用户名: 密码: 验证码:
基于吲哚啉给体的染料敏化剂的构建及光伏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比于传统硅电池,染料敏化太阳能电池(DSSCs)由于具有制作工艺简单、生产成本低廉及环境友好等特点而引起全球的广泛关注。其中,有机小分子染料作为重要的光捕获材料,因具有便于结构修饰、摩尔消光系数高及其较低的合成成本等优势而引起研究者广泛的兴趣。通过合理的分子结构设计提高染料敏化太阳能电池的光电转换效率及稳定性是本论文研究的重点。本文设计合成了基于芴为桥连、四个苯胺衍生物为电子给体;以咔唑吲哚啉为电子给体、氰基乙酸及绕丹宁酸为电子受体;吲哚啉为电子给体,不同噻吩衍生物为共轭桥连等多个系列基于电子给体-共轭桥连-电子受体(D-π-A)构型的染料敏化剂,分别对染料结构中的供电子体、吸电子单元及共轭桥连进行优化。在此基础上,进一步设计了以苯甲酰亚胺及苯并三氮唑单元为辅助吸电子基的D-A-π-A构型染料,研究不同辅助吸电子基团对染料性能的影响。
     本论文的主要内容和研究成果包括以下几个方面:
     前言简要介绍了染料敏化太阳能电池的研究背景、工作原理,综述了DSSCs中染料敏化剂近年来的研究进展,并提出本论文的研究思路。
     鉴于芴单元优异的共平面性,设计合成了以不同苯胺衍生物为供电子体、芴联噻吩为共轭桥连、氰基乙酸结构为电子受体的染料敏化剂S1-S4,对该系列染料进行了光物理和电化学性能测试、运用高斯软件对分子的电子云分布进行了理论计算、并将其作为敏化剂组装DSSCs器件,对其进行光伏性能测试。测试结果表明,染料第一氧化电位可以通过改变电子给体进行修饰。相对于N,N-二甲基苯胺及三苯胺,吲哚啉衍生物表现出更强的给电子能力,其对应的化合物S2、S3具有更好的光伏性能。在π-桥连芴结构中引入的两个辛基碳链能够有效地抑制染料在二氧化钛膜上的聚集,从而更好地抑制电子回传。此外,密度泛函理论(DFT)计算结果表明,具有刚性结构芴的引入使染料呈现一种扭曲结构,从而使该系列染料在最高占据分子轨道(HOMO)及最低未占分子轨道(LUMO)能态时电子云在芴单元上的分布都很小,从理论角度上对染料引入芴桥连后不太理想的吸收性质给予了合理的解释。随着电子给体的不同,该系列染料表现出3.044.26%的光电转换效率。其中,采用甲基吲哚啉为给体的染料S3的开路电压为(V_(oc))727mV,光电转换效率(ff)为4.26%,达到同等条件下N719效率的82%。
     设计合成以咔唑取代的吲哚啉为供电子体、绕丹宁酸结构为电子受体的D-π-A染料C-RA,实现了染料的全吸收。在此基础上,设计合成氰基乙酸为吸电子基团的染料C-CA,系统地研究不同吸附基团对吲哚啉染料光伏性能的影响。与C-CA相比,C-RA虽具有更宽的光谱响应,但其光伏效率(0.57%~0.90%)仅为同等条件下C-CA(8.49%)的10%。含有不同吸附基团的染料间巨大的单色光电转换效率(IPCE)差异主要源于二者不同的激发电子注入效率。激发态电子寿命测试及DFT计算结果均表明,C-RA敏化的DSSCs中光生电子与氧化态染料间存在着严重的电荷复合(Charge recombination),不利于电子的有效注入,并导致其极低的短路光电流密度。此外,加强光诱导瞬态测试(SLIT)及电化学阻抗(EIS)测试结果表明,C-RA敏化的DSSC中TiO_2表面较低的电荷密度及较快的电荷复合速率导致其较低的开路电压。该项工作对设计有效的染料敏化剂,尤其是采用绕丹宁酸结构为吸附基团的D-π-A型染料具有一定的指导意义。
     考虑到3,4-乙烯二氧噻吩(EDOT)单元易于与相邻芳环形成共平面结构,有利于优化分子的共轭性能,设计合成了以EDOT为共轭桥连的两个D-π-A染料LS-4及LS-5,研究染料光物理、电化学性质对光伏性能的影响。实验结果表明,EDOT的引入不仅拓宽了染料的光谱响应,同时有益于增加染料的吸光系数,提高了染料的短路光电流密度J_(sc)。相比而言,EDOT的引入对提升染料开路电压的作用不很明显(<20mV)。相对于三苯胺染料LS-5,LS-4具有更负的HOMO能级,且其吸收峰值更向长波长偏移,表明吲哚啉单元更强的给电子能力。在模拟标准光源照射下,经LS-4与2mM鹅去氧胆酸(CDCA)共吸附的DSSCs具有6.05%的光电转换效率,其中短路光电流密度J_(sc)=13.23mAcm~(-2),V_(oc)=642mV,ff=0.711。该工作同时表明,150mV的染料再生驱动力对该类吲哚啉有机染料而言是可行的,从优化染料再生过程的角度上有效地避免了能量损失。
     为了提高吲哚啉类染料的稳定性并优化染料的光伏性能,进一步引入辅助吸电子基,发展D-A-π-A型敏化染料。考虑到苯甲酰亚胺及苯并三氮唑具有较好的吸电子能力,且其结构中的N上可以方便地引入烷基链从而有效地改善染料的溶解性、抑制注入电子与电解质中氧化还原对间的电荷复合过程,将苯甲酰亚胺及苯并三氮唑单元作为辅助吸电子基,设计合成D-A-π-A型染料LS-2及WS-5。利用二者相似的分子结构,系统研究了辅助吸电子基团对染料的吸收、电化学及光伏性质的影响。实验结果及DFT理论模拟证明,具有相似苯并五元环结构的苯甲酰亚胺及苯并三氮唑单元的引入对染料的光物理、电化学性质及电子云分布有截然不同的影响:i)苯并三氮唑的引入使WS-5的HOMO能级有效地离域于整个分子骨架,而含两个羰基的苯甲酰亚胺单元的引入使LS-2呈现出很大的扭曲构型,其HOMO(?)级主要位于电子给体一端;ii)LS-2的基态优化构型结果表明,“D-A”及“A-π”平面间均呈现出较大的二面角,进一步证明苯甲酰亚胺的引入破坏了分子的离域,不利于分子内电荷迁移(ICT)过程;ⅲ) EIS测试结果表明,相比于LS-1,WS-5及LS-2的电子寿命分别提高了18.6及5.0倍。由于两个分子中均含有较长的烷基链,它们均表现出较高的开路电压(>750mV)。其中,WS-5表现出更高的短路光电流密度,光电转换效率达到8.38%,相比之下,扭曲构型的LS-2的光伏性能仅为同等条件下WS-5的60%。该工作表明在对D-A-π-A构型的染料进行结构修饰时,需谨慎选择辅助吸电子基团。
     为了对吲哚啉染料LS-1的光伏性能进行优化,实现对太阳光更有效的吸收利用,分别将EDOT、双键、己基噻吩引入到LS-1中,设计合成染料LS-3、LS-6及LS-7,研究不同共轭基团对染料性能的影响。实验结果表明EDOT、双键及烷基链的引入能不同程度地实现对染料光吸收性能的优化,相比于双键及烷基链,EDOT单元的引入更有利于优化染料的光物理及电化学性质。I-V及EIS测试结果表明,噻吩基团上烷基链的引入可以实现对染料在二氧化钛表面的吸附形态及TiO_2/染料/电解液界面的优化过程,并获得较高的开路电压。在优化条件下,以己基噻吩为共轭桥连的LS-7表现出5.45%的光电转换效率,其中JSC=11.61mA cm-2,VOC=744mV,ff=0.63。
As a potential alternative to conventional inorganic photovoltaic devices, dye-sensitized solar cells (DSSCs) have attracted increasing attention in the past decades due to their high performance/price ratio and environmentally friendly nature. As a light-absorbing media in DSSCs, organic sensitizers are considered as promising candidates because of their facile structural modifications, low cost, and relatively high absorption coefficient with respect to ruthenium complexes. Extensive efforts have been focused on improving the overall efficiency and stablility of the sensitizers through rationalizing molecular structures. In this dissertation, we strived to optimize the donor moiety, conjugated bridge and acceptor/anchoring group of sensitizers with the configuration of D-π-A. Besides, we incorporated phthalimide and benzotriazole as auxiliary electron electron-withdrawing units in indoline based D-A-π-A sensitizers to systematically study their effect on the photophysical and electrochemical as well as photovoltaic properties in DSSCs.
     The main contents of the manuscript are summarized as follows:
     In introduction, the research background and basic working principle of DSSCs were introduced. The recent progress of typical dye sensitizers was reviewed, and the research strategy of the dissertation was presented.
     A novel series of organic dyes containing a fluorene unit as the conjunction bridge (S1-S4) have been designed and synthesized for a potential application in DSSCs. Their absorption spectra, electrochemical and photovoltaic properties have been investigated in detail. The tuning of the HOMO and LUMO energy levels can be conveniently realized by alternating the donor moiety. As demonstrated, the indoline unit can exhibit a stronger electron donating ability, realizing a broader absorption when coated onto TiO2. The incorporation of octyl-substituted fluorene is highly beneficial to prevent close π-π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. In both HOMO and LUMO orbitals, the electron density located at the conjunction bridge (fluorene unit) is quite low, suggesting that the incorporated fluorene unit plays quite small role in the electron delocalization between the donor and acceptor units due to the twist conformation. The overall conversion efficiencies of DSSCs based on these dyes are in the range of3.04to4.26%and highly dependent upon their donor moieties. Among these dyes, S3,which utilizes a methyl-substituted indoline moiety as an electron donor, has shown a maximum short current destiny (JSc), with a relatively high open circuit voltage (Foc) of727mV.
     For developing panchromatic dyes, we develop sensitizer C-RA, and focus on the effect of rhodanine acceptor on photovoltaic performances in D-π-A indoline dye. Upon changing from cyanoacrylic acid (C-CA) to rhodanine-3-acetic acid (C-RA) as acceptor and anchoring group, C-RA shows broader absorption band, which can overlap with the solar spectrum more preferably. However, the power conversion efficiency of DSSCs based on C-RA (0.57%~0.90%) is one order of magnitude with respect to C-RA (8.49%). We find that the distinct difference of IPCE values between C-CA and C-RA is predominately attributed to the different excited electron injection yield (Φinj). Both the excited electron lifetime and DFT calculation indicate that the serious charge recombination between the photo-induced electron and the oxidized dye state in C-RA results in a low electron injection efficiency, leading to a low Jsc. Moreover, with respect to C-CA, the systematic SLIT and EIS studies demonstrate that C-RA holds the relatively low injection charge density in the TiO2electrode and fast charge recombination rate, leading to a low Voc. Our studies are highly helpful to the design of novel metal-free D-π-A organic sensitizers, especially for those using rhodanine-3-acetic acid as acceptor.
     Two novel D-π-A organic dyes LS-4and LS-5, containing3,4-ethylenedioxythiophene (EDOT) in the conjugated bridge, are developed for nanocrystalline TiO2-based DSSCs. Systematic investigation is carried out on focus of the joint photophysical and electrochemical analysis on photovoltaic properties. Incorporating EDOT as conjugated bridge brings several characteristics:(i) distinctly increasing the light-harvesting ability such as broadening absorption range and increasing molar extinction coefficients;(ii) improving electron injection with the predominant enhancement of short-circuit photocurrent;(iii) exhibiting little effect on the open circuit voltage. LS-4shows a more negative oxidation potential and a bathochromic shift in absorption spectra with respect to LS-5, indicative of the more powerful electron-donating capability of indoline unit than that of triphenylamine. With coadsorption of2mM chenodeoxycholic acid (CDCA), the LS-4based DSSC exhibits a promising conversion efficiency of6.05%, with a,Jsc of13.23mA cm-2, Voc of642mV, and fill factor (ff) of0.711under AM1.5illumination (100mW cm-2). Moreover, in the system of LS-4, DSSCs is workable with the driving force of150mV for dye regeneration process, paving a road towards minimizing energy losses in dye regeneration process.
     Two organic D-A-π-A sensitizers LS-2and WS-5containing N-octyl substituted phthalimide and benzotriazole as auxiliary electron withdrawing units with similar dimension and structure architecture were systematically studied on focus of photophysical, electrochemical as well as photovoltaic properties in nanocrystalline TiO2-based dye-sensitized solar cells. Interestingly, with similar five-member benzo-heterocycles, the two auxiliary acceptors of phthalimide and benzotriazole play exact different roles in absorption and intramolecular charge transfer:(ⅰ) in contrast with WS-5delocalized throughout the entire chromophore, the HOMO orbital of LS-2is mainly located at the donor part due to the twist conformation with the existence of two carbonyl groups in phthalimide;(ⅱ) the dihedral angles of "D-A" plane and "A-π" plane in LS-2further suggest that the incorporation of phthalimide moiety results in curvature of electron delocalization over the whole molecule;(ⅲ) in contrast with the beneficial charge transfer of benzotriazole in WS-5, the phthalimide unit in LS-2plays an opposite negative contribution to the charge transfer, that is, blocking ICT from donor to accepter to some extent; and (ⅳ) in electrochemical impedance spectroscopy, the incorporated benzotriazole unit enhances electron lifetime by18.6-fold, the phthalimide only increases electron lifetime by5.0-fold. Without coadsorption of CDCA, the DSSCs based on WS-5exhibited a promising maximum conversion efficiency of8.38%with significant enhancement in all photovoltaic parameters (Jsc=15.79mA cm-2, Voc=791mV,ff=0.67). In contrast, with the very similar D-A-π-A feature changing the additional acceptor from benzotriazole to phthalimide unit, the photovoltatic efficiency based on LS-2was only5.11%, with less efficient photovoltaic parameters (Jsc=10.06mA cm-2, Voc=748mV,ff=0.68). Therefore, our results demonstrate that it is essential to choose proper subsidiary withdrawing unit in D-A-π-A sensitizer configuration for DSSCs.
     To optimize the photovoltaic performance of LS-1, the π-bridges of EDOT, methylene methine chain and hexyl-thiophene was introduced into indoline based sensitizer to develop dyes LS-3, LS-6and LS-7, and systematically studied the effect of different conjugated bridges on the photophysical, electrochemical as well as photovoltaic properties in DSSCs. The absorption spectra of three dyes show significant red-shift with respect to LS-1. Among them, EDOT in LS-3shows a priority in optimizing the photophysical and electrochemical properties of indoline based sensitizers. I-V and EIS results indicate that the introduction of alkyl chains on thiophene unit is effective in TiO2/dye/electrolyte interface modification, and realizing the enhancement of Voc. Under optimized condition, LS-7based DSSC exhibits a conversion efficiency of5.45%, with the parameters Jsc=11.61mA cm-2, Voc=744mV,ff=0.63.
引文
[1]董锁成,石广义,沈镭,王礼茂,杨旺舟.我国资源经济与世界资源研究进展及展望[J].自然资源学报,2010,25:1432-1444.
    [2]宋华丰,徐俭.烟气中氮氧化物的处理技术[J].中国科技信息,2008,20-21.
    [3]R. Gaudiana. Third-generation photovoltaic technology-the potential for low-cost solar energy conversion [J]. J. Phys. Chem. Lett.,2010,1:1288-1289.
    [4]M. Gratzel. Photoelectrochemical cells [J]. Nature,2001,414:338-344.
    [5]D. M. Chapin, C. S. Fuller, G. L. Pearson. A new silicon p-n junction photocell for converting solar radiation into electrical power [J]. J. Appl. Phys.,1954,25:676-678.
    [6]M. A. Green, K. Emery, Y. Hishikawa. W. Warta, E. D. Dunlop. Solar cell efficiency tables (version 39) [J]. Prog. Photovoltaics,2012,20:12-20.
    [7]G. M. A., E. Keith, H. Yoshihiro, W. Wilhelm. Solar cell efficiency tables (version 37) [J]. Prog. Photovoltaics,2011,84-92.
    [8]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [9]H. Tsubomura, M. Matsumura. Y. Nomura, T. Amamiya. Dye sensitised zinc oxide: aqueous electrolyte:platinum photocell [J]. Nature,1976,261:402-403.
    [10]B. O'regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353:737-740.
    [11]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011, 334:629-634.
    [12]A. Hagfeldt. Brief overview of dye-sensitized solar cells [J]. Ambio.,2012,41 Suppl 2: 151-155.
    [13]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson. Dye-sensitized solar cells [J]. Chem. Rev.,2010,110:6595-6663.
    [14]G. Ramakrishna, D. A. Jose, D. K. Kumar, A. Das, D. K. Palit, H. N. Ghosh. Strongly-coupled ruthenium-polypyridyl complexes for efficient electron injection in dye-sensitized semiconductor nanoparticles [J]. J. Phys. Chem. B,2005.109: 15445-15453.
    [15]D. Kuang, S. Ito. B. Wenger. C. Klein, J.-E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Gratzel. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2006,128: 4146-4154.
    [16]P. Wang, B. Wenger, R. Humphry-Baker, J. E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, M. Gratzel. Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids [J]. J. Am. Chem. Soc.,2005,127:6850-6856.
    [17]N. Papageorgiou, W. F. Maier, M. Gratzel. An iodine/triiodide reduction electrocatalyst for aqueous and organic media [J]. J. Electrochem. Soc.,1997,144:876-884.
    [18]S. Martiniani, A. Y. Anderson, C. Law, B. C. O'regan, C. Barolo. New insight into the regeneration kinetics of organic dye sensitised solar cells [J]. Chem. Commun.,2012,48: 2406-2408.
    [19]J. L. Bredas, J. E. Norton, J. Cornil, V. Coropceanu. Molecular understanding of organic solar cells:the challenges [J]. Accounts Chem. Res.,2009,42:1691-1699.
    [20]A. Mishra, M. K. Fischer, P. Bauerle. Metal-free organic dyes for dye-sensitized solar cells:from structure:property relationships to design rules [J]. Angew. Chem. Int. Ed., 2009,48:2474-2499.
    [21]M. Pagliaro, G. Palmisano, R. Ciriminna. Flexible solar cells [M].2008.
    [22]J. W. Ondersma, T. W. Hamann. Impedance investigation of dye-sensitized solar cells employing outer-sphere redox shuttles [J]. J. Phys. Chem. C,2010,114:638-645.
    [23]X. Xin, J. Wang, W. Han, M. Ye, Z. Lin. Dye-sensitized solar cells based on a nanoparticle/nanotube bilayer structure and their equivalent circuit analysis [J]. Nanoscale,2012,4:964-969.
    [24]C. Longo, A. F. Nogueira, M. A. De Paoli, H. Cachet. Solid-state and flexible dye-sensitized TiO2 solar cells:a study by electrochemical impedance spectroscopy [J]. J. Phys. Chem. B,2002,106:5925-5930.
    [25]N. Koide, A. Islam, Y. Chiba, L. Han. Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit [J]. J. Photochem. Photobiol. A: Chem.,2006,182:296-305.
    [26]T. Dentani, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Minoura, H. Miura, M. Matsui. Novel thiophene-conjugated indoline dyes for zinc oxide solar cells [J]. New J. Chem.,2009,33:93-101.
    [27]J. A. Anta, J. Idigoras, E. Guillen, J. Villanueva-Cab, H. J. Mandujano-Ramirez, G. Oskam, L. Pelleja, E. Palomares. A continuity equation for the simulation of the current-voltage curve and the time-dependent properties of dye-sensitized solar cells [J]. Phys. Chem. Chem. Phys.,2012,14:10285-10299.
    [28]L. Etgar, J. S. Bendall, V. Laporte, M. E. Welland, M. Gratzel. Reducing recombination in ZnO photoanodes for dye sensitised solar cells through simple chemical synthesis [J]. J. Mater. Chem.,2012,22:24463-24468.
    [29]C.-M. Chen, Q. Zhang, J.-Q. Huang, W. Zhang, X.-C. Zhao, C.-H. Huang, F. Wei, Y.-G. Yang, M.-Z. Wang, D. S. Su. Chemically derived graphene-metal oxide hybrids as electrodes for electrochemical energy storage:pre-graphenization or post-graphenization [J]. J. Mater. Chem.,2012,22:13947-13955.
    [30]H. Choi, S. Kim, S. O. Kang, J. Ko, M. S. Kang, J. N. Clifford, A. Forneli, E. Palomares, M. K. Nazeeruddin, M. Gratzel. Stepwise cosensitization of nanocrystalline TiO2 films utilizing Al2O3 layers in dye-sensitized solar cells [J]. Angew. Chem. Int. Ed., 2008,47:8259-8263.
    [31]M. Matsui, A. Ito, M. Kotani, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Minoura, H. Miura. The use of indoline dyes in a zinc oxide dye-sensitized solar cell [J]. Dye. Pigments,2009,80:233-238.
    [32]M. Matsui, Y. Asamura, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Miura. Highly efficient substituted triple rhodanine indoline dyes in zinc oxide dye-sensitized solar cell [J]. Tetrahedron,2010,66:7405-7410.
    [33]M. Matsui, T. Fujita, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Miura. Substituent effects in a double rhodanine indoline dye on performance of zinc oxide dye-sensitized solar cell [J]. Dye. Pigments,2010,86:143-148.
    [34]S. Higashijima, H. Miura, T. Fujita, Y. Kubota, K. Funabiki, T. Yoshida, M. Matsui. Highly efficient new indoline dye having strong electron-withdrawing group for zinc oxide dye-sensitized solar cell [J]. Tetrahedron,2011,67:6289-6293.
    [35]J. Warnan, L. Favereau, Y. Pellegrin, E. Blart, D. Jacquemin, F. Odobel. A compact diketopyrrolopyrrole dye as efficient sensitizer in titanium dioxide dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.,2011,226:9-15.
    [36]S. Higashijima, Y. Inoue, H. Miura, Y. Kubota, K. Funabiki, T. Yoshida, M. Matsui. Organic dyes containing fluorene-substituted indoline core for zinc oxide dye-sensitized solar cell [J]. RSC Adv.,2012,2:2721-2724.
    [37]M. Matsui, T. Shiota, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, S. Higashijima, H. Miura. N-(2-alkoxyphenyl)-substituted double rhodanine indoline dyes for zinc oxide dye-sensitized solar cell [J]. Tetrahedron,2012,68:4286-4291.
    [38]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel. Conversion of light to electricity by cia-X2bis(2.2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X =Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem. Soc.,1993,115:6382-6390.
    [39]B. C. O'regan, J. R. Durrant, P. M. Sommeling, N. J. Bakker. Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells:charge density, band edge shifts, and quantification of recombination losses at short circuit [J]. J. Phys. Chem. C,2007,111:14001-14010.
    [40]P. M. Sommeling, B. C. O'regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, J. A. M. Van Roosmalen. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells [J]. J. Phys. Chem. B,2006,110: 19191-19197.
    [41]Z.-S. Wang, G. Zhou. Effect of surface protonation of TiO2 on charge recombination and conduction band edge movement in dye-sensitized solar cells [J]. J. Phys. Chem. C, 2009,113:15417-15421.
    [42]Z. S. Wang. F. Y. Li, C. H. Huang. Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO2 films with hydrochloric acid [J]. J. Phys. Chem.B,2001,105:9210-9217.
    [43]Z. S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films [J]. Langmuir,2005,21:4272-4276.
    [44]E. Olsen, G. Hagen, S. Eric Lindquist. Dissolution of platinum in methoxy propionitrile containing LiI/I2 [J]. Sol. Energ. Mat. Sol C.,2000,63:267-273.
    [45]K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-I. Nakamura, K. Murata. High-performance carbon counter electrode for dye-sensitized solar cells [J]. Sol. Energ. Mat. Sol. C.,2003,79:459-469.
    [46]A. Kay, M. Gratzel. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder [J]. Sol. Energ. Mat. Sol. C.,1996, 44:99-117.
    [47]H. Pettersson, T. Gruszecki, R. Bernhard, L. Haggman, M. Gorlov, G. Boschloo, T. Edvinsson, L. Kloo, A. Hagfeldt. The monolithic multicell:a tool for testing material components in dye-sensitized solar cells [J]. Prog. Photovoltaics,2007,15:113-121.
    [48]R. Kawano, T. Katakabe, H. Shimosawa, M. Khaja Nazeeruddin, M. Gratzel, H. Matsui, T. Kitamura, N. Tanabe, M. Watanabe. Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode [J]. Phys. Chem. Chem. Phys.,2010,12:1916-1921.
    [49]H. N. Tsao, J. Burschka, C. Yi, F. Kessler, M. K. Nazeeruddin, M. Gratzel. Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles [J]. Energy Environ. Sci.,2011,4:4921-4924.
    [50]L. Bay, K. West, B. Winther-Jensen, T. Jacobsen. Electrochemical reaction rates in a dye-sensitised solar cell-the iodide/tri-iodide redox system [J]. Sol. Energ. Mat. Sol. C., 2006,90:341-351.
    [51]Z. Yang, C.-Y. Chen, C.-W. Liu, H.-T. Chang. Electrocatalytic sulfur electrodes for cds/cdse quantum dot-sensitized solar cells [J]. Chem. Commun.,2010,46:5485-5487.
    [52]S. K. Balasingam, M. Lee, M. G. Kang, Y. Jun. Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum [J]. Chem. Commun., 2013,49:1471-1487.
    [53]R Wyss, T. Moehl, S. M. Zakeeruddin, M. Gratzel. Influence of cations of the electrolyte on the performance and stability of dye sensitized solar cells [J]. J. Mater. Chem.,2012,22:24424-24429.
    [54]K.-M. Lee, S.-J. Wu, C.-Y. Chen, C.-G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka, K.-C. Ho. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer [J]. J. Mater. Chem.,2009,19:5009-5015.
    [55]Q. Feng, W. Zhang, G. Zhou, Z. S. Wang. Enhanced performance of quasi-solid-state dye-sensitized solar cells by branching the linear substituent in sensitizers based on thieno[3,4-c]pyrrole-4,6-dione [J]. Chem. Asian J.,2013,8:168-177.
    [56]X. Lu, G. Zhou, H. Wang, Q. Feng, Z.-S. Wang. Near infrared thieno[3,4-b]pyrazine sensitizers for efficient quasi-solid-state dye-sensitized solar cells [J]. Phys. Chem. Chem. Phys.,2012,14:4802-4809.
    [57]K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa. Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells [J]. Sol. Energ. Mat. Sol. C.2001,70:151-161.
    [58]M. K. Kashif, J. C. Axelson. N. W. Duffy, C. M. Forsyth, C. J. Chang, J. R. Long, L. Spiccia, U. Bach. A new direction in dye-sensitized solar cells redox mediator development:in situ fine-tuning of the cobalt(II)/(III) redox potential through lewis base interactions [J]. J. Am. Chem. Soc.,2012,134:16646-16653.
    [59]K. Fredin, J. Nissfolk, G. Boschloo, A. Hagfeldt. The influence of cations on charge accumulation in dye-sensitized solar cells [J]. J. Electroanal. Chem.,2007,609:55-60.
    [60]K. Hara, T. Nishikawa, M. Kurashige, H. Kawauchi, T. Kashima, K. Sayama, K. Aika, H. Arakawa. Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(II) terpyridyl complex photosensitizer [J]. Sol. Energ. Mat. Sol. C.,2005,85:21-30.
    [61]S. I. Cha, Y. Kim, K. H. Hwang, Y.-J. Shin, S. H. Seo, D. Y. Lee. Dye-sensitized solar cells on glass paper:TCO-free highly bendable dye-sensitized solar cells inspired by the traditional korean door structure [J]. Energy Environ. Sci.,2012,5:6071-6075.
    [62]H. Goto. Vortex fibril structure and chiroptical electrochromic effect of optically active poly(3,4-ethylenedioxythiophene) (PEDOT*) prepared by chiral transcription electrochemical polymerisation in cholesteric liquid crystal [J]. J. Mater. Chem.,2009, 19:4914-4921.
    [63]B. Bhattacharya, J. Y. Lee, J. Geng, H. T. Jung. J. K. Park. Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells [J]. Langmuir.,2009,25: 3276-3281.
    [64]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J]. Nat. Mater,2003,2:402-407.
    [65]N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonho/Te, H. Pettersson, A. Azam, M. Gratzel. The performance and stability of ambient temperature molten salts for solar cell applications [J]. J. Electrochem. Soc.,1996,143:3099-3108.
    [66]N. Yamanaka, R. Kawano, W. Kubo, N. Masaki, T. Kitamura, Y. Wada, M. Watanabe, S. Yanagida. Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes [J]. J. Phys. Chem. B.2007,111:4763-4769.
    [67]Y. Bai, Y. Cao, J. Zhang, M. Wang. R. Li, P. Wang, S. M. Zakeeruddin, M. Gratzel. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts [J]. Nat. Mater.,2008,7:626-630.
    [68]S. A. Haque, Y. Tachibana. R. L. Willis, J. E. Moser, M. Gratzel, D. R. Klug, J. R. Durrant. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films [J]. J. Phys. Chem. B,1999,104:538-547.
    [69]E. V. A. Premalal, G. R. R. A. Kumara. R. M. G. Rajapakse. M. Shimomura. K. Murakami, A. Konno. Tuning chemistry of CuSCN to enhance the performance of TiO2/N719/CuSCN all-solid-state dye-sensitized solar cell [J]. Chem. Commun.,2010, 46:3360-3362.
    [70]S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, A. J. Frank. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J]. J. Phys. Chem. B, 1997,101:2576-2582.
    [71]C. Zhang, J. Dai, Z. Huo, X. Pan, L. Hu, F. Kong, Y. Huang, Y. Sui, X. Fang, K. Wang, S. Dai. Influence of 1-methylbenzimidazole interactions with Li+and TiO2 on the performance of dye-sensitized solar cells [J]. Electrochim. Acta,2008,53:5503-5508.
    [72]H. Kusama, H. Orita, H. Sugihara. TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells:a periodic density functional theory study [J]. Langmuir., 2008,24:4411-4419.
    [73]Z. P. Zhang, N. Evans, S. M. Zakeeruddin, R. Humphry-Baker, M. Gratzel. Effects of omega-guanidinoalkyl acids as coadsorbents in dye-sensitized solar cells [J]. J. Phys. Chem. C,2007,111:398-403.
    [74]J.-Y. Li, C.-Y. Chen, J.-G. Chen, C.-J. Tan, K.-M. Lee, S.-J. Wu, Y.-L. Tung, H.-H. Tsai, K.-C. Ho, C.-G. Wu. Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells [J]. J. Mater. Chem.,2010,20:7158-7164.
    [75]P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L, Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J. Am. Chem. Soc.,2001,123:1613-1624.
    [76]M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Gratzel. Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania [J]. Inorg. Chem., 1999,38:6298-6305.
    [77]M. Yanagida, L. P. Singh, K. Sayama, K. Hara, R. Katoh, A. Islam, H. Sugihara, H. Arakawa, M. K. Nazeeruddin, M. Gratzel. A new efficient photosensitizer for nanocrystalline solar cells:synthesis and characterization of cis-bis(4,7-dicarboxy-1,10-phenanthroline)dithiocyanato ruthenium(II) [J]. J. Chem. Soc, Dalton Trans.,2000,2817-2822.
    [78]P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin, M. Gratzel. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells [J]. Adv. Mater.,2004,16: 1806-1811.
    [79]F. Gao, Y Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Gratzel. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2008,130:10720-10728.
    [80]F. F. Gao, Y. Wang, J. Zhang, D. Shi, M. K. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Gratzel. A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell [J]. Chem. Commun.,2008,2635-2637.
    [81]Q. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang, P. Wang. An extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells:the effects of π-conjugation extension [J].J. Phys. Chem. C.2009,113:14559-14566.
    [82]J. J. Kim, K. Lim, H. Choi, S. Fan, M. S. Kang, G. Gao, H. S. Kang, J. Ko. New-efficient ruthenium sensitizers with unsymmetrical indeno[1,2-b]thiophene or a fused dithiophene ligand for dye-sensitized solar cells [J]. Inorg. Chem.,2010,49:8351-8357.
    [83]S.-Q. Fan, C. Kim, B. Fang, K.-X. Liao, G.-J. Yang, C.-J. Li, J.-J. Kim, J. Ko. Improved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode [J]. J. Phys. Chem. C,2011,115:7747-7754.
    [84]W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Gratzel, D. L. Officer. Highly efficient porphyrin sensitizers for dye-sensitized solar cells [J]. J. Phys. Chem. C,2007, 111:11760-11762.
    [85]T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. Diau, M. Gratzel. Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins [J]. Angew. Chem. Int. Ed.,2010,49:6646-6649.
    [86]S.-L. Wu, H.-P. Lu, H.-T. Yu, S.-H. Chuang, C.-L. Chiu, C.-W. Lee, E. W.-G. Diau, C.-Y. Yeh. Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells [J]. Energy Environ. Sci.,2010, 3:949-955.
    [87]C.-H. Wu, T.-Y. Pan, S.-H. Hong. C.-L. Wang, H.-H. Kuo, Y.-Y. Chu, E. W.-G. Diau, C.-Y. Lin. A fluorene-modified porphyrin for efficient dye-sensitized solar cells [J]. Chem. Commun.,2012,48:4329-4331.
    [88]H. He, A. Gurung, L. Si.8-hydroxylquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells [J]. Chem. Commun.,2012,48:5910-5912.
    [89]T. Ripolles-Sanchis, B. C. Guo, H. P. Wu, T. Y. Pan, H. W. Lee, S. R. Raga, F. Fabregat-Santiago, J. Bisquert, C. Y. Yeh, E. W. Diau. Design and characterization of alkoxy-wrapped push-pull porphyrins for dye-sensitized solar cells [J]. Chem. Commun., 2012,48:4368-4370.
    [90]K. Hara, T. Sato, R. Katoh, A. Furube. Y. Ohga. A. Shinpo, S. Suga. K. Sayama. H. Sugihara, H. Arakawa. Molecular design of coumarin dyes for efficient dye-sensitized solar cells [J]. J. Phys. Chem. B,2003,107:597-606.
    [91]K. Hara, M. Kurashige, Y. Dan-Oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells [J]. New J. Chem.,2003,27:783-785.
    [92]Z. S. Wang, K. Hara, Y. Dan-Oh. C. Kasada. A. Shinpo. S. Suga, H. Arakawa. H. Sugihara. Photophysical and (photo)electrochemical properties of a coutnarin dye [J]. J. Phys. Chem. B,2005,109:3907-3914.
    [93]Z. S. Wang. Y. Cui, Y. Dan-Oh, C. Kasada, A. Shinpo, K. Hara. Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells [J]. J. Phys. Chem. C,2008,112:17011-17017.
    [94]K. D. Seo, I. T. Choi, Y. G. Park, S. Kang, J. Y. Lee, H. K. Kim. Novel D-A-π-A coumarin dyes containing low band-gap chromophores for dye-sensitised solar cells [J]. Dye. Pigments,2012,94:469-474.
    [95]D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, L. C. Sun. A novel organic chromophore for dye-sensitized nanostructured solar cells [J]. Chem. Commun.,2006,2245-2247.
    [96]G. Li, K. J. Jiang, P. Bao, Y. F. Li, S. L. Li, L. M. Yang. Molecular design of triarylamine-based organic dyes for efficient dye-sensitized solar cells [J]. New J. Chem., 2009,33:868-876.
    [97]G. Li, K.-J. Jiang, Y.-F. Li, S.-L. Li, L.-M. Yang. Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells [J]. J. Phys. Chem. C, 2008,112:11591-11599.
    [98]W. Wu, J. Zhang, H. Yang, B. Jin, Y. Hu, J. Hua, C. Jing, Y. Long, H. Tian. Narrowing band gap of platinum acetylide dye-sensitized solar cell sensitizers with thiophene π-bridges [J]. J. Mater. Chem.,2012,22:5382-5389.
    [99]X. Ren, S. Jiang, M. Cha, G. Zhou, Z.-S. Wang. Thiophene-bridged double D-π-A dye for efficient dye-sensitized solar cell [J]. Chem. Mater.,2012,24:3493-3499.
    [100]L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen, A. I. Tsai. Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells [J]. J. Org. Chem.,2010,75:4778-4785.
    [101]C. Qin, W. Peng, K. Zhang, A. Islam, L. Han. A novel organic sensitizer combined with a cobalt complex redox shuttle for dye-sensitized solar cells [J]. Org. Lett.,2012,14: 2532-2535.
    [102]B.-G. Kim, C.-G. Zhen, E. J. Jeong, J. Kieffer, J. Kim. Organic dye design tools for efficient photocurrent generation in dye-sensitized solar cells:exciton binding energy and electron acceptors [J]. Adv. Funct. Mater,2012,22:1606-1612.
    [103]Y. C. Chen, H. H. Chou, M. C. Tsai, S. Y. Chen, J. T. Lin, C. F. Yao, K. Chen. Thieno[3,4-b]thiophene-based organic dyes for dye-sensitized solar cells [J]. Chem. Eur. J.,2012,18:5430-5437.
    [104]B.-S. Chen, D.-Y. Chen, C.-L. Chen, C.-W. Hsu, H.-C. Hsu, K.-L. Wu, S.-H. Liu, P.-T. Chou, Y. Chi. Donor-acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells [J]. J. Mater. Chem.,2011,21:1937-1945.
    [105]X. Huang, Y. Fang, X. Li, Y. Xie, W. Zhu. Novel dyes based on naphthalimide moiety as electron acceptor for efficient dye-sensitized solar cells [J]. Dye. Pigments,2011,90: 297-303.
    [106]S. G. Awuah, J. Polreis, J. Prakash, Q. Qiao, Y. You. New pyran dyes for dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.,2011,224:116-122.
    [107]H. Han, M. Liang, K. Tang, X. Cheng, X. Zong, Z. Sun, S. Xue. Molecular design of triarylamine dyes incorporating phenylene spacer and the influence of alkoxy substituent on the performance of dye-sensitized solar cells [J].J. Photochem. Photobiol A:Chem.,2011,225:8-16.
    [108]X. Hao, M. Liang, X. Cheng, X. Pian, Z. Sun, S. Xue. Organic dyes incorporating the benzo[1,2-b:4,5-b']dithiophene moiety for efficient dye-sensitized solar cells [J]. Org. Lett.,2011,13:5424-5427.
    [109]G.L. Zhang, H. Bala, Y. M. Cheng, D. Shi, X. J. Lv, Q. J. Yu, P. Wang. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary n-conjugated spacer [J]. Chem. Commun.,2009,2198-2200.
    [110]G. L. Zhang, Y. Bai, R. Z. Li, D. Shi, S. Wenger, S. M. Zakeeruddin, M. Gratzel, P. Wang. Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells [J]. Energy Environ. Sci.,2009,2:92-95.
    [111]J. Liu, J. Zhang, M. Xu, D. Zhou, X. Jing, P. Wang. Mesoscopic titania solar cells with the tris(1,10-phenanthroline)cobalt redox shuttle:uniped versus biped organic dyes [J]. Energy Environ. Sci.,2011,4:3021-3029.
    [112]J. Liu, D. Zhou, M. Xu, X. Jing, P. Wang. The structure-property relationship of organic dyes in mesoscopic titania solar cells:only one double-bond difference [J]. Energy Environ. Sci.,2011,4:3545-3551.
    [113]N. Cai, S. J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Gratzel. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells [J]. Nano Lett,2011,11:1452-1456.
    [114]M. Xu, D. Zhou, N. Cai, J. Liu, R. Li, P. Wang. Electrical and photophysical analyses on the impacts of arylamine electron donors in cyclopentadithiophene dye-sensitized solar cells [J]. Energy Environ. Sci.,2011,4:4735-4742.
    [115]D. Zhou, Q. Yu, N. Cai, Y. Bai, Y. Wang, P. Wang. Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline)cobalt(Ⅱ/Ⅲ) redox shuttle [J]. Energy Environ. Sci.,2011,4:2030-2034.
    [116]Y. Bai, J. Zhang, D. Zhou, Y. Wang. M. Zhang, P. Wang. Engineering organic sensitizers for iodine-free dye-sensitized solar cells:red-shifted current response concomitant with attenuated charge recombination [J]. J. Am. Chem. Soc.,2011.133:11442-11445.
    [117]W. Zeng. Y. Cao, Y. Bai. Y. Wang, Y. Shi, M. Zhang, F. Wang. C. Pan, P. Wang. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks [J]. Chem. Mater,2010,22: 1915-1925.
    [118]M.-D. Zhang. H. Pan. X.-H. Ju. Y.-J. Ji. L. Qin. H.-G. Zheng, X.-F. Zhou. Improvement of dye-sensitized solar cells' performance through introducing suitable heterocyclic groups to triarylamine dyes [J]. Phys. Chem. Chem. Phys.,2012,14:2809-2815.
    [119]M. Wang. M. Xu. D. Shi, R. Li, F. Gao, G. Zhang. Z. Yi, R. Humphry-Baker, P. Wang. S. M. Zakeeruddin, M. Gratzel. High-performance liquid and solid dye-sensitized solar cells based on a novel metal-free organic sensitizer [J]. Adv. Mater,2008,20: 4460-4463.
    [120]Y. J. Chang, T. J. Chow. Highly efficient triarylene conjugated dyes for sensitized solar cells [J]. J. Mater. Chem.,2011,21:9523-9531.
    [121]C. Kim, H. Choi, S. Paek, J.-J. Kim, K. Song, M.-S. Kang, J. Ko. Molecular engineering of thia-bridged triphenylamine heterohelicenes as novel organic dyes for dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.,2011,225:17-25.
    [122]N. Koumura, Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki, K. Hara. Alkyl-functionalized organic dyes for efficient molecular photovoltaics [J]. J. Am. Chem. Soc.,2006,128:14256-14257.
    [123]Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube, K. Hara. Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics:tuning of solar-cell performance by structural modification [J]. Chem. Mater,2008,20:3993-4003.
    [124]K. Hara, Z.-S. Wang, Y. Cui, A. Furube, N. Koumura. Long-term stability of organic-dye-sensitized solar cells based on an alkyl-functionalized carbazole dye [J]. Energy Environ. Sci.,2009,2:1109-1114.
    [125]A. El-Shafei, M. Hussain, A. Atiq, A. Islam, L. Han. A novel carbazole-based dye outperformed the benchmark dye N719 for high efficiency dye-sensitized solar cells (DSSCs) [J]. J. Mater. Chem.,2012,22:24048-24056.
    [126]T. Horiuchi, H. Miura, S. Uchida. Highly-efficient metal-free organic dyes for dye-sensitized solar cells [J]. Chem. Commun.,2003,3036-3037.
    [127]T. Horiuchi, H. Miura, K. Sumioka, S. Uchida. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes [J]. J. Am. Chem. Soc.,2004,126:12218-12219.
    [128]S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, M. Gratzel. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness [J]. Adv. Mater.,2006,18:1202-1205.
    [129]S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy, M. Gratzel. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye [J]. Chem. Commun.,2008,5194-5196.
    [130]H. Tanaka, A. Takeichi, K. Higuchi, T. Motohiro, M. Takata, N. Hirota, J. Nakajima, T. Toyoda. Long-term durability and degradation mechanism of dye-sensitized solar cells sensitized with indoline dyes [J]. Sol. Energ. Mat. Sol. C.,2009,93:1143-1148.
    [131]M. Akhtaruzzaman, A. Islam, F. Yang, N. Asao, E. Kwon, S. P. Singh, L. Han, Y. Yamamoto. A novel metal-free panchromatic TiO2 sensitizer based on a phenylenevinylene-conjugated unit and an indoline derivative for highly efficient dye-sensitized solar cells [J]. Chem. Commun.,2011,47:12400-12402.
    [132]F. Yang, M. Akhtaruzzaman, A. Islam, T. Jin, A. El-Shafei, C. Qin, L. Han, K. A. Alamry, S. A. Kosa, M. A. Hussein, A. M. Asiri, Y. Yamamoto. Structure-property relationship of naphthalene based donor-π-acceptor organic dyes for dye-sensitized solar cells:remarkable improvement of open-circuit photovoltage [J]. J. Mater. Chem.,2012, 22:22550-22557.
    [133]B. Liu, W. Zhu, Q. Zhang, W. Wu, M. Xu. Z. Ning, Y. Xie, H. Tian. Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells:tuning photovoltaic performance by structural modification of donor group in donor-π-acceptor system [J]. Chem. Commun..2009,1766-1768.
    [134]W. Ying, F. Guo, J. Li, Q. Zhang, W. Wu, H. Tian, J. Hua. Series of new D-A-π-A organic broadly absorbing sensitizers containing isoindigo unit for highly efficient dye-sensitized solar cells [J]. ACSAppl. Mater. Interfaces,2012,4:4215-4224.
    [135]Z. Ning, Y. Fu, H. Tian. Improvement of dye-sensitized solar cells:what we know and what we need to know [J]. Energy Environ. Sci.,2010,3:1170-1181.
    [136]Y. Ooyama, Y.Harima. Molecular designs and syntheses of organic dyes for dye-sensitized solar cells [J]. Eur. J. Org. Chem.,2009,2009:2903-2934.
    [137]J. Lim, Y. S. Kwon, T. Park. Effect of coadsorbent properties on the photovoltaic performance of dye-sensitized solar cells [J]. Chem. Commun.,2011,47:4147-4149.
    [138]J. Li, W. Wu, J. Yang, J. Tang, Y. Long, J. Hua. Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance [J]. Science China Chemistry,2011,54:699-706.
    [139]M. Akhtaruzzaman, Y. Seya, N. Asao, A. Islam, E. Kwon, A. El-Shafei, L. Han, Y. Yamamoto. Donor-acceptor dyes incorporating a stable dibenzosilole π-conjugated spacer for dye-sensitized solar cells [J]. J. Mater. Chem.,2012,22:10771-10778.
    [140]G. Marzari, J. Durantini, D. Minudri, M. Gervaldo, L. Otero, F. Fungo, G. Pozzi, M. Cavazzini, S. Orlandi, S. Quici. Fluorous molecules for dye-sensitized solar cells: synthesis and characterization of fluorene-bridged donor/acceptor dyes with bulky perfluoroalkoxy substituents [J]. J. Phys. Chem. C,2012,116:21190-21200.
    [141]Y. S. Yen, W. T. Chen, C. Y. Hsu, H. H. Chou, J. T. Lin, M. C. Yeh. Arylamine-based dyes for p-type dye-sensitized solar cells [J]. Org. Lett.,2011,13:4930-4933.
    [142]C. Du, C. Li, W. Li, X. Chen, Z. Bo, C. Veit, Z. Ma, U. Wuerfel, H. Zhu, W. Hu, F. Zhang.9-alkylidene-9h-fluorene-containing polymer for high-efficiency polymer solar cells [J]. Macromolecules.,2011,44:7617-7624.
    [143]S. Ko, H. Choi, M.-S. Kang, H. Hwang, H. Ji, J. Kim, J. Ko, Y. Kang. Silole-spaced triarylamine derivatives as highly efficient organic sensitizers in dye-sensitized solar cells (DSSCs) [J]. J. Mater.Chem.,2010,20:2391-2399.
    [144]H. Choi, S. O. Kang. J. Ko, G. Gao, H. S. Kang, M. S. Kang, M. K. Nazeeruddin, M. Gratzel. An efficient dye-sensitized solar cell with an organic sensitizer encapsulated in a cyclodextrin cavity [J]. Angew. Chem. Int. Ed.,2009,48:5938-5941.
    [145]D. Kim, K. Song, M.-S. Kang, J.-W. Lee, S. O. Kang, J. Ko. Efficient organic sensitizers containing benzo[cd]indole:effect of molecular isomerization for photovoltaic properties [J]. J. Photochem. Photobiol. A:Chem.,2009.201:102-110.
    [146]C. H. Chen, Y. C. Hsu. H. H. Chou, K. R. Thomas. J. T. Lin, C. P. Hsu. Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells [J]. Chem. Eur. J.,2010,16:3184-3193.
    [147]X. H. Zhang, Z. S. Wang, Y. Cui, N. Koumura, A. Furube. K. Hara. Organic sensitizers based on hexylthiophene-functionalized indolo[3,2-b]carbazole for efficient dye-sensitized solar cells [J]. J. Phys. Chem. C,2009,113:13409-13415.
    [148]K. Hara, Z. S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-Oh, C. Kasada, A. Shinpo, S. Suga. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells [J]. J. Phys. Chem. B,2005,109:15476-15482.
    [149]Y. Wu, X. Zhang, W. Li, Z.-S. Wang, H. Tian, W. Zhu. Hexylthiophene-featured D-A-π-A structural indoline chromophores for coadsorbent-free and panchromatic dye-sensitized solar cells [J]. Adv. Energy Mater.,2012,2:149-156.
    [150]C.-P.Cho, C.-C. Chu, W.-T. Chen, T.-C. Huang, Y.-T. Tao. Molecular modification on dye-sensitized solar cells by phosphonate self-assembled monolayers [J]. J. Mater. Chem.,2012,22:2915-2921.
    [151]H.-H. Chou, Y.-C. Chen, H.-J. Huang, T.-H. Lee, J. T. Lin, C. Tsai, K. Chen. High-performance dye-sensitized solar cells based on 5,6-bis-hexyloxy-benzo[2,1,3]thiadiazole [J]. J. Mater. Chem.,2012,22:10929-10938.
    [152]K. Pei, Y. Wu, W. Wu, Q. Zhang, B. Chen, H. Tian, W. Zhu. Constructing organic D-A-π-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells:the effect of an auxiliary acceptor on the absorption and the energy level alignment [J]. Chem. Eur. J.,2012,18:8190-8200.
    [153]X. Ren, Q. Feng, G. Zhou, C.-H. Huang, Z.-S. Wang. Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells [J]. J. Phys. Chem. C,2010,114:7190-7195.
    [154]Z. S. Wang, Y. Cui, Y. Dan-Oh, C. Kasada, A. Shinpo, K. Hara. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells:electron lifetime improved by coadsorption of deoxycholic acid [J]. J. Phys. Chem. C,2007,111: 7224-7230.
    [155]T. Horiuchi, H. Miura, S. Uchida. Highly efficient metal-free organic dyes for dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.,2004,164:29-32.
    [156]S. Nakade, T. Kanzaki, Y. Wada, S. Yanagida. Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells:application for highly viscous electrolyte systems [J]. Langmuir.,2005,21:10803-10807.
    [157]W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z.-S. Wang, H. Tian. Organic D-A-π-A solar cell sensitizers with improved stability and spectral response [J]. Adv. Funct. Mater.,2011,21:756-763.
    [158]K. J. Jiang, K. Manseki, Y. H. Yu, N. Masaki, J. B. Xia, L. M. Yang, Y. L. Song, S. Yanagida. A novel ruthenium-free TiO2 sensitizer consisting of di-p-tolylaminophenyl ethylenedioxythiophene and cyanoacrylate groups [J]. New J. Chem.,2009,33: 1973-1977.
    [159]S. Wenger, P.-A. Bouit, Q. Chen, J. L. Teuscher, D. D. Censo, R. Humphry-Baker, J.-E. Moser, J. L. Delgado, N. Martin, S. M. Zakeeruddin, M. Gratzel. Efficient electron transfer and sensitizer regeneration in stable π-extended tetrathiafulvalene-sensitized solar cells [J]. J. Am. Chem. Soc.,2010,132:5164-5169.
    [160]T. Stergiopoulos, P. Falaras. Minimizing energy losses in dye-sensitized solar cells using coordination compounds as alternative redox mediators coupled with appropriate organic dyes [J]. Adv. Energy Mater,2012,2:616-627.
    [161]A. Listorti, B. O'regan, J. R. Durrant. Electron transfer dynamics in dye-sensitized solar cells [J]. Chem. Mater,2011,23:3381-3399.
    [162]G. W. T. M. J. Frisch, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Peaple. Gaussian 03, revision E.01, Gaussian, Inc.:Pittsburgh, PA,,2004,
    [163]J. Mao, N. He, Z. Ning, Q. Zhang, F. Guo, L. Chen, W. Wu, J. Hua, H. Tian. Stable dyes containing double acceptors without COOH as anchors for highly efficient dye-sensitized solar cells[J].Angew. Chem. Int. Ed.,2012,51:9873-9876.
    [164]J. Wiberg, T. Marinado, D. P. Hagberg, L. C. Sun, A. Hagfeldt, B. Albinsson. Effect of anchoring group on electron injection and recombination dynamics in organic dye-sensitized solar cells [J]. J. Phys. Chem. C,2009,113:3881-3886.
    [165]F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy [J]. Phys. Chem. Chem. Phys.,2011,13:9083-9118.
    [166]Y. Cui, Y. Wu, X. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W. Zhu, Z.-S. Wang. Incorporating benzotriazole moiety to construct D-A-π-A organic sensitizers for solar cells:significant enhancement of open-circuit photovoltage with long alkyl group [J]. Chem. Mater,2011,23:4394-4401.
    [167]S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J.-E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Gratzel, P. Bauerle. Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor-acceptor dyes [J]. Adv. Funct. Mater,2012,22:1291-1302.
    [168]C.-J. Yang, Y. J. Chang, M. Watanabe, Y.-S. Hon, T. J. Chow. Phenothiazine derivatives as organic sensitizers for highly efficient dye-sensitized solar cells [J]. J. Mater. Chem.. 2012.22:4040-4049.
    [169]J. Liu, D. Zhou, F. Wang, F. Fabregat-Santiago, S. G. Miralles. X. Jing. J. Bisquert. P. Wang. Joint photophysical and electrical analyses on the influence of conjugation order in D-π-A photosensitizers of mesoscopic titania solar cells [J]..J. Phys. Chem. C,2011, 115:14425-14430.
    [170]C. Teng,X. C. Yang, C. Yang, H. N. Tian, S. F. Li. X. N. Wang, A. Hagfeldt, L. C. Sun. Influence of triple bonds as π-spacer units in metal-free organic dyes for dye-sensitized solar cells [J]. J. Phys. Chem. C,2010,114:11305-11313.
    [171]A. Furube, Z.-S. Wang, K. Sunahara, K. Hara, R. Katoh, M. Tachiya. Femtosecond diffuse reflectance transient absorption for dye-sensitized solar cells under operational conditions:effect of electrolyte on electron injection [J]. J. Am. Chem. Soc.,2010,132: 6614-6615.
    [172]Y. Shi, R. B. Hill, J. H. Yum, A. Dualeh, S. Barlow, M. Gratzel, S. R. Marder, M. K. Nazeeruddin. A high-efficiency panchromatic squaraine sensitizer for dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2011,50:6619-6621.
    [173]J. Shi, J. Chen, Z. Chai, H. Wang, R. Tang, K. Fan, M. Wu, H. Han, J. Qin, T. Peng, Q. Li, Z. Li. High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells [J]. J. Mater. Chem.,2012,22: 18830-18838.
    [174]W. Li, Y. Wu, X. Li, Y. Xie, W. Zhu. Absorption and photovoltaic properties of organic solar cell sensitizers containing fluorene unit as conjunction bridge [J]. Energy Environ. Sci.,2011,4:1830-1837.
    [175]M. Sassi, M. M. Salamone, R. Ruffo, C. M. Mari, G. A. Pagani, L. Beverina. Gray to colorless switching, crosslinked electrochromic polymers with outstanding stability and transmissivity from naphthalenediimmide-functionalized EDOT [J]. Adv. Mater.,2012, 24:2004-2008.
    [176]J. Wu, Y Xiao, Q. Tang, G. Yue, J. Lin, M. Huang, Y. Huang, L. Fan, Z. Lan, S. Yin, T. Sato. A large-area light-weight dye-sensitized solar cell based on all titanium substrates with an efficiency of 6.69% outdoors [J]. Adv. Mater,2012,24:1884-1888.
    [177]Z. Ji, G. Natu, Z. Huang, Y Wu. Linker effect in organic donor-acceptor dyes for p-type NiO dye sensitized solar cells [J]. Energy Environ. Sci.,2011,4:2818-2821.
    [178]X. Zong, M. Liang, T. Chen, J. Jia, L. Wang, Z. Sun, S. Xue. Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes [J]. Chem. Commun., 2012,48:6645-6647.
    [179]J. Yang, F. Guo, J. Hua, X. Li, W. Wu, Y. Qu, H. Tian. Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar π-spacer [J]. J. Mater. Chem.,2012,22:24356-24365.
    [180]C.-H. Yang, Y.-K. Sun, Y-Y. Chuang, T.-L. Wang, Y.-T. Shieh, W.-J. Chen. Electrochemical impedance parameters elucidate performance of carbazole-triphenylamine-ethylenedioxythiophene-based molecules in dye-sensitized solar cells [J]. Electrochim. Adta,2012,69:256-267.
    [181]N. Cai, Y. Wang, M. Xu, Y. Fan, R. Li, M. Zhang, P. Wang. Engineering of push-pull thiophene dyes to enhance light absorption and modulate charge recombination in mesoscopic solar cells [J]. Adv. Fund. Mater.,2013,23:1846-1854.
    [182]X. Lu, Q. Feng, T. Lan, G. Zhou, Z.-S. Wang. Molecular engineering of quinoxaline-based organic sensitizers for highly efficient and stable dye-sensitized solar cells [J]. Chem. Mater,2012,24:3179-3187.
    [183]J. A. Mikroyannidis, P. Suresh, M. S. Roy, G. D. Sharma. New photosensitizer with phenylenebisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units for dye-sensitized solar cells [J]. Electrochim. Acta,2011,56:5616-5623.
    [184]M. Gratzel. Recent advances in sensitized mesoscopic solar cells [J]. Acc. Chem. Res., 2009,42:1788-1798.
    [185]H. Tian, Z. Yu, A. Hagfeldt, L. Kloo, L. Sun. Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2011, 133:9413-9422.
    [186]S. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu, J. Hua, H. Tian, L. Han. A novel D-A-πt-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells [J]. Chem. Commun.,2012,48: 6972-6974.
    [187]J. He, F. Guo, X. Li, W. Wu, J. Yang, J. Hua. New bithiazole-based sensitizers for efficient and stable dye-sensitized solar cells [J]. Chem. Eur. J.,2012,18:7903-7915.
    [188]Z. M. Tang, T. Lei, K. J. Jiang, Y. L. Song, J. Pei. Benzothiadiazole containing D-π-A conjugated compounds for dye-sensitized solar cells:synthesis, properties, and photovoltaic performances [J]. Chem. Asian J.,2010,5:1911-1917.
    [189]Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Gratzel, W. Zhu. High-conversion-efficiency organic dye-sensitized solar cells:molecular engineering on D-A-π-A featured organic indoline dyes [J]. Energy Environ. Sci.,2012,5:8261-8272.
    [190]J. He, W. Wu, J. Hua, Y. Jiang, S. Qu, J. Li, Y. Long, H. Tian. Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance [J]. J. Mater. Chem.,2011.21:6054-6062.
    [191]S. Y. Qu, W. J. Wu, J. L. Hua. C. Kong, Y. T. Long. H. Tian. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells [J]. J. Phys. Chem. C,2010,114: 1343-1349.
    [192]J. Y. Lee, K. W. Song, J. R. Ku. T. H. Sung, D. K. Moon. Development of da-type polymers with phthalimide derivatives as electron withdrawing units and a promising strategy for the enhancement of photovoltaic properties [J]. Sol. Energ. Mat. Sol. C. 2011,95:3377-3384.
    [193]X. Guo, F. S. Kim, S. A. Jenekhe, M. D. Watson. Phthalimide-based polymers for high performance organic thin-film transistors [J]. J. Am. Chem. Soc.,2009,131:7206-7207.
    [194]C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, K. Mullen. Polyphenylene-based materials for organic photovoltaics [J]. Chem. Rev..2010.110:6817-6855.
    [195]L. Zhang, C. He, J. Chen, P. Yuan, L. Huang. C. Zhang. W. Cai, Z. Liu, Y. Cao. Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: largely improved photovoltaic parameters by using PNF/A1 bilayer cathode [J]. Macromolecules.,2010,43:9771-9778.
    [196]M. J. Frisch. G.W. Trucks. H. B. Schlegel, G. E. Scuseria. M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson. H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda. J. Hasegawa. M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark. J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009,
    [197]T. Yanai, D. P. Tew, N. C. Handy. A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP) [J]. Chem. Phys. Lett.,2004,393: 51-57.
    [198]N. R. Neale, N. Kopidakis, J. Van De Lagemaat, M. Gratzel, A. J. Frank. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells:shielding versus band-edge movement [J]. J. Phys. Chem. B,2005,109:23183-23189.
    [199]K. Wagner, M. J. Griffith, M. James, A. J. Mozer, P. Wagner, G. Triani, D. L. Officer, G. G. Wallace. Significant performance improvement of porphyrin-sensitized TiO2 solar cells under white light illumination [J]. J. Phys. Chem. C,2010,115:317-326.
    [200]J.-L. Song, P. Amaladass, S.-H. Wen, K. K. Pasunooti, A. Li, Y.-L. Yu, X. Wang, W.-Q. Deng, X.-W. Liu. Aryl/hetero-arylethyne bridged dyes:the effect of planar π-bridge on the performance of dye-sensitized solar cells [J]. New J. Chem.,2011,35:127-136.
    [201]D. Kim, J. K. Lee, S. O. Kang, J. Ko. Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell [J]. Tetrahedron,2007,63:1913-1922.
    [202]M. S. Goes, E. Joanni, E. C. Muniz, R. Savu, T. R. Habeck, P. R. Bueno, F. Fabregat-Santiago. Impedance spectroscopy analysis of the effect of TiO2 blocking layers on the efficiency of dye sensitized solar cells [J]. J. Phys. Chem. C,2012,116: 12415-12421.
    [203]G. Perrier, R. De Bettignies, S. Berson, N. Lemaitre, S. Guillerez. Impedance spectrometry of optimized standard and inverted P3HT-PCBM organic solar cells [J]. Sol. Energ. Mat. Sol. C.,2012,101:210-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700