Zhang X M. Absorption spectra of an electrochromic window based on molybdovanadophosphoric acid, Prussian Blue and a solid polymer electrolyte[J]. J Appl Electrochem, 1997, 27(11): 1297-1299.
    [96] Shan B Z, Zhang X M, Bai Z P. Spin-coated electrochromic film silicomolybdotungstate[J].无机化学学报, 1998, 14(1): 58-61.
    [97] Moriguchi I, Fendler J H. Characterization and electrochromic properties of ultranthin films self-assembled from poly(diallyidimethylammonium) chloride and sodium decatungstate[J]. Chem Mater, 1998, 10(8): 2205-2211.
    [98] He T, Ma Y, Cao Y. Preparation and electrochromism of alkylammonium molybdate thin films[J]. J Non-Cryst Solids, 2003, 315(1): 7-12.
    [99] Clemente-León M, Coronado E, Gómez-García C J. Polyoxometalate monolayers in Langmuir-Blodgett films[J]. Chem Eur J, 2005, 11(13): 3979-3987.
    [100] Xue B, Peng J, Xin Z F, et al. High-contrast electrochri omic multilayer films of molybdenum-doped hexagonal tungsten bronze (Mo0.05-HTB)[J]. J Mater Chem, 2005, 15(45): 4793-4798.
    [101] Xue B, Peng J, Xin Z F, et al. High contrast and fast switching speed multi-hue electrochromic films containing transition metal ion-doped nanomaterials[J]. Nanotechnology, 2006, 17(21): 5306-5313.
    [102] Bi L-H, Zhou W-H, Jiang J-G, et al. Synthesis, characterization of magnesium-substituted tungstoarsenate As2W15Mg3O6218-, and its electrochromism[J]. J Electroanal Chem, 2008, 624(1-2): 269-274.
    [103] Li C X, O’Halloran K P, Ma H Y, et al. Multifunctional multilayer films containing polyoxometalates and bismuth oxide nanoparticles[J]. J Phys Chem B, 2009, 113(23 ): 8043-8048.
    [104] Mialane P, Zhang G J, Mbomekalle I M, et al. Dual photochromic/electrochromic compounds basedon cationic spiropyrans and polyoxometalates[J]. Chem Eur J, 2010, 16(19): 5572-5576.
    [105] Liu S Q, Kurth D G, M?hwald H. A thin-film electrochromic device based on polyoxometalate cluster[J]. Adv Mater, 2002, 14(3): 225-228.
    [106] Liu S Q, M?hwald H, Volkmer D. Polyoxometalate-based electro- and photochromic dual-mode devices[J]. Langmuir, 2006, 22(5): 1949-1951.
    [107] Zhang T R, Liu S Q, Kurth D G. Organized nanostructured complexes of polyoxometalates and surfactants that exhibit photoluminescence and electrochromism[J]. Adv Funct Mater, 2009, 19(4): 642-652.
    [108] Gao G G, Xu L, Wang W J, et al. Electrochromic multilayer films based on trilacunary Dawson-type polyoxometalate[J]. Electrochim Acta, 2005, 50(5): 1101-1106.
    [109] Xu B B, Xu L, Gao G G, et al. Nanosized multilayer films with concurrent photochromism and electrochromism based on Dawson-type polyoxometalate[J]. Appl Surf Sci, 2007, 253(6): 3190-3195.
    [110] Gao G G, Xu L, Wang W J, et al. Electrochromic ultra-thin films based on cerium polyoxometalate[J]. J Mater Chem, 2004, 14(13): 2024-2029.
    [111] Gao G G, Xu L, Wang W J, et al. Electrochromic and pH-sensitive multilayer films based on nickel-substituted Dawson-type polyoxometalate[J]. J Electrochem Soc, 2005, 157(7): H102-H106.
    [112] Gao G G, Xu L, Wang W J, et al. Electrochromic multilayer films of tunable color by combination of copper or iron complex and monolacunary Dawson-type polyoxometalate[J]. J Phys Chem B, 2005, 109(18): 8948-8953
    [113] Xu B B, Xu L, Gao G G, et al. Multicolor electrochromic and pH-sensitive nanocomposite thin film based on polyoxometalates and polyviologen[J]. Electrochim Acta, 2009, 54(8): 2246-2252.
    [114] Decher G. Fuzzy nanoassemblies: Toward ayered polymeric multicomposites[J]. Science, 1997, 277(5330):1232-1237.
    [115] Gao S, Zheng Z, LüJ. Progressive release of a palladium-pyridyl complex from a layer-by-layer multilayer and illustrative application to catalytic Suzuki coupling[J]. Chem Comm, 2010, 46(40): 7584-7586.
    [116] Sakai N, Sasaki T, Matsubara K. Layer-by-layer assembly of gold nanoparticles with titania nanosheets: control of Plasmon resonance and photovoltaic properties[J]. J Mater Chem, 2010, 20(21): 4371-4378.
    [117] Nagaoka Y, Shiratori S, Einaga Y. Photo-control of adhesion properties by detachment of the outermost layer in layer-by-layer assembled multilayer films of Preyssler-type polyozometalate and polyethyleneimine[J]. Chem Mater, 2008, 20(12): 4004-4010.
    [118] Mantha S, Pedrosa V A, Olsen E V. Renewable nanocomposite layer-by-layer assembled catalytic interfaces for biosensing applications[J]. Langmuir, 2010, 26(24): 19114-19119.
    [119] Yuan W Y, Li C M. Exponentially growing layer-by-layer assembly to fabricate pH-responsive hierarchical nanoporous polymeric film and its superior controlled release performance[J].Chem Commun, 2010,46(48): 9161-9163.
    [120] Ingersoll D, Kulesza P J, Faulkner L P. Polyoxometalate-based layered composite films on electrode. Preparation through alternate immersions in modification solutions[J]. J Electrochem Soc, 1994, 141(1): 140-147.
    [121] Caruso F, Kurth D G, Volkmer D, et al. Ultrathin molybdenum polyoxometalate?polyelectrolyte multilayer films[J]. Langmuir, 1998, 14 (13): 3462–3465.
    [122] Ichinose I, Tagawa H, Mizuki S, et al. Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations[J]. Langmuir, 1998, 14(1): 187–192.
    [123] Kurth D G, Volkmer D, Ruttorf M, et al. Ultrathin Composite Films Incorporating the Nanoporous Isopolyoxomolybdate“Keplerate”(NH4)42[Mo132O372(CH3COO)30(H2O)72][J]. Chem Mater, 2000, 12(10): 2829–2831.
    [124] Liu S, Kurth D G, Bredenk?tter B. The Structure of self–assembled multilayers with polyoxometalate nanoclusters[J]. J Am Chem Soc, 2002, 124(41): 12279–12287.
    [125] Wang B, Vyas R N, Shaik S. Preparation parameter development for layer–by–layer assembly of Keggin–type polyoxometalates[J]. Langmuir, 2008, 23(22): 11120–11126.
    [126] Vyas R N, Li K, Wang B. Modifying randles circuit for analysis of polyoxometalate layer-by-layer films[J]. J Phys Chem B, 2010, 114(48): 15818-15824.
    [1]O'Brien N A, Gordon J, Mathew H, et al. Electrochromic coating-applications and manufacturing issues[J]. Thin Solid Films, 1999, 345(2): 312-318
    [2]Yagi M, Sone K, Yamada M, et al. Preparation and Multicolor Electrochromic Performance of a WO3/Tris-(2,2’-bipyridine)ruthenium(ii)/Polymer Hybrid Film[J]. Chem Eur J, 2005, 11(2): 767-775.
    [3]Chen W F, Wu S Y, Ferng Y F. The electrochromic properties of nickel oxide by chemical deposition and oxidization[J]. Mater Lett, 2006, 60(6): 790-795.
    [4]Agnihotry S A, Singh P, Joshi A G, et al. Electrodeposited prussian blue films: annealing effect[J]. Electrochim Acta, 2006, 51(20): 4291-4301.
    [5]Ryu J–H, Lee J–H, Han S–J, et al. Novel electrochromic displays using monodisperse viologen-modified porous polymeric microspheres[J]. Macromol Rapid Commun, 2006, 27(14): 1156-1161.
    [6]Bessière A, Duhamel C, Badot J -C, et al. Study and optimization of a ?exible electrochromic device based on polyaniline[J]. Electrochim Acta, 2004, 49(12): 2051-2055.
    [7]Huang C Z, Li Y F, Feng P, A spectrophotometric study on the interaction of neutral red with double-stranded DNA in large excess[J]. Talanta, 2001, 55(2): 321-328.
    [8]Ni Y, Du S, Koko S, Interaction between quercetin–copper (II) complex and DNA with the use of the Neutral Red dye ?uorophor probe[J]. Anal Chim Acta, 2007, 584(1): 19-27.
    [9]Fink R G, Droege M W, Domaille P J, Trivacant heteropolytungstate derivatives. 3.1 Rational syntheses, characterization, two-dimensional 183W NMR, and properties of tungstometallophosphates P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M = Co, Cu, Zn)[J]. Inorg Chem, 1987, 26(23): 3886-3896.
    [10]Gao G G, Xu L, Wang W J, et al. Electrochromic and pH-sensitive multilayer films based on nickel-substituted Dawson-type polyoxometalate[J]. J Electrochem Soc, 2005, 152(7): H102-H106.
    [11]McCormac T, Fabre B, Bidan G, Part I. A comparative electrochemical study of transition metal substituted Dawson type heteropolyanions[J]. J Electroanal Chem, 1997, 425(1-2): 49-54.
    [12]Keita B, Girard F, Nadjo L, et al. Metal ion complexes derived from theα1 isomer of (P2W17O61)10-: comparison with the correspondingα2 species[J]. J Electroanal Chem, 1999, 478(1-2): 76-82.
    [13]Gao G G, Xu L, Wang W J, et al. Electrochromic ultra-thin films based on cerium polyoxometalate[J]. J Mater Chem, 2004, 14(13): 2024-2029.
    [14]Moriguchi I, Fendler J H, Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate[J]. Chem Mater, 1998, 10(8): 2205-2211.
    [15]Gao G G, Xu L, Wang W J, et al. Electrochromic multilyer films of tunable color by combination of copper or iron complex and monolacunary Dawson-type polyoxometalate[J]. J Phys Chem B, 2005, 109(18): 8948-8953.
    [16]Sonmez G, Sonmez H B, Polymeric electrochromics for data storage[J]. J Mater Chem, 2006, 16(25): 2473-2477.
    [17]Sonmez G, Sonmez H B, Shen C K F, et al. Red, green, and colors in polmeric electrochromics[J]. Adv Mater, 2004, 16(21): 1905-1908.
    [1]Rosseinsky D R, Mortimer R J, Electrochromic systems and the prospects for devices[J]. Adv Mater, 2001, 13(11): 783-793.
    [2]Kurth D G, López J P, Dong W–F, A new Co(II)-metalloviologen-based electrochromic material integrated in thin multilayer films[J]. Chem Commun, 2005, 16: 2119-2121.
    [3]Carpi F, Rossi D D, Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials[J]. Opt Laser Technol, 2006, 38(4-6), 292-305.
    [4]Choi K, Yoo S J, Sung Y–E, et al. High Contrast Ratio and Rapid Switching Organic Polymeric Electrochromic thin films based on triarylamine derivatives from layer-by-layer assembly[J]. Chem Mater, 2006, 18(25): 5823-5825.
    [5]Somani P R, Radhakrishnan S, Electrochromic materials and devices: present and future[J]. Mater Chem Phys, 2002, 77(1): 117-133.
    [6]Argun A A, Aubert P–H, Thompson B C, et al. Multicolored electrochromism in polymers: structures and devices[J]. Chem Mater, 2004, 16(23): 4401-4412.
    [7]Sapp S A, Sotzing G A, Reynolds J R, High contrast ratio and fast-switching dual polymer electrochromic devices[J]. Chem Mater, 1998, 10(8): 2101-2108.
    [8]Yao J N, Yang Y A, Loo B H, Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films[J]. J Phys Chem B, 1998, 102(11): 1856-1860.
    [9]Xiong S X, Jia P T, Mya K Y, et al. Star-like polyaniline prepared from octa(aminophenyl) silsesquioxane: enhanced electrochromic contrast and electrochemical stability[J]. Electrochim Acta, 2008, 53(9): 3523-3530.
    [10]Mane R S, Lee W J, Pathan H M, et al. Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye-Sensitized Solar Cells[J]. J Phys Chem B, 2005, 109(51): 24254-24259.
    [11]Galiote N A, Carvalho A J F, Huguenin F, et al. Trapping of charge carriers in colloidal particles of self-assembled films from TiO2 and poly(vinyl sulfonic acid)[J]. J Phys Chem B, 2006, 110(48): 24612-24620.
    [12]Ma L J, Li Y X, Yu X F, et al. Electrochemical preparation of PMeT/TiO2 nanocomposite electrochromic electrodes with enhanced long-term stability[J]. J Solid State Electrochem, 2008, 12(11): 1503-1509.
    [13]Fink R G, Droege M W, Domaille P J, Trivacant heteropolytungstate derivatives. 3.1 Rational syntheses, characterization, two-dimensional 183W NMR, and properties of tungstometallophosphates P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M = Co, Cu, Zn)[J]. Inorg Chem, 1987, 26(23): 3886-3896.
    [14]Hunguenim F, Zucolotto V, Carvalho A J F, et al. Layer-by-Layer hybrid films incorporating WO3, TiO2, and chitosan[J]. Chem Mater, 2005, 17(26): 6739-6745.
    [15]Zhang X T, Fujishima A, Jin M, et al. Double-Layered TiO2 SiO2 nanostructured films with self-cleaning and antireflective properties[J]. J Phys Chem B, 2006, 110(50): 25142-25148.
    [16]Gao G G, Xu L, Wang W J, et al. Electrochromic and pH-sensitive multilayer films based on nickel-substituted Dawson-type polyoxometalate[J]. J Electrochem Soc, 2005, 152(7): H102-H106.
    [17]Sadakane M, Steckhan E, Electrochemical properties of polyoxometalates as electrocatalysts[J]. Chem Rev, 1998, 98(1): 219-237.
    [18]Jin Y N, Xu L, Zhu L D, et al. Nanocomposite multilayer films containing Dawson-type polyoxometalate and cationic phthalocyanine: Fabrication, characterization and bifunctional electrocatalytic properties[J]. Thin Solid Films, 2007, 515(13): 5490-5497.
    [19]Huang M H, Bi L H, Shen Y, et al. Nanocomposite multilayer film of Preyssler-Type polyoxometalates with fine tunable electrocatalytic activities[J]. J Phys Chem B, 2004, 108(28): 9780-9786.
    [20]Moriguchi I, Fendler J H, Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate[J]. Chem Mater, 1998, 10(8): 2205-2211.
    [21]Gao G G, Xu L, Wang W J, et al. Electrochromic multilayer films based on trilacunary Dawson-type polyoxometalate[J]. Electrochim Acta, 2005, 50(5): 1101-1106.
    [22]Baioni A P, Vidotti M, Fiorito P A, et al. Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes[J]. Langmuir, 2007, 23(12): 6796-6800.
    [23]O?Regan B, Gr?tzel M, A low- cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
    [24]Tsuge Y, Kim J, Sone Y, et al. Fabrication of transparent TiO2 film with high adhesion by using self-assembly methods: application to super-hydrophilic film[J]. Thin Solid Films, 2008, 516(9): 2463-2468.
    [1] Lu X F, Wang C, Wei Y, One-dimensional composite nanomaterials: synthesis by electrospinning and their applications[J]. Small, 2009, 5(21): 2349-2370.
    [2] Gomez-Romero P, Hybrid organic-inorganic materials-in search of synergic activity[J]. Adv Mater, 2001, 13(3): 163–174.
    [3] Fabretto M, Zuber K, Hall C, et al. The role of water in the synthesis and performance of vapour phase polymerised PEDOT electrochromic devices[J]. J Mater Chem, 2009, 19(42): 7871–7878.
    [4] Bhandari S, Deepa M, Srivastava A K, et al. Poly(3,4-ethylenedioxythiophene) multiwalled carbon nanotube composite films:structure-directed amplified electrochromic response and improved redox activity[J]. J Phys Chem B, 2009, 113(28): 9416–9428.
    [5]Ma L J, Li Y X, Yu X F, et al. Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability[J]. Sol Energy Mater Sol Cells, 2008, 92(10): 1253–1259.
    [6]Hill C L, Introduction: polyoxometalates-multicomponent molecular vehicles to probe fundamental issues and practical problems[J]. Chem Rev, 1998, 98(1): 1-2.
    [7]Cuentas-Gallegos A K, Lira-CantúM, Casa?-Pastor N, et al. Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors[J]. Adv Funct Mater, 2005, 15(7): 1125-1133.
    [8]Balamurugan A, Chen S-M, Silicomolybdate-doped PEDOT modified electrode: electrocatalytic reduction of bromate and oxidation of asxorbic acid[J]. Electroanalysis, 2007, 19(15): 1616-1622.
    [9] Finke R G, Droege M W, Domaille P J, Trivacant heteropolytungstate derivatives. rational syntheses, characterization,two-dimensional 183W NMR, and properties of P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M = Co, Cu, Zn), Inorg Chem, 1987, 26(23): 3886–3896.
    [10]Gao G G, Xu L, Wang W J, et al. Electrochromic multilayer films based on trilacunary Dawson-type polyoxometalate[J]. Electrochim Acta, 2005, 50(5): 1101–1106.
    [11] Wang B, Vyas R N, Shaik S, Preparation parameter development for layer-by-layer assembly of Keggin-type polyoxometalates[J]. langmuir, 2007, 23(22): 11120–11126.
    [12] Du X, Wang Z, Effects of polymerization potential on the properties of electrosynthesized PEDOT films[J]. Electrochim Acta, 2003, 48(12): 1713–1717.
    [13] Kvarnstr?m C, Neugebauer H, Blomquist S, et al. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene)[J]. Electrochim Acta, 1999, 44(16): 2739–2750.
    [14]Cheng L, Dong S J, Comparative studies on electrochemical behavior and electrocatalytic properties of heteropolyanion-containing multilayer films prepared by two methods[J]. J Electroanal Chem, 2000, 481(2): 168–176.
    [15] Huang M H, Bi L H, Shen Y, et al. Nanocomposite Multilayer Film of Preyssler-Type Polyoxometalates with Fine Tunable Electrocatalytic Activities[J]. J Phys Chem B, 2004, 108(28): 9780–9786.
    [16] Moriguchi I, Fendler J H, Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate[J]. Chem. Mater., 1998, 10(8): 2205–2211.
    [17] Li C, Imae T, Electrochemical and optical properties of the poly(3,4-ethylenedioxythiophene) film electropolymerized in an aqueous sodium dodecyl sulfate and lithium tetrafluoroborate medium[J]. Macromolecules, 2004, 37(7): 2411–2416.
    [18] Liu S Q, Kurth D G, Bredenk?tter B, et al. The Structure of self-assembled multilayers with polyoxometalate Nanoclusters[J]. J Am Chem Soc, 2002, 124(41): 12279–12287.
    [19] Gao G G, Xu L, Wang W J, et al. Electrochromic and pH-sensitive multilayer films based on nickel-substituted Dawson-Type polyoxometalate[J]. J Electrochem Soc, 2005, 152(7): H102–H106.
    [20] Liu S P, Xu L, Gao G G, et al. Electrochromic and pH-sensitive multilayer films based on nickel-substituted Dawson-Type polyoxometalate[J]. Thin Solid Films, 2009, 517(16): 4668–4672.
    [21] Bhandari S, Deepa M, Srivastava A K, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated MWCNTs tethered to conducting substrates: facile electrochemistry and enhanced coloring efficiency[J]. Macromol Rapid Commun, 2008, 29(24): 1959–1964.
    [22] Deepa M, Awadhia A, Bhandari S, Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film[J]. Phys Chem Chem Phys, 2009, 11(27): 5674–5685.
    [23] Gaupp C L, Welsh D M, Rauh R D, et al. Composite coloration efficiency measurements of electrochromic Polymers Based on 3,4-Alkylenedioxythiophenes[J]. Chem Mater, 2002, 14(9): 3964–3970.
    [24] Cutler C A, Bouguettaya M, Reynolds J R, PEDOT polyelectrolyte based electrochromic films via electrostatic adsorption[J]. Adv Mater, 2002, 14(9): 684–688.
    [25] Jain V, Sahoo R, Mishra S P, et al. Synthesis and characterization of regioregular water-soluble 3,4-Propylenedioxythiophene derivative and its application in the fabrication of high-contrast solid-state electrochromic devices[J]. Macromolecules, 2009, 42(1): 135–140.
    [26] DeLongchamp D M, Kastantin M, Hammond P T, High-contrast electrochromism from layer-by-layer polymer films[J]. Chem. Mater., 2003, 15(8): 1575-1586.
    [27] Maier A, Rabindranath A R, Tieke B, Coordinative supramolecular assembly of electrochromic films based on metal ion complexes of polyiminofluorene with terpyridine substituent groups[J]. Chem. Mater., 2009, 21(15): 3668–3676.
    [28] Motiei L, Lahav M, Freeman D, et al. Electrochromic Behavior of a self-propagating molecular-based assembly[J]. J Am Chem Soc, 2009, 131(10): 3468–3469.
    [29] Kirchmeyer S, Reuter K, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene)[J]. J. Mater. Chem., 2005, 15(21): 2077–2088.
    [30] Huang J-H., Hsu C-Y, Hu C-W, et al. Thein?uence of charge trapping on the electrochromic performance of poly(3,4-alkylenedioxythiophene) derivatives[J]. ACS Appl. Mater. Interfaces, 2010, 2(2): 351–359.
    [31] Adamczyk L, Kulesza P J, Miecznikowski K, et al. Effective charge transport in poly(3,4-eth ylenedioxythiophene) based hybrid films containing polyoxometallate redox centers[J]. J Electrochem Soc, 2005, 152(3): E98–E103.
    [1]Gao G G, Xu L, Wang W J, et al. Electrochromic multilayer films of tunable color by combination of copper or iron complex and monolacunary Dquson-Type polyoxometalate[J]. J Phys Chem B, 2005, 109(18): 8948-8953.
    [2]Gao G G, Xu L, Wang W J, et al. Electrochromic ultra-thin films based on cerium polyoxometalate[J]. J Mater Chem, 2004, 14(13): 2024-2029.
    [3]Xu B B, Xu L, Gao G G, et al. Multicolor electrochromic and pH-sensitive nanocomposite thin film based on polyoxometalates and polyviologen[J]. Electrochim Acta, 2009,54(8): 2246-2252.
    [4]Liu S P, Xu L, Li F Y, et al. Enhanced electrochromic performance of composite film by combination of polyoxometalate with poly(3,4-ethylenedioxythiophene)[J]. J Mater Chem, 2011, 21(6): 1946-1952.
    [5]Liu J, Rinzler A G, Dai H, et al. Fullerene pipes[J]. Science, 1998, 280(22): 1253-1256.
    [6]Small W R, Masdarolomoor F, Wallace G G, et al. Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction[J]. J Mater Chem, 2007, 17(41):4359-4361.
    [7]Bhandari S, Deepa M, Srivastava A K, et al. Poly(3,4-ethylenedioxythiophene)-multiwalled carbon nanotube composite films: structure-directed amplified electrochromic response and improved redox activity[J]. J Phys Chem B, 2009, 113(28): 9416-9428.
    [8]Pan D, Chen J H, Tao W Y, et al. Polyoxometalate-modified carbon nanotubes: New catalyst support for methanol electro-oxidation[J]. Langmuir, 2006, 22(13): 5872-5876.
    [9]Haghighi B, Hamidi H, Gorton L, Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: toward sensitive and fast detection of hydrogen peroxide and iodate[J]. Electrochim Acta, 2010, 55(16): 4750-4757.
    [10]Skunik M, Chojak M, Rutkowska I A, et al. Improved capacitance characteristics during electrochemical charging of carbon nanotubes modified with polyoxometalate monolayers[J]. Electrochim Acta, 2008, 53(11) 3862-3869.
    [11]Kulesza P J, Skunik M, Baranowska B, et al. Fabrication of network films of conducting polymer-linked polyoxometalate-stabilized carbon nanostructures[J]. Electrochim Acta, 2006, 51(11): 2373-2379.
    [12]Skunik M, Kulesza P J, Phosphomolybdate-modified multi-walled carbon nanotubes as effective mediating systems for electrocatalytic reduction of bromate[J]. Anal Chim Acta, 2009, 631(2): 153-160.
    [13]Charron G, Giusti A, Mazerat S, et al. Assembly of a magnetic polyoxometalate on SWNTs[J]. Nanoscale, 2010, 2(1): 139-144.
    [14]Fink R G, Droege M W, Domaille P J, Trivacant heteropolytungstate derivatives. 3.1 Rationalsyntheses, characterization, two-dimensional 183W NMR, and properties of tungstometallophosphates P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M = Co, Cu, Zn)[J]. Inorg Chem, 1987, 26(23): 3886-3896.
    [15]Kim B, Sigmund W M, Functionalized multiwalled carbon nanotube/gold nanoparticle composites[J]. Langmuir, 2004, 20(19):8239-8242.
    [16]Camilo C S, dos Santos D S, Jr., Rodrigues J J, Jr., M.L.et al. Surface-relief gratings and photoinduced birefringence in layer-by-layer films of chitosan and an azopolymer[J]. Biomacromolecules 2003, 4(6): 1583-1588.
    [17]Liu S Q, Kurth D G, Bredenk?tter B, et al. The structure of self-assembled multilayers with polyoxometalate nanoclusters[J]. J Am Chem Soc, 2002, 124(41): 12279-12287.
    [18]Xu B B, Xu L, Gao G G, et al. Effects of film structure on electrochromic properties of the multilayer films containing polyoxometalates[J]. J Colloid Interface Sci, 2009, 330(2): 408-414.
    [19]Zhao Q C, Feng X D, Mei S L, et al. Carbon-nanotube-assisted high loading and controlled release of polyoxometalates in biodegradable multilayer thin films[J]. Nanotechnology, 2009, 20(10): 105101.
    [20]Paloniemi H, Lukkarinen M, ??ritalo T, et al. Layer-by-layer electrostatic self-assmbly of single-wall carbon nanotube polyelectrolytes[J]. Langmuir 2006, 22(1): 74-83.
    [21]Liu S P, Xu L, Gao G G, et al. Multilayer electrochromic ultrathin films based on neutral red and polyoxometalate[J]. Thin Solid Films 2009, 517(16): 4668-4672.
    [22]Boddohi S, Killingsworth C E, Kipper M J, Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin[J]. Biomacromolecules 2008, 9(7): 2021-2028.
    [23]Kasaai M R, Calculation of mark-houwink-sakurada (MHS) equation viscometric constants for chitosan in any solvent-temperature system using experimental reported viscometric constants data[J]. Carbohydr Polym, 2007, 68(3): 477-488.
    [24]Cheng L, Dong S J, Comparative studies on electrochemical behavior and electrocatalytic properties of heteropolyanion-containing multilayer films prepared by two methods[J]. J Electroanal Chem, 2000, 481(2): 168-176.
    [25]Huang M H, Bi L H, Shen Y, et al. Nanocomposite multilayer film of Preyssler-type polyoxometalates with fine tunable electrocatalytic activities[J]. J. Phys Chem B, 2004, 108(28): 9780-9786.
    [26]Moriguchi I, Fendler J H, Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate[J]. Chem Mater, 1998, 10(8): 2205-2211.
    [27]Wang B, Vyas R N, Shaik S, Preparation parameter development for layer-by-layer assembly of Keggin-type polyoxometalates[J]. Langmuir, 2007, 23(22): 11120-11126.
    [28]Tebby Z, Babot O, Toupance T, et al. Low-temperature UV-processing of nanocrystalline nanoprous thin TiO2 films: An original route toward plastic electrochromic systems[J]. Chem Mater, 2008, 20(23): 7260-7267.
    [29]Xia X H, Tu J P, Zhang J, et al. Cobalt oxide ordered bowl-like array films prepared by electrodeposition through monolayer polystyrene sphere template and electrochromic properties[J]. ACS Appl Mater Interfaces, 2010, 2(1): 186-192.
    [30]Wang J M, Khoo E, Lee P S, et al. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte[J]. J Phys Chem C, 2009, 113(22): 9655-9658.
    [31]Park S Y, Lee J M, Noh C, et al. Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies[J]. J Mater Chem, 2009, 19(42): 7959-7964.
    [32]DeLongchamp D M, Kastantin M, Hammond P T, Hgh-contrast electrochtomism from layer-by-layer polymer films[J]. Chem Mater, 2003, 15(8): 1575-1586.
    [33]Deepa M, Awadhia A, Bhandari S, et al. Electrochromic performance of a poly(3,4-ethyenedioxythiophene)-prussian blue device encompassing a free standing proton electrolyte film[J]. Electrochim Acta, 2008, 53(24): 7266-7275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700