用户名: 密码: 验证码:
环境污染控制过程高灵敏生物传感技术研究及其检测体系构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在环境污染控制过程中,污染物的降解大多是通过微生物的相互协同作用完成的,对污染物及参与降解过程的微生物的种群分布、功能活性和代谢产物变化等进行快速、灵敏的追踪、监测与时空分辨,是研究污染物降解过程的重要途径。生物传感技术是一种对待测物实现快速、实时、在线分析检测的新兴技术,它利用生物识别作用对待测的物质进行分析测定,与传统的分析方法相比,具有高灵敏度、高专一性、快速测定、简便易携、适用于复杂体系的实时、在线测定等优点,为环境污染物及其降解过程涉及到的各种生物组分或代谢产物的分析检测提供了一个新的技术平台。系统地构建环境污染控制过程中生物传感技术检测体系,为环境污染控制工作提供及时、准确的生物信息,对于解决环境科学与工程领域的实时、在线监测技术难题,最终实现自动化控制,推动环境检测技术大跨度发展具有重要意义。
     本文研制了一系列生物传感检测方法,用于环境中痕量污染物及其降解产物等的高灵敏检测,并以堆肥环境体系为例,建立起了一套基于生物传感技术的检测环境复杂系统中的污染物及参与其降解过程的生物酶、微生物种群、功能基因和代谢产物动态变化的新方法体系,克服了传统的分析检测方法在环境污染控制过程实时在线检测等方面的局限性,有利于深入了解整个垃圾堆肥处理过程的微生物学机理,高效指导微生物接种和堆肥工艺革新。论文工作从整体上分为四个部分:
     第一部分为环境中痕量有毒有害污染物及降解产物的高灵敏生物传感检测技术研究。通过采用二茂铁掺杂电聚合和伴刀豆蛋白A自组装等技术将酶固定在电极表面,构建了抑制型葡萄糖氧化酶传感器和抑制型辣根过氧化物酶传感器,分别用于检测土壤样品中的痕量Cr(VI)和Hg(II)与湘江水中的苯肼,具有灵敏度高、抑制可逆、稳定性和选择性好等优点,获得的Cr(VI)和Hg(II)的检测下限均为0.49μg L~(-1),苯肼的检测下限为1.7×10~(-6) M,并运用酶传感器实验数据,推导出了辣根过氧化物酶对H_2O_2、对苯二酚的催化反应以及苯肼对该反应的抑制作用的动力学模型,进行了模型拟合与参数估计;将有机氯农药毒莠定与牛血清蛋白交联制备人工抗原,并注射入新西兰大白兔体内提纯出抗体,研制了一种基于壳聚糖/纳米金复合膜的电化学免疫传感器,用于检测稻米、莴苣和稻田水中的痕量毒莠定,该免疫膜具有很好的选择性,灵敏度高,可批量制作、一次性使用,检测下限为5 ng mL~(-1) ;利用酚类物质普遍具有的还原性,研制了一种传感晶片,以固定在玻片表面的金纳米颗粒为晶种,运用在酚还原作用下金纳米颗粒催化增长的原理和吸收光谱变化规律,用于好氧发酵液等复杂体系中酚浓度检测,检测下限为7×10-6 M,该方法操作简便,成本低,灵敏度高;还利用漆酶催化邻苯二酚氧化还原反应和磁性颗粒分离技术,研制了一种基于磁性纳米颗粒固定技术的漆酶传感器,可用于检测堆肥复杂系统中的浓度低至7.5×10~(-7) M的痕量邻苯二酚。
     第二部分着重开展基于生物传感技术的堆肥系统微生物降解酶活性及生物表面活性剂的跟踪监测。堆肥系统中多种酶的活性是检测堆肥腐熟度的重要指标,本文利用电极表面固定化纳米金原位扩增对还原型烟酰胺腺嘌呤二核苷酸(NADH)氧化的生物电催化活性,研制了一种新型NADH电化学传感器,响应迅速,灵敏度高,能够在酸性缓冲液中检测浓度低至2.5×10~(-7) M的NADH,3个月内保持检测结果精确;利用在NADH还原作用下Au/Ag核壳型纳米颗粒催化增长的原理和吸收光谱变化规律,研制了一种NADH光学纳米生物传感晶片,检测下限为1.56×10~(-5) M;利用木素过氧化物酶(LiP)和锰过氧化物酶(MnP)催化底物的氧化还原反应,研制了一种快速同步检测堆肥中木质素降解酶活的电化学酶传感器,检测样品LiP活性范围为8.14~29.79 U L~(-1) ,MnP活性范围为0.085~1.37 U L~(-1) ,该方法能够排除堆肥浸出液中浊度和光干扰物质的干扰,较传统的分光光度法更加快速、灵敏和精确,是堆肥系统中快速、低成本的堆肥腐熟度检测技术;堆肥常见微生物铜绿假单胞菌发酵代谢产生的鼠李糖脂是一种可改善堆肥微环境的生物表面活性剂,本文制备了二鼠李糖脂人工抗原和抗体,研制了一种基于3,3’-二氨基联苯胺(DAB)显色的二鼠李糖脂酶联免疫试纸,可用于肉眼检测浓度低至0.05 mg L~(-1)的二鼠李糖脂,该方法简便、快速,可重复性良好。
     第三部分着重开展基于基因传感技术的堆肥系统微生物种群动态和功能基因的跟踪监测。堆肥中某些高效降解污染物的微生物具有相应的功能基因,LiP是真菌降解木质素的一种关键酶,设计合成了黄孢原毛平格菌lip基因探针,研制了一种夹心式杂交识别lip基因的酶联电流型DNA传感器,结合聚合酶链式反应(PCR)和限制性酶切技术,成功检测了黄孢原毛平格菌的基因组DNA提取样品中的lip基因,检测下限为0.03 nM,该DNA传感器能够有效识别相同长度的错配核酸链样品;纤维二糖水解酶(CBH)是纤维素降解的一种关键酶,设计合成了瑞氏木霉cbh2基因探针,运用纳米金原位扩增技术制备了一种金/硅/铁三层复合型核壳磁性纳米颗粒,研制成竞争式杂交识别cbh2基因的电化学纳米DNA传感器,检测下限达到10-13 M;还将羧基化的多壁碳纳米管-多聚(3,4-乙烯二氧噻吩)复合膜沉积在电极表面,制备了cbh2基因传感器,优化实验参数,进行了扫描电镜(SEM)和电化学表征;细菌的16S rDNA/rRNA基因序列具有高度的保守性,可用于种属特异性鉴定,研制了一种基于分子信标荧光分析的铜绿假单胞菌16S rRNA体外定量检测方法,用于检测总RNA提取样品中的16S rRNA,杂交反应需时约30 min,该方法具有高度的特异性,不受核酸交叉污染,检测前不需要对细菌总RNA进行分离和纯化。
     第四部分为复杂环境体系污染物及降解性能定量检测的数据解析。由于环境样品组成复杂,干扰物质较多,多种待测组分可能同时存在,给分析监测带来很大的不确定性,本文利用人工神经网络(ANNs)解析信号的优良性能,将人工神经网络和电化学酶传感技术相结合,用于黄孢原毛平革菌接种堆肥中木质素降解酶活性电化学检测及漆酶传感器检测邻苯二酚的定量分析,与线性回归模型相比,该方法更加精确、灵敏、稳健;土壤阳离子交换量(CEC)是土壤保留阳离子营养物质和缓冲污染物能力的重要指标,本文还构建了一种基于径向基函数神经网络的土壤传递函数,用于定量分析不同地区、不同土层的土壤CEC,该复合神经网络模型在大规模数据拟合中具有优越性。
In environmental pollution control, the degradation of contaminants are carried out by the cooperation of microbes, and it is an important approach for studying the contaminant degradation process to rapidly and sensitively trace, monitor and indentify the contaminants and the microbial community population, functional activities, variety of metabolites, and etc. in their degradation. Biosensing technology is a new approach for rapid, real-time and on-line detection of analytes based on biometric identification, which has the advantages of high sensitivity, specificity, rapidity, portability and capacity for real-time and on-line detection in complex system in comparison with conventional analytical methods, and provides a new technical platform for the analysis and measurement of contaminants and various biological components or metabolites in relative degradation. It is very significant for the development of environmental detection technology to systematically construct a detection system of biosensing technology in environmental pollution control, to provide timely and accurate biological information for pollution control process, and to solve the real-time and on-line monitoring problems in environmental science and engineering study, and to ultimately realize automation.
     This dissertation developed a series of biosensing detection methods, for highly sensitive detection of trace contaminants and their degradation metabolites in the environment, and took the composting system for example to construct a set of novel methods based on biosensing technology for the detection of contaminants and the dynamic changing of relative enzymes, microbial community population, functional genes and metabolites in complex environment, which overcame the limitation of conventional analytical methods applied in environmental pollution control in the aspects of real-time and on-line detection, and etc., and favored the thorogh investigation of the microbial mechanism in waste composting process and efficient instruction of the microbial inoculation and composting technique renovation. This dissertation is composed of four sections.
     The first section describes the research on highly sensitive biosensing detection technology for trace hazardous contaminants and their metabolites in the environment. The enzymes were immobilized on the electrodes through ferrocene-doped electropolymerization, self-assembly by concanavalin A, and other techniques to develop an inhibition-based glucose oxidase sensor and an inhibition-based horseradish peroxidase sensor, for the detection of trace Cr(VI) and Hg(II) in soil, and the detection of phenylhydrazine in Xiangjiang River, respectively, which obtained high sensitivity, reversibility, stability and selectivity. Both of the lower detection limits for Cr(VI) and Hg(II) were 0.49μg L~(-1), and that for phenylhydrazine was 1.7×10~(-6) M. The experimental data obtained by enzyme sensors were used to deduce the kinetic models of the catalysis of H_2O_2 and hydroquinone by horseradish peroxidase and the inhibition by phenylhydrazine, and to carry out the model simulation and parameter estimation. Picloram, a kind of organo-chlorinated pesticide, was conjugated with bovine serum albumin as an artificial antigen which was injected into New Zealand white rabbits to obtain purified antibody. An electrochemical immonosensor based on chitosan/gold nanoparticles (Au NPs) composite membrane was developed for the detection of trace picloram in rice, lettuce, and paddy field water. The immunomenbrane has good selectivity, high sensitivity, disposability, and good reproducibility for fabrication in batch. The lower detection limit was 5 ng mL~(-1). A sensoring chip was developed based on the ubiquitous reductivity of phenols, which utilized the Au NPs immobilized on the glass slide as the seeds to catalyze the enlargement of Au NPs by the phenol reduction, and then the phenol concentration could be detected through absorption spectroscopy change. The lower detection limit was 7×10~(-6) M. This method was convenient, low-cost, and highly sensitive. A laccase sensor based on magnetic nanoparticles-laccase conjugates was developed utilizing laccase-catalyzed redox of catechol and the magnetic separation, which was used to detect trace catechol in complex composting system with the concentration as low as 7.5×10~(-7) M.
     The second section describes the trace of microbial degrading enzyme activities and biosurfactants in composting system using biosensing technology. Some enzyme activities in composting system are important maturity indexes. An electrochemical dihydronicotinamide adenine dinucleotide (NADH) sensor based on the catalytic growth of Au NPs on electrode was developed with fast response and high sensitivity, which could detect NADH in acidic buffers with the concentration as low as 2.5×10~(-7) M, and maintained the accuracy in 3 months. A sensoring chip was developed based on the catalytic growth of Au/Ag core/shell nanoparticles by NADH reduction, and then NADH concentration could be detected through absorption spectroscopy change with the lower detection limit of 1.56×10-5 M. An electrochemical enzyme sensor for rapid and simultaneous detection of the lignin-degrading peroxidase activities was developed based on the substrate redox catalyzed by lignin peroxidase (LiP) and manganese peroxidase (MnP). LiP and MnP activities could be detected in the range of 8.14~29.79 U L~(-1) and 0.085~1.37 U L~(-1) , respectively. This assay is more rapid, sensitive and precise than conventional spectrophotometric assays, free from interference of turbidity and UV- and visible-light-absorbing substances in compost extract. Rhamnolipid, a biosurfactant secreted by the common bacteria in compost, Pseudomonas aeruginose, in fermentation metabolism, can improve the microenvironment in compost. The artificial antigen and antibody of rhamnolipid were fabricated, and a chromogenic enzyme-linked immuno test paper for dirhamnolipid based on 3,3′-diaminobenzidine (DAB) was developed, which could detect dirhamnolipid with the concentration as low as 0.05 mg L~(-1) by unaided eye. This method was convenient, fast, and reproducible.
     The third section focuses on the trace of microbial community dynamics and the functional genes in composting system based on genosensing technology. Some high- efficiency contaminant degrading microbes contain relative functional genes. LiP is a key enzyme in lignin degradation by fungi. The gene probes for lip in Phanerochaete chrysosporium was designed and synthesized, and an enzyme-linked electrochemical DNA sensor based on the sandwich hybridization recognition of lip was developed. This sensor, combined with polymerase chain reaction (PCR) and restriction enzyme digestion, succeeded in measuring lip gene fragments from Phanerochaete chrysosporium genome extraction samples with the lower detection limit of 0.03 nM. It could discriminate satisfactorily against mismatched nucleic acid samples of similar lengths. Cellobiohydrolase (CBH) is a key enzyme in cellulose degradation. The gene probes for cbh2 in Trichoderma reesei was designed and synthesized, and magnetic Au/Si/Fe core/shell nanoparticles were fabricated by catalytic growth of Au NPs on the surface. An electrochemical nano DNA sensor based on the competitive hybridization recognition of cbh2 was developed, with the lower detection limit of 10-13 M. Another cbh2 genosensor was developed by the deposition of multi-walled carbon nanotubes-poly(1-ethyl-(3-dimethyllaminopropyl)carbodiimide hydrochloride) complex membrane on electrode surface. The experimental parameters were optimized, and the genosensor was characterized by scanning electron microscopy (SEM) and electrochemistry. The 16S rDNA/rRNA sequences of bacteria are highly conservative, and can be used for species identification. An in vitro 16S rRNA quantification method for Pseudomonas aeruginose based on molecular beacon was developed for the detection of 16S rRNA from total RNA isolation samples. The hybridization reaction required 30 min, and the method had high specificity, free from cross-pollution by nucleic acid, and required no isolation or purification procedures for bacteria total RNA.
     The fourth section focused on the data resolution of quantification of contaminants and relative degradation capabilities in complex environment system. The complex components in real environmental samples, various interferents, and coexistence of multiple analytes take uncertainty to environmental analysis. Due to the good performance of artificial neural networks (ANNs) in signal resolution, this dissertation combined ANNs with electrochemical enzyme biosensing technology in the electrochemical detection of the lignin-degrading peroxidase activities in Phanerochaete chrysosporium inoculated compost, and the quantitive analysis of catechol by laccase sensor. These methods were more accurate, sensitive and robust than linear regression models. Cation exchange capacity (CEC) is an important index of the soil buffering capacity to maintain cationic nutrients and pollutants against leaching to the subsurface layers. A pedotransfer function based on radial basis function neural networks (RBFN) was developed and applied into the estimation of CEC different regions and different horizons, from soil physico-chemical properties, which showed superiority in large scale data simulation.
引文
[1]郝吉明,马广大.大气污染控制工程.第2版.北京:高等教育出版社, 2002, 1-28
    [2] Felsot A S, Racke K D, Hamilton D J. Disposal and degradation of pesticide waste. Reviews of Environmental Contamination and Toxicology, 2003, 177: 123-200
    [3]任南琪,李建政.环境污染防治中的生物技术.北京:化学工业出版社, 2004, 1-6; 253-275
    [4]夏凤毅,郑平,周琪,等.芳香化合物的QSBR方法研究进展.同济大学学报(自然科学版), 2002, 30(6): 728-732
    [5] Updike S J, Hicks G P. The enzyme electrode. Nature, 1967, 214(5092): 986-988
    [6] Pye E K, Wingard Jnr L B. Enzyme Engineering. New York: Plenum, 1974, 2411-2417
    [7] Mosbach K, Danielsson B. An enzyme thermistor. Biochimica et Biophysica Acta, 1974, 364: 140-145
    [8] Lubbers D W, Opitz N Z. Die pCO2/pO2-optode: eine neue pCO2 bzw. pO2-messonde zur messung des pCO2 oder pO2 von gasen and flussigkeiten. Naturforsch C: Bioscience, 1975, 30C: 532-533
    [9] Liedberg B, Nylander C, Lundstrm I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983, 4(C): 299-304
    [10] Newman J D, White S F, Tothill I E, et al. Catalytic materials, membranes, and fabrication technologies suitable for the construction of amperometric biosensors. Analytical Chemistry, 1995, 67(24): 4594-4599
    [11] Cass A E G, Francis D G, Hill H A O, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 1984, 56(4): 667-671
    [12] Tombelli S,MasciniM,Soca C,et al. A DNA piezoelectric biosensor assay coupled with a polymerase chain reaction for bacterial toxicity determination in environmental samples. Analytica Chimica Acta,2000,418(1):1-9
    [13]马一琳,张远航,曾立民.模拟酶蛋白结合物替代HEMIN测定大气过氧化物.环境化学, 2000, 19(5): 460-465
    [14] Krawczyk T K V, Moszczynska T, Trojanowicz M. Inhibitive determination ofmercury and other metal ions by potentiometric urea biosensor. Biosensors and Bioelectronics, 2000, 15(11-12): 681-691
    [15] Andreescu S, Avramescu A, Bala C, et al. Detection of organophosphorus insecticides with immobilized acetylcholinesterase– comparative study of two enzyme sensors. Analytical and Bioanalytical Chemistry, 2002, 374(1): 39-45
    [16] Kilinc E, Ozsoz M, Sadik O A. Electrochemical detection of NO by inhibition on oxidase activity. Electroanalysis, 2000, 12(18): 1467-1471
    [17] Volotovsky, Kim N. Cyanide determination by an ISFET-based peroxidase biosensor. Biosensors and Bioelectronics, 1998, 13(9): 1029-1033
    [18]吴健民.临床化学自动化免疫分析.北京:科学出版社, 2000. 120-149
    [19] Dankwardt Andrea. Immunochemical assays in pesticide analysis. In: Meyers R A. Encyclopedia of Analytical Chemistry. Chichester: John Wiley & Sons Ltd, 2000, 1-27
    [20] Abad A, Moreno M J, Montoya A. Development of monoclonal antibody-based immunoassays to the N-methylcarbamate pesticide carbofuran. Journal of Agricultural and Food Chemistry, 1999, 47(6): 2475-2485
    [21] F?hnrich K A, Pravda M, Guilbault G G. Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. Biosensors and Bioelectronics, 2003, 18(1): 73-82
    [22] Shan G, Stoutamire D W, Wengatz I, et al. Development of an immunoassay for the pyrethroid insecticide esfenvalerate. Journal of Agricultural and Food Chemistry, 1999, 47(5): 2145-2155
    [23] Blake D A, Jones R M, Blake II R C, et al. Antibody-based sensors for heavy metal ions. Biosensors and Bioelectronics, 2001, 16(9-12): 799-809
    [24] Kohler G, Milstain C. Continuous culture of fused cells secreting antibody of predefined specificity. Nature, 1975, 256(5517): 495
    [25] Sardinha J P, Gil M H, Mercader J V, et al. Enzyme-linked immunofiltration assay used in the screening of solid supports and immunoreagents for the development of an azinphos-methyl flow immunosensor. Journal of Immunological Methods, 2002, 260(1-2): 173-182
    [26] Penalva José, Puchades Rosa, Maquieiraángel. Analytical properties of immunosensors working in organic media. Analytical Chemistry, 1999, 71(17): 3862-3872
    [27] Schloss P D, Hay A G, Wilson D B, et al. Quantifying bacterial populationdynamics in compost using 16S rRNA gene probes. Applied Microbiology and Biotechnology, 2005, 66(4):457-463
    [28]刘永军,张崇淼,王晓昌,等.环境水体中肠道病原细菌的定量PCR检测.环境科学, 2008, 29(5): 1175-1180
    [29]全向春,杨志峰,何孟常.基因强化技术在污染治理中的研究及应用.中国给水排水, 2007, 23(2): 9-12
    [30]谭亚芳,杜宗敏,何晓晓,等.应用肽核酸探针检测鼠疫耶尔森氏菌.生物技术通讯, 2006, 17(3): 370-373
    [31] Ligaj M, Tichoniuk M, Filipiak M. Detection of bar gene encoding phosphinothricin herbicide resistance in plants by electrochemical biosensor . Bioelectrochemistry, 2008, 74 (1): 32-37
    [32] Tyagi S, Kramer F R. Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology,1996,14(3): 303-308
    [33] Dubertret B,Calame M, Libchaber A, et.al. Single-mismatch detection using gold-quenched fluorescent oligonucleotid. Nature Biotechnology, 2001,19(4): 365-370
    [34] Demidov V V. PD-loop technology: PNA openers at work. Expert Review of Molecular Diagnostics, 2001, 1(3): 343-351
    [35] Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Analytical Chemistry, 1999, 71(22): 5054-5059
    [36] Fang X H, L iu X J, Schuster S. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. Journal of the American Chemical Society, 1999, 121(12): 2921-2922
    [37] Steemers F J, Ferguson J A, Walt D R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnology, 2000, 18(1): 91- 94
    [38]郑正,袁守军,张继彪,等.γ射线辐照预处理加速污泥厌氧消化.环境化学, 2006, 25(3): 297-300
    [39]王建龙,张悦,施汉昌,等.生物传感器在环境污染监测中的应用研究.生物技术通报, 2000, 3: 13-18
    [40]彭胜巍,周启星.持久性有机污染土壤的植物修复及其机理研究进展.生态学杂志, 2008, 27 (3): 469- 475
    [41] Kulys J, Cchimid D. A sensitive enzyme electrode for phenol monitoring. Analytical Letters., 1990, 23(4): 589-597
    [42] Cavalas G V, Chaniotakis N A. Polyeletrolyte stabilized oxidase basedbiosensors: Effect of diet hylaminoethyl-dextran on the stabilization of glucose and lactate oxidases porous conductive carbon. Analytica Chimica Acta, 2000, 404(1): 67-73
    [43] Thust M, Schoning M J, Schroth P, et al. Enzyme immobilisation on planar and porous silicon substrates for biosensor applications. Journal of Molecular Catalysis B-Enzymatic, 1999, 7(1-4): 77-83
    [44] Kr?ger S, Setford S J, Turner A P F. Immunosensor for 2,4-Dichlorophenoxyacetic Acid in Aqueous/Organic Solvent Soil Extracts. Analytical Chemistry, 1998, 70(23): 5047-5053
    [45] Anis N A. Reusable fiber optic immunosensor for rapid detection of imazethapyr herbicide. Journal of Agricultural and Food Chemistry, 1993, 41(5): 843-848
    [46] Cater M T, Rodriguez M, Bard A J. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine. Journal of the American Chemical Society,1989,111(24): 8901-8911
    [47] Millan KM,Saraullo A,Mikkelsen S R. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Analytical Chemistry, 1994, 66(18): 2943-2948
    [48] Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection. Biosensors and Bioelectronics,1999,14(1):43-51
    [49] Wang J, Q.Chen. Remote electrochemical biosensor for fied monitoring of phenolie compounds. Analytica Chimica Acta, 1995, 312(1): 39-44
    [50]贾能勤,朱燕,章宗穰,等.基于微腔型电极的半乳糖生物传感器.分析化学,2000, 28(7): 911-914
    [51]王永先,李贵荣,吕昌银,等.甘油三脂酶传感器的研制及应用.生物化学与生物物理进展, 1999, 26(2): 144-166
    [52] Yabuki S, Mizutani F, Hirata Y. Preparation of a microperoxidase and ferrocene - immobilized polyon complex membrance for the detection of hydrogen peroxide. Journal of Electroanalytical Chemistry, 1999, 468(1): 117-120
    [53] Erlenk?tter A, Kottbus M, Chemnitius G-C. Flexible amperometric transducers for biosensors based on a screen printed three electrode system. Journal of Electroanalytical Chemistry, 2000, 481(1): 82-94
    [54]于秀娟,孙丽欣,周定.非导电聚苯胺膜葡萄糖传感器的研究.哈尔滨工业大学学报, 2003, 35(6): 691-694
    [55] Koopal C G J, Feiters M C, Nolte R J M, et al. Glucose sensor utilizingpolypyrrole incorporated in tract-etch membranes as the mediator. Biosensors and Bioelectronics, 1992, 7(7): 461-471
    [56] Bender S, Sadik O A. Direct electrochemical immunosensor for polychlorinated biphenyls. Environmental Science & Technology, 1998, 32(6): 788-797
    [57] Glezer V, Lev O. Sol-gel vanadium pentaoxide glucose biosensor. Journal of the American Chemical Society, 1993, 115(6): 2533-2534
    [58] Andebert P, Demaile C, Sanchez C. Electrochemical probing of the activity of glucose oxidase embedded sol-gel matrixes. Chemistry of Materials, 1993, 5(7): 911-913
    [59] Narang U, Prasad P N, Bright F V, et al. Glucose biosensor based on a sol-gel-derived platform. Analytical Chemistry, 1994, 66(19): 3139-3144
    [60] Park T M, Iwuoha E I, Smyth M R, et al. Sol-gel-based amperometric glucose biosensor incorporating an osmium redox polymer as mediator . Analytical Communications, 1996, 33(8): 271-273
    [61] Tang F, Shen J, Zhang J, et al. Enhanument of glucose biosensor sensitivity by addition of silver sols. Chemical Journal of Chinese University, 1999, 20(4): 634-636
    [62]王顺光,吉鑫松.醋酸纤维素膜为基础的葡萄糖生物传感器的研制.生物工程学报, 1995, 11(3): 260-265
    [63]胡效亚,冷宗周.儿茶酚在预活化聚酰胺膜多酚氧化酶电流传感器上的响应特性.分析化学, 1995, 23(4): 416-418
    [64] Degani Y, Heller A. Direct electrical communication between chemically modified enzymes and metal electrodes. 2. Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase. Journal of the American Chemical Society, 1988, 110(8): 2615-2620
    [65]钱军民,李旭祥,黄海燕,等.溶胶-凝胶法制备的介体型电流式葡萄糖生物传感器.分析测试学报, 2002, 21(5): 23-26
    [66] Tatsuma T, Okawa T, Watannabe T. Enzyme monolayer and bilayer-modified a oxide electrodes for the determination of hydrogen perogen peroxide and glucose. Analytical Chemistry, 1989, 61(21): 2352-2355
    [67] Minunni M, Mascini M. Detection of pesticide in drinking water using real-time biospecific interaction analysis(BIA). Analytical Letters, 1993, 26(7): 1441-1460
    [68] Wittmann C, Bier F F, Eremin S A, et al. Quantitative analysis of 2,4-Dichlorophenoxyacetic acid in water samples by two immunosensing methods. Journal of Agricultural and Food Chemistry, 1996, 44(1): 343-350
    [69] Selvanayagam Z E, Neuzil P, Gopalakrishnakone P, et al. An ISFET-based immunosensor for the detection ofβ-Bungarotoxin. Biosensors and Bioelectronics, 2002, 17(9): 821-826
    [70] Millan K M, Mikkelsen S R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical Chemistry, 1993, 65(17): 2317-2320
    [71]刘盛辉,孙长林,何品刚,等.单链脱氧核糖核酸在石墨电极表面固定化的研究.分析化学, 1999, 27(2): 130-134
    [72]赵元弟,庞代文,张敏,等. DNA修饰电极的研究(IX)-DNA探针在金基底上的固定、表征及其表面杂交.高等学校化学学报, 2001, 22(5): 744-748
    [73] Okahata Y, Kawase M, Niikura K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Analytical Chemistry, 1998, 70(1): 1288-1296
    [74] Xiao C D, Yang M, Sui S F. DNA-containing organized molecular structure based on controlled assembly on supported monolayers. Thin solid films, 1998, 327-329(1-2): 647-651
    [75] Taitt C R, Anderson G P, Lingerfelt B M, et al. Nine-analyte detection using an array-based biosensor. Analytical Chemistry, 2002, 74(23): 6114-6120
    [76] P?ibyl J, Hepel M, Halámek J, et al. Development of piezoelectric immunosensors for competitive and direct determination of atrazine. Sensors and Actuators B, 2003, 91(1-3): 333-341
    [77] Oh B-K, Kim Y-K, Lee W, et al. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosensors and Bioelectronics, 2003, 18(5-6): 605-611
    [78] Feng K J, Yang Y H, Wang Z J, et al. A nano-porous CeO2/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta, 2006, 70(3): 561-565
    [79] Luo X L, Xu J J, Zhao W, et al. Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sensors and Actuators B, 2004, 97(2-3): 249-255
    [80] Yang M H, Yang Y, Yang H F, et al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials, 2006, 27(2): 246-255
    [81] Yang L, Chen J H, Zhong X X, et al. Au@Pt nanoparticles prepared by one-phase protocol and their electrocatalytic properties for methanol oxidation. Colloids and Surfaces A, 2007, 295(1-3): 21-26
    [82] Cai H, Wang Y Q, He P G, et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta, 2002, 469(2): 165-172
    [83]段菁华,王柯敏,谭蔚泓,等.新型有机荧光染料嵌合的核壳荧光纳米材料的研制.高等学校化学学报, 2003, 24(2): 255-259
    [84] Cai H, Zhu N N, Jiang Y, et al. Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosensors and Bioelectronics, 2003, 18(11): 1311-1319
    [85] Hun X, Zhang Z J. A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chemistry, 2007, 105(4): 1623-1629
    [86] Wang J. Nanoparticle-based electrochemical DNA detection. Analytica Chimica Acta, 2003, 500(1-2): 247-257
    [87] Alfonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Analytical Chemistry, 2001, 73(1): 91-102
    [88] Pale?ek E, Fojta M, Jelen F. New approaches in the development of DNA sensors: Hybridization and electrochemical detection of DNA and RNA at two different surfaces. Bioelectrochemistry, 2002, 56(1-2): 85-90
    [89] Wang J, Xu D, Kawde A N, et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Analytical Chemistry, 2001, 73(22): 5576-5581
    [90] Wang J, Polsky R, Merkoci A, et al. "Electroactive beads" for ultrasensitive DNA detection. Langmuir, 2003, 19(4): 989-991
    [91] Jayasankar M , Ananthakumar S, Mukundan P, et al. Al2O3@TiO2-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach. Journal of Solid State Chemistry, 2008, 181(10): 2748-2754
    [92]张海民,全燮,赵慧敏,等. TiO2 /Al2O3复合分离膜的制备及其对染料的去除性能.环境科学学报, 2006, 26(9): 1484 - 1490
    [93] Lu C Z, Chen J M, Cho Y D, et al. Electrochemical performance of LiCoO2 cathodes by surface modification using lanthanum aluminum garnet. Journal of Power Sources, 2008,184(2): 392-401
    [94] Sathish Kumara P S, Sivakumar R, Anandan S, et al. Photocatalytic degradationof Acid Red 88 using Au-TiO2 nanoparticles in aqueous solutions. Water Research, 2008, 42 (19): 4878-4884
    [95]张建灵,张兴旺,雷乐成. CdS修饰TiO2纳米管阵列制备及其光电催化产氢性能.科学通报, 2008, 53 (12): 113-116
    [96] Flores J C, Torres V, Popa M, et al. Preparation of core-shell nanospheres of silica-silver: SiO2@Ag. Journal of Non-Crystalline Solids, 2008, 354(52-54): 5435-5439
    [97] Shishkanova T V, Matějka P, Král V, et al. Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: A new way to improve their potentiometric response. Analytica Chimica Acta, 2008, 624(2): 238-246
    [98] Ren X W,Jiang M. Effect of crosslinker content on the properties of the micelles prepared via in situ polymerization and preparation of hollow spheres. Chemical Journal of Chinese University, 2006, 27(12): 2422-2425
    [99] Liu X H, Wu H Y, Ren F L, et al. Controllable fabrication of SiO2/polypyrrole core-shell particles and polypyrrole hollow spheres. Materials Chemistry and Physics, 2008, 109(1): 5-9
    [100] Jing S Y, Xing S X, Yu L X, et al. Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid. Materials Letters, 2007, 61(13): 2794-2797
    [101] Liu Y S, Liu P, Su Z X. Core-shell attapulgite@polyaniline composite particles via in situ oxidative polymerization. Synthetic Metals, 2007, 157(13-15): 585-591
    [102]宋秀芹,张雪红,王新,等.纳米结构TiO2/SiO2的逐层自组装.化学学报, 2003, 61(5): 146-150
    [103] Sutter E, Sutter P, Zhu Y. Assembly and interaction of Au/C core-shell nanoparticles. Surface Science, 2006, 600(18): 3654-3658
    [104] Zhang S Q, Zhu Y H, Yang X L, et al. Fabrication of core-shell latex spheres with CdS/polyelectrolyte composite multilayers. Colloids and Surfaces A , 2005, 264(1-3): 215-218
    [105] Bizdoaca E L, Spasova M, Farle M, et al. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. Journal of Magnetism and Magnetic Materials, 2002, 240(1-3): 44-46
    [106] Yang W J, Trau D, Renneberg R, et al. Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications. Journalof Colloid and Interface Science, 2001, 234(2): 356-362
    [107] Chen X, Zhao D Y, An Y L, et al. ormation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles. Journal of Colloid and Interface Science, 2008, 322(2): 414-420
    [108] Wang Y, Qian W P, Tan Y, et al. Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells. Talanta, 2007, 72(3): 1134-1140
    [109] Qiu J D, Peng H P, Liang R P. Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochemistry Communications, 2007, 9(11): 2734-2738
    [110] Endo T, Yamamura S, Kerman K, et al. Label-free cell-based assay using localized surface plasmon resonance biosensor. Analytica Chimica Acta, 2008, 614(2): 182-189
    [111] Huang H W, He C C, Zeng Y L, et al. Preparation and optical properties of worm-like gold nanorods. Journal of Colloid and Interface Science, 2008, 322(1): 136-142
    [112] Enders D, Rupp S, Kuller A, et al. Surface enhanced infrared absorption on Au nanoparticle films deposited on SiO2/Si for optical biosensing: Detection of the antibody-antigen reaction. Surface Science, 2006, 600(23): L305-L308
    [113] Ding Y J, Liu J, Wang H, et al. A piezoelectric immunosensor for the detection ofα-fetoprotein using an interface of gold/hydroxyapatite hybrid nanomaterial. Biomaterials, 2007, 28(12):2147-2154
    [114] Jia X, Tan L, Xie Q J, et al. Quartz crystal microbalance and electrochemical cytosensing on a chitosan/multiwalled carbon nanotubes/Au electrode. Sensors and Actuators B, 2008, 134(1): 273-280
    [115] Hikuma M, Suzuki H, Yasuda T, et al. Amperometric estimation of BOD by using living immobilized yeasts. European Journal of Applied Microbiology and Biotechnology, 1979, 8(4): 289-297
    [116] Yoshida N, Nakamura H, Karube I, et al. A mediator-type biosensor as a new approach to biochemical oxygen demand estimation. Analyst, 2000, 125(12): 2280-2284
    [117] Yoshida N, Hoashi J, Morita T, et al. Monitoring of the composting process using a mediator-type biochemical oxygen demand sensor. Analyst, 2001, 126(10): 1751-1755
    [118] Yoshida N, McNiven SJ, Morita T, et al. A simple, multiple simultaneousspectrophotometric method for BOD determination using DCIP as the redox color indicatior. Analytical Letters, 2002, 35(9): 1541-1549
    [119] Chee G J, Nomura Y, Ikebukuro K, et al. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosensors and Bioelectronics, 2000, 15(7-8): 371-376
    [120] Chee G J, Nomura Y, Ikebukuro K, et al. Biosensor for the evaluation of biochemical oxygen demand using photocatalytic pretreatment. Sensors and Actuators B, 2001, 80(1): 15-20
    [121] Rodriguez-Mozaz S, Marco M P, Lopez de Alda M J, et al. Biosensors for environmental monitoring of endocrine disruptors:A review article.Analytical and Bioanalytical Chemistry, 2004, 378(3): 588-598
    [122] Cummings E A, Linquette M S, Mailley P, et al. A comparison of amperometric screen-printed, carbon electrodes and their application to the analysis of phenolic compounds present in beers. Talanta, 2001, 55(5): 1015-1027
    [123] Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical biosensors for environmental monitoring. Analytica Chimica Acta, 1999, 387(3): 297-307
    [124] Pandey P, Weetall H. Detection of aromatic compounds based on DNA intercalation using an evanescent wave biosensor. Analytical Chemistry, 1995, 67(5): 787-792
    [125] Nikolelis D P, Simantiraki M G, Siontorou C G, et al. Flow injection analysis of carbofuran in foods using air stable lipid film based acetylcholinesterase biosensor. Analytica Chimica Acta, 2005, 537(1-2): 169-177
    [126] Mastichiadis C, Kakabakos S E, Christofidis I, et al. Simultaneous determination of pesticides using a four-band disposable optical capillary immunosensor. Analytical Chemistry, 2002, 74(23): 6064-6072
    [127] Leth S, Maltoni S, Simkus R, et al. Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis, 2002, 14(1): 35-42
    [128] Corbisier P, van der Lelie D, Borremans B, et al. Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta, 1999, 387(3): 235-244
    [129] Gayet J-C, Haouz A, Geloso-Meyer A, et al. Detection of heavy metal salts with biosensors built with an oxygen electrode coupled to various immobilized oxidases and dehydrogenases. Biosensors and Bioelectronics, 1993, 8(3-4): 177-183
    [130] Guschin D Y, Mobarry B K, Proudnikov D, et al. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Applied and Environmental Microbiology, 1997,63(6): 2397-2402
    [131] Ivnitski D, Abdel-Hamid I, Atanasov P, et al. Biosensors for the detection of pathogenic bacteria. Biosensors and Bioelectronics, 1999, 14(7): 599-624
    [132] Wang J, Rivas G, Parrado C, et al. Electrochemical biosensor for detecting DNA sequences from the pathogenic protozoan Cryptosporidium parvum. Talanta, 1997, 44(11): 2003-2010
    [133] Ramachandran A, Flinchbaugh J, Ayoubi P, et al. Target discrimination by surface-immobilized molecular beacons designed to detect Francisella tularensis. Biosensors and Bioelectronics, 2004, 19(7): 727-736
    [134] Aitichou M, Henken R, Sultana A M, et al. Detection of Staphylococcus aureus enterotoxin A and B genes with PCR-EIA and a hand-held electrochemical sensor. Molecular and Cellular Probes, 2004, 18(6): 373-377
    [135] Baeumner A J, Cohen R N, Miksic V, et al. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosensors and Bioelectronics, 2003, 18(4): 405-413
    [136] Komilisa D P, Hamb R K, Park J K. Emission of volatile organic compounds during composting of municipal solid wastes. Water Research, 2004, 38(7): 1707-1714
    [137] Vehlow J. Municipal solid waste management in Germany. Waste Management, 1996, 16(5-6): 367-374
    [138]张从,夏立江.污染土壤生物修复技术.第1版.北京:中国环境科学出版社, 2000, 9
    [139]席北斗,孟伟,刘鸿亮,等.三阶段控温堆肥过程中接种复合微生物菌群的变化规律研究.环境科学, 2003, 24(2): 152-155
    [140]陈耀宁,曾光明,黄国和,等.两次接种微生物复合菌剂堆肥法.中国.国家发明专利, ZL03118137.6. 2005-2-16
    [141] Stuardo M, Vásquez M, Vicu?a R, et al. Molecular approach for analysis of model fungal genes encoding ligninolytic peroxidases in wood-decaying soil systems. Letters in Applied Microbiology, 2004, 38(1): 43-49
    [142] Martinez D, Larrondo L F, Putnam N, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnology, 2004, 22(6): 695-700
    [143] Janse B J H, Gaskell J, Akhtar M, et al. Expression of Phanerochaetechrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Applied and Environmental Microbiology, 1998, 64(9): 3536-3538
    [144] Stewart P, Cullen D. Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. Journal of Bacteriology, 1999, 181(11): 3427-3432
    [145]沈德中.污染环境的生物修复.第1版.北京:化学工业出版社, 2002, 48-49
    [146] Fogarty A M, Tuovinen O H. Microbiological degradation of pesticides in yard waste composting. Microbiological Reviews, 1991, 55(2): 225-233
    [147] Barker A V, Bryson G M. Bioremediation of heavy metals and organic toxicants by composting. The Scientific World Journal, 2002, 2: 407-420
    [148] Hassen A, Belguith K, Jedidi N, et al. Microbial characterization during composting of municipal solid waste. Bioresource Technology, 2001, 80(3): 217-225
    [149]郁红艳.农业废物堆肥化中木质素的降解及其微生物特性研究: [湖南大学博士学位论文].长沙:湖南大学, 2007, 4-22
    [150]吴正松,彭绪亚,蔡华帅,等.微生物在堆肥化中的应用研究.重庆建筑大学学报, 2005, 27(1): 92-96
    [151] Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 2000, 72(2): 169-183
    [152] Godden B, BallA S, Helvenstein P, et al. Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General Microbiology, 1992, 138(11): 2441-2448
    [153] Waksman S A, Cordon T C, Hulpoi N. Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure. Soil Science,1939, 47(2): 83-114
    [154]刘悦秋,刘克锋,石爱平,等.生活垃圾堆肥优良菌剂的筛选.农业环境科学学报, 2003, 22(5): 597-601
    [155]席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用.环境科学, 2001, 22(5): 122-125
    [156] Schippers C, Ge?ner K, Müller T, et al. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. Journal of Biotechnology, 2000, 83(3): 189-198
    [157]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社, 2006, 3-4
    [158] Mulligan C N, Yong R N, Gibbs B F. Surfactant-enhanced remediation of contaminated soil: A review. Engineering Geology, 2001, 60(1-4): 371-380
    [159] Rosenberg E, Ron E Z. High- and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 1999, 52(2): 154-162
    [160] Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997, 61(1): 47-64
    [161] Lang S. Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid & Interface Science, 2002, 7(1-2): 12-20
    [162]黄丹莲,曾光明,黄国和,等.白腐菌固态发酵条件最优化及其在降解植物生物质的研究.环境科学学报, 2005, 25(2): 232-237
    [163]陈世和.城市生活垃圾堆肥化处理的微生物特性研究.上海环境科学, 1989, 8(8): 17-21
    [164] Keller P. Methods to Evaluate Maturity of Compost. Compost Science, 1961, 32(5): 20-26
    [165]王建龙,文湘华.现代环境生物技术.北京:清华大学出版社, 2001, 98-134
    [166] Gardner K H, Blackwell J. The structure of native cellulose. Biopolymer, 1974, 13(10): 1975-2001
    [167] Feng Y, Duan C J, Pang H, et al. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Applled Microbiology and Biotechno1ogy, 2007, 75(2): 319-328
    [168]陈坚.环境生物技术.北京:中国轻工业出版社, 2000, 42-67
    [169]高培基.纤维素酶活力测定方法研究进展.工业微生物, 1985, 6(5): 5-8
    [170]张瑞萍.纤维素酶活力测定方法.印染, 2002, 28(8): 38-39
    [171]李亮亮,牛森.荧光定糖法测定纤维素酶活力的条件研究.沈阳农业大学学报, 2004, 35(1): 59-61
    [172]刘佳,袁兴中,曾光明,等.表面活性剂对绿色木霉产纤维素酶影响的实验研究.中国生物工程杂志, 2006, 26(8): 62-66
    [173] Ghose T K. Measurement of Cellulase Activities. Pure and Applied Chemistry, 1987, 59 (2): 257-268
    [174]张树政.酶制剂工业(下册).科学出版社, 1984, 489-512
    [175]王华夫,游小青.茶叶中β-葡萄糖苷酶活性的测定.中国茶叶, 1996, (3) : 16-17
    [176]杨涛,马美湖.生物质降解酶酶活的测定方法.中国酿造, 2006, 164(11): 67-69
    [177] Monika S, Kubicek C P. Regulation of Trichoderma celluase formation : lessons in molecular biology from an industrial fungus. Acta Microbiologica et Immunologica Hungarica, 2003, 50(2-3): 125-145
    [178] Ilmen M, Onnela M L, Klemsdal S, et al. Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Molecular Genetics and Genomics, 1996, 253(3): 303-314
    [179] Johjima T, Wariishi H, Tanaka H. Veratryl alcohol binding sites of lignin peroxidase from Phanerochaete chrysosporium. Journal of Molecular Catalysis B: Enzymatic, 2002, 17(2): 49-57
    [180] Kersten P, Cullen, D. Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology, 2007, 44(2): 77-87
    [181] Boerjan W, Ralph J, Baucher M. Lignin Biosynthesis. Annual Reviews in Plant Biology, 2003, 54: 519-546
    [182] Sjostrom E. Wood Chemistry, Fundamentals and Applications. 2nd Edn. New York/London: Academic Press, 1993
    [183]赵大鹏,张伟周,薛燕芬.一个产木质素酶的嗜碱细菌新种.微生物学报, 2004, 44(6): 720-723
    [184]孙先锋,张志杰,崔红军.造纸黑液木质素降解微生物的分离和降解特性研究.环境工程, 2002, 20(3): 78-80
    [185]史央,戴传超,吴耀春.植物内生真菌强化还田秸秆降解的研究.环境科学学报, 2004, 24(1): 144-149
    [186]郁红艳,曾光明,黄国和.木质素降解真菌的筛选及产酶特性.应用与环境生物学报, 2004, 10(5): 639-642
    [187] Leonowicz A, Matuszewska A, Luterek J. Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 1999, 27(2-3): 175-185
    [188] Martínez A T. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology, 2002, 30(4): 425-444
    [189] Tuor U, Winterhalter K, Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. Journal of Biotechnology, 1995, 41(1): 1-17
    [190] Kersten P J, Stephens S K, Kirk T K. Glyoxal oxidase and the extracellular peroxidases. In: Kirk T K, Stoneham H M C. International Conference on Biotechnology in Pulp and Paper Industry. MA: Butterworth-Heinemann, 1990, 457-463
    [191] Hatakka A. Lignin-modifying enzymes from selected white-rot fungi : Production and role in lignin degradation. FEMS Microbiology Reviews, 1994, 13(2-3): 125-135
    [192]张建军,罗勤慧.木质素酶及其化学模拟的研究进展.化学通报, 2001, 64(8): 470-477
    [193] Hildén L, Johansson G, Pettersson G, et al. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation? FEBS Letter, 2000, 477(1-2): 79-83
    [194] Henriksson G, Zhang L M, Li J B, et al. Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme? Biochimica et Biophysica Acta, 2000, 1480(1-2): 83-91
    [195] Ander P. The cellobiose-oxidizing enzymes CBQ and CBO as related to lignin and cellulose degradation-A review. FEMS Microbiology Reviews, 1994, 13(2-3): 297-312
    [196] Tanaka T, Yamada K, Tonosaki T, et al. Enzymatic degradation of alkylphenols, bisphenol A, syntheticestrogen and phthalic ester. Water Science and Technology, 2000, 42(7-8): 89-95
    [197] Szklarz G D, Antibus R K, Sinsabaugh R L, et al. Production of phenol oxidases and peroxidases by wood-rotting fungi. Mycologia, 1989, 81: 234-240
    [198] Bourbonnais R, Leech D, Paice M G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta-General Subjects, 1998, 1379(3): 381-390
    [199] Urzúa U, Larrondo L F, Lobos S, et al. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora. FEBS. Letters, 1995, 37(2): 132-136
    [200]肖海燕,黄俊,刘诚.原子吸收光谱法测定漆酶的含量.化学与生物工程, 2006, (6): 57-59
    [201] Varela E, Martínez A T, Martínez M J. Southern blot screening for lignin peroxidase and aryl-alcohol oxidase genes in 30 fungal species. Journal of Biotechnology, 2000, 83(3): 245-251
    [202]江明锋,张义正.培养于天然冷杉木片的黄孢原毛平革菌木质素过氧化物酶基因表达的RT-PCR分析.微生物学报, 2003, 43(1): 65-72
    [203] Burtscher C, Wuertz S. Evaluation of the use of PCR and reverse transcriptase PCR for detection of patho- genic bacteria in biosolids from anaerobic digestors and aerobic composters. Applied and Environmental Microbiology, 2003, 69(8):4618- 4627
    [204] Gieseke A, Purkhold U, Wagner M, et al. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Applied and Environmental Microbiology, 2001, 67(3): 1351-1362
    [205] Webber A L, Ingram R S, Levorse J M, et al. Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature, 1998, 391(12): 711-715
    [206] BotrèF, BotrèC. Electrochemistry of enzyme sensors and their use in life sciences. In: Costa G, Miertus S. Trends in Electrochemical Biosensors. Singapore: World Scientific Publishing Co. PTE Ltd., 1992, 107-125
    [207] Bernabei M, Cremisini C, Mascini M, et al. Determination of organophosphorus and carbamic pesticides with a choline and acetylcholine electrochemical biosensor. Analytical Letters, 1991, 24(8): 1317-1331
    [208] Tran-Minh C. Biosensor. New York, USA: Marcel Dekker, 1993, 63-172
    [209] Jaffrezic-Renault N. New Trends in biosensors for organophosphorus pesticides. Sensors, 2001, 1(2): 60-74
    [210] Danzer T, Schwedt G. Chemometric methods for the development of a biosensor system and the evaluation of inhibition studies with solutions and mixtures of pesticides and heavy metal: Part 1. development of an enzyme electrodes system for pesticide and heavy metal screening using selected chemometric methods. Analytica Chimica Acta, 1996, 318(3): 275-286
    [211] Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Chromium, Report TP-92/08. Atlanta, Georgia: US Department of Health and Human Services, 1993
    [212] Mancuso T F. Chromium as an industrial carcinogen: Part I. American Journal of Industrial Medicine, 1997, 31(2): 129-139
    [213] Pirvutoiu S, Surugiu I, Dey E S, et al. Flow injection analysis of mercury(II) based on enzyme inhibition and thermometric detection. Analyst, 2001, 126(9): 1612-1616
    [214] Evtugyn G A, Budnikov H C, Nikolskaya E B. Sensitivity ans selectivity of electrochemical enzyme sensors for inhibition determination[J]. Talanta, 1998, 46(4): 465-484
    [215] World Health Organization (WHO), Guidelines for Drinking-Water Quality, Vol. 2, Health Criteria and Supporting Information. 2nd Edn. Geneva, Swithzerland: WHO, 1996
    [216] Alexander P W, Rechniz G A. Enzyme inhibition assays with an amperometricglucose biosensor on a thiolate self-assembled monolayer. Electroanalysis, 2000, 12(5): 343-350
    [217] Kelley R L, Reddy C A. Glucose oxidase of Phanerochaete chrysosporium. Methods in Enzymology, 1988, 161(1): 307-316
    [218] Donlan A M, Moody G J, Thomas J D R. The amperometric detection of some enzyme inhibitors. Analytical Proceedings, 1989, 26(11): 369-371
    [219] Garjonyte R, Malinauskas A. Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer. Sensors and Actuators B, 1999, 56(1): 85-92
    [220]邹承鲁.活性部位的柔性为酶充分表现其催化活性所必需.生物化学与生物物理学报, 1992, 24(5): 393-398
    [221] Veselova I A, Shekhovtsova T N. Visual determination of mercury(II) using horseradish peroxidase immobilized on polyurethane foam. Analytica Chimica Acta, 1999, 392(2-3): 151-158
    [222]吴霞琴,曹大均,蒋慧雯,苯胺的电聚合及其酶固定化条件的研究.上海师范大学学报(自然科学版), 1994, (2): 159-166
    [223] Fiorito P A, Susana I, Torresi C. Glucose amperometric biosensor based on the co-immobilization of glucose oxidase (GOx) and ferrocene in poly(pyrrole) generated from ethanol/water mixtures. Journal of the Brazilian Chemical Society, 2001, 12(6): 729-733
    [224] Shul’ga A A, Koudelka-Hep M, De Roolj N F, et al. Glucose-sensitive enzyme field effect transistor using potassium ferricyanide as an oxidizing substrate. Analytical Chemistry, 1994, 66(2): 205-210
    [225] Cho W J, Huang H J. An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode. Analytical Chemistry, 1998, 70(18): 3946-3951
    [226] Yeung S Y S, Cho Y K, Bailey J E. Applications of purification reactions for minimizing reaction-generated enzyme poisoning. Biotechnology and Bioengineering, 1978, 20(8): 1249-1265
    [227] Zhao J G, Henkens R W, Crumbliss A L. Mediator-free amperometric determination of toxic substances based on their inhibition of immobilized horseradish peroxidase. Biotechnology Progress, 1996, 12(5): 703-708
    [228] Cotton F A, Wilkinson G, Murillo C A, et al. Advanced Inorganic Chemistry. 6th Edn. New York, USA: John Wiley & Sons, Inc., 1999, 613
    [229]邹国林,朱汝.酶学.武汉:武汉大学出版社, 1997, 96-101
    [230] Prough R A, Moloney S. Hydrazines. In: M.W. Andres. Bioactivation of Foreign Compounds. New York: Academic Press, 1995, 433-449
    [231] Banerjee M, Ray A K. The role of thyroid hormone on phenylhydrazine hydrochloride mediated inhibitory effects on blood acetylcholinesterase: An in vivo and in vitro study. Journal of Biochemical and Molecular Toxicology, 2002, 16(4): 162-168
    [232] Murty N K, Rao V J, Rao N V S. Detection and determination of phenylhydrazine. Talanta, 1984, 31(6): 466
    [233] Channu B C, Kalpana H N, Ramesh L, et al. Characterization of oxidized products of 10-[3'-[N-bis(hydroxyethyl)amino]propyl]-2-chlorophenoxazine and its applications in titrations involving N-bromosuccinimide. Analytical Sciences, 2000, 16(8): 859-863
    [234] Hasan T. Resin Bead Detection and Spectrophotometric determination of phenylhydrazine using inorganic reagents. Analytical Letters, 1988, 21(4): 633-640
    [235] Afkhami A, Assl A A. Sensitive spectrophotometric determination of trace quantities of phenylhydrazine. Microchemical Journal, 2001, 69(1): 51-57
    [236] Zatón A M L, Ochoa de Aspuru E. Horseradish peroxidase inhibition by thiouracils. FEBS Letters, 1995, 374(2): 192-194
    [237] Limoges B, Savéant J M, Yazidi D. Quantitative analysis of catalysis and inhibition at horseradish peroxidase monolayers immobilized on an electrode surface. Journal of the American Chemical Society, 2003, 125(30): 9192-9203
    [238] Wu Y M, Taylor K E, Biswas N, et al. Kinetic model for removal of phenol by horseradish peroxidase with PEG. Journal of Environmental Engineering, 1999, 125(5): 451-458
    [239] La Mar G N, Hernández G, Ropp J S. 1H NMR investigation of the influence of interacting sites on the dynamics and thermodynamics of substrate and ligand binding to horseradish peroxidase. Biochemistry-US, 1992, 31(38): 9158-9168
    [240] Koga S, Ogawa J, Choi Y M, et al. Novel bacterial peroxidase without catalase activity from Flavobacterium meningosepticum: Purification and characterization. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1999, 1435(1-2): 117-126
    [241] Anzai J, Kobayashi Y, Nakamura N. Alternate deposition of concanavalin A and mannose-labelled enzymes on a solid surface to prepare catalytically active enzyme thin films. Journal of the Chemical Society, Perkin Transactions, 1998,2(3): 461-462
    [242] Anzai J, Kobayashi Y. Construction of multilayer thin films of enzymes by means of sugar-lectin interactions. Langmuir, 2000, 16(6): 2851-2856
    [243] Kobayashi Y, Anzai J. Preparation and optimization of bienzyme multilayer films using lectin and glyco-enzymes for biosensor applications. Journal of Electroanalytical Chemistry, 2001, 507(1-2): 250-255
    [244]周召梅,李强.湖南省入河废污水对江河水质的影响分析.水资源保护, 2003, 19(3): 44-46
    [245] Liu G D, Wu Z Y, Wang S P, et al. Renewable amperometric immunosensor for schistosoma japonium antibody assay. Analytical Chemistry, 2001, 73(14): 3219-3226
    [246] Parkin S, Rupp B, Hope H. Atomic resolution structure of concanavalin A at 120 K. Acta Crystallographica Section D: Biological Crystallography, 1996, 52(6): 1161-1168
    [247] Berglund G, Carlsson G, Smith A, et al. The catalytic pathway of horseradish peroxidase at high resolution. Nature, 2002, 417(6887): 463-468
    [248] Lei C X, Hu S Q, Shen G L, et al. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta, 2003, 59(5): 981-988
    [249] Fan C, Wang H, Zhu D, et al. Incorporation of horseradish peroxidase in a kieselguhr membrane and the application to a mediator-free hydrogen peroxide sensor. Analytical Science, 2001, 17(2): 273-276
    [250]陈石根,周润琦.酶学.上海:复旦大学出版社, 2001, 163-220
    [251] Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry, 1980, 52(8): 1198-1205
    [252] Rodríguez-López J N, Gilabert M A, Tudela J, et al. Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism. Biochemistry, 2000, 39(43): 13201-13209
    [253] Pant N, Kumar R, Mathur N, et al. Chlorinated pesticide concentration in semen of fertile and infertile men and correlation with sperm quality. Environmental Toxicology and Pharmacology, 2007, 23(2): 135-139
    [254] Zhou R, Zhu L, Kong Q. Persistent chlorinated pesticides in fish species from Qiantang River in East China. Chemosphere, 2007, 68(5): 838-847
    [255] Lee D J, Senseman S A, Sciumbato A S, et al. The effect of titanium dioxidealumina beads on the photocatalytic degradation of picloram in water. Journal of Agricultural and Food Chemistry, 2003, 51(9): 2659-2664
    [256] Santos L B O, Masini J C. Determination of picloram in natural waters employing sequential injection square wave voltammetry using the hanging mercury drop electrode. Talanta, 2007, 72(3): 1023-1029
    [257] Ghauch A. Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere, 2001, 43(8): 1109-1117
    [258] Massaroppi M R C, Machado S A S, Avaca L A. Electroanalytical determination of the herbicide picloram in natural waters by square wave voltammetry. Journal of the Brazilian Chemical Society, 2003, 14(1): 113-119
    [259] U.S. Environmental Protection Agency. National primary drinking water regulations. In: Office of the Federal Register, National Archives and Records Administration, Edn. Code of Federal Regulations, 40 CFR 141.32. Washington, DC: U.S. Government Printing Office, 2004
    [260] Rodríguez R, Ma?es J, PicóY. Off-Line solid-phase microextraction and capillary electrophoresis mass spectrometry to determine acidic pesticides in fruits. Analytical Chemistry, 2003, 75(3): 452-459
    [261] Yau K Y F, Tout N L, Trevors J T, et al. Bacterial expression and characterization of a picloram-specific recombinant Fab for residue analysis. Journal of Agricultural and Food Chemistry, 1998, 46(10): 4457- 4463
    [262] Yau K Y F, Groves M A T, Li S, et al. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. Journal of Immunological Methods, 2003, 281(1-2): 161-175
    [263] Hall J C, Deschamps R J A, Krieg K K. Immunoassays for the detection of 2,4-D and picloram in river water and urine. Journal of Agricultural and Food Chemistry, 1989, 37(4): 981- 984
    [264] Glass T R, Ohmura N, Taemi Y, et al. Simple immunoassay for detection of PCBs in transformer oil. Environmental Science & Technology, 2005, 39(13): 5005-5009
    [265] Yu H, Yan F, Dai Z, et al. A disposable amperometric immunosensor forα-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbon electrode. Analytial Biochemistry, 2004, 331(1): 98-105
    [266] Chen J, Tang J, Yan F, et al. A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials, 2006, 27(10): 2313-2321
    [267] Feng J J, Zhao G, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Analytical Biochemistry, 2005, 342(2): 280-286
    [268] Wang S T, Gui W J, Guo Y R, et al. Preparation of a multi-hapten antigen and broad specificity polyclonal antibodies for a multiple pesticide immunoassay. Analytica Chimica Acta, 2007, 587(2): 287-292
    [269] Kim Y J, Kim Y A, Lee Y T, et al. Enzyme-linked immunosorbent assays for the insecticide fenitrothion. Influence of hapten conformation and sample matrix on assay performance. Analytica Chimica Acta, 2007, 591(2): 183-190
    [270] Lee W Y, Lee E K, Kim Y J, et al. Monoclonal antibody-based enzyme-linked immunosorbent assays for the detection of the organophosphorus insecticide isofenphos. Analytica Chimica Acta, 2006, 557(1-2): 169-178
    [271]高肖汉,吕雪川,徐杰.苯直接催化氧化合成苯酚的研究进展.分子催化, 2008, 22(4): 379-384
    [272]张培毅.间苯二酚合成技术与市场分析.化工进展, 2005, 24(7): 814-815
    [273]李林,赵喜萍,魏朔南.漆酚金属高聚物防腐涂料的研究进展.中国生漆, 2007, 27(1): 54-56
    [274]赵风清.现代水性涂料配方与工艺.北京:化学工业出版社, 2004, 208
    [275]钱逢麟,竺玉书.涂料助剂一品种和性能手册.北京:化学工业出版社, 1990, 387
    [276]章毅,曾光明,汤琳,等.基于磁性纳米粒子固定技术的漆酶传感器用于垃圾堆肥中邻苯二酚的检测.环境科学, 2007, 28(10): 2320-2325
    [277] Canofeni S, Sario S D, Mela J, et al. Comparison of immobilisation procedures for development of an electrochemical PPO-based biosensor for on line monitoring of a depuration process . Analytical Letters, 1994, 27(9): 1659-1662
    [278]孙磊,蒋新,周建民,等.环境样品中五氯苯酚分析方法的研究进展.分析科学学报, 2004, 20(6): 642-646
    [279] Tse K K C,Shang-Lien L O,Wang J W H, et al. Pilot study of in-situ thermal treatment for the remediation of pentachlorophenol-contaminated aquifers. Environmental Science & Technology, 2001, 35(24): 4910-4915
    [280]牛增元,包艳,叶曦雯,等.高效液相色谱法测定水性涂料中的酚类防霉剂.分析试验室, 2008, 27(3): 48-51
    [281] Chapuis-Lardy L, Contour-Ansel D, Bernhard-Reversat F. High-performance liquid chromatography of water-soluble phenolics in leaf litter of three Eucalyptus hybrids (Congo). Plant Science, 2002, 163(2): 217-222
    [282] Zayats M, Baron R, Popov I, et al. Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Letters, 2005, 5(1): 21-25
    [283] Huang X, El-Sayed I H, Yi X, et al. Gold nanoparticles: Catalyst for the oxidation of NADH to NAD+. Journal of Photochemistry and Photobiology B: Biology, 2005, 81(2): 76-83
    [284]álvarez-González M I, Saidman S B, Lobo-Casta?ón M J, et al. Electrocatalytic detection of NADH and glycerol by NAD+-modified carbon electrodes. Analytical Chemistry, 2000, 72(3): 520-527
    [285] Tien M, Kirk T K. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds. Science, 1983, 221(4611): 661-663
    [286] Martins M A M, Queiroz M J, Silvestre A J D, et al. Relationship of chemical structures of textile dyes on the pre-adaptation medium and the potentialities of their biodegradation by Phanerochaete chrysosporium. Research in Microbiology, 2002, 153(6): 361-368
    [287] Sheremata T W, Hawari J. Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environmental Science & Technology, 2000, 34(16): 3384-3388
    [288] Gros P, Comtat M. A bioelectrochemical polypyrrole-containing Fe(CN)6 3- interface for the design of a NAD-dependent reagentless biosensor. Biosensors and Bioelectronics, 2004, 20(2): 204-210
    [289] Jena B K, Raj C R. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Analytical Chemistry, 2006, 78(18): 6332-6339
    [290] Manesh K M, Santhosh P, Gopalan A, et al. Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta, 2008, 75(5): 1307-1314
    [291] Tian F, Zhu G. Toluidine blue modified self-assembled silica gel coated gold electrode as biosensor for NADH. Sensors and Actuators B, 2004, 97(1): 103-108
    [292] Valentini F, Salis A, Curulli A, et al. Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes. Analytical Chemistry, 2004, 76(11): 3244-3248
    [293] Welch C M, Compton R G. The use of nanoparticles in electroanalysis: A review.Analytical and Bioanalytical Chemistry, 2006, 384(3): 601-619
    [294] Zhang Y, Zeng G-M, Tang L, et al. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosensors and Bioelectronics, 2007, 22(9-10): 2121-2126
    [295] Banks C E, Compton R G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study. Analyst, 2005, 130(9): 1232-1239
    [296] Wang J. Nanomaterial-based amplified transduction of biomolecular interactions. Small, 2005, 1(11): 1036-1043
    [297] Mao X, Jiang J, Luo Y, et al. Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG. Talanta, 2007, 73(3): 420-424
    [298] Shlyahovsky B, Katz E, Xiao Y, et al. Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles. Small, 2005, 1(2): 213-216
    [299] Zhao W, Ge P Y, Xu J J, et al. Catalytic deposition of Pb on regenerated gold nanofilm surface and its application in selective determination of Pb2+. Langmuir, 2007, 23(16): 8597-8601
    [300] Zayats M, Baron R, Popov I, et al. Biocatalytic growth of Au nanoparticles: From mechanistic aspects to biosensors design. Nano Letters, 2005, 5(1): 21-25
    [301] Grubisha D S, Lipert R J, Park H Y, et al. Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced raman scattering and immunogold labels. Analytical Chemistry, 2003, 75(21): 5936-5943
    [302] Xiao Y, Pavlov V, Levine S, et al. Catalytic growth of Au nanoparticles by NAD(P)H cofactors: Optical sensors for NAD(P)+-dependent biocatalyzed transformations. Angewandte Chemie-International Edition, 2004, 43(34): 4519-4522
    [303] Willner I, Baron R, Willner B. Growing metal nanoparticles by enzymes. Advanced Materials, 2006, 18(9): 1109-1120
    [304] Atchley S H, Clark J B. Variability of temperature, pH, and moisture in an aerobic composting process. Applied and Environmental Microbiology, 1979, 38(6):1040-1044
    [305] Tarre S, Green M. High-rate nitrification at low pH in suspended- and attached-biomass reactors. Applied and Environmental Microbiology, 2004, 70(11): 6481-6487
    [306] Radoi A, Compagnone D, Valcarcel M A, et al. Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue. Electrochim Acta, 2008, 53(5): 2161-2169
    [307] Gligor D, Balaj F, Maicaneanu A, et al. Carbon paste electrodes modified with a new phenothiazine derivative adsorbed on zeolite and on mineral clay for NADH oxidation. Materials Chemistry and Physics, 2009, 113(1): 283-289
    [308] Arroyo A, Kagan V E, Tyurin V A, et al. NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane. Antioxidants and Redox Signaling, 2000, 2(2): 251-262
    [309] Chen J, Bao J, Cai C, Lu T. Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode. Analytica Chimica Acta, 2004, 516(1-2): 29-34
    [310] Xiao L, Wildgoose G G, Compton R G. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Analytica Chimica Acta, 2008, 620(1-2): 44-49
    [311]钟华,曾光明,黄国和,傅海燕,王伟.鼠李糖脂对铜绿假单胞菌降解颗粒有机质的影响.中国环境科学, 2006, 26(2): 201-205
    [312] Garcia-Junco M, Gomez-Laboz C, Niqui-Arroyo J L, et al. Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids. Environmental Science & Technology, 2003, 37(13): 2988-2996
    [313] K?stner M, Mahro B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Applied Microbiology and Biotechnology, 1996, 44(5): 668-675
    [314]钱欣平,孟琴.甲基戊糖的双波长紫外分光光度分析法.分析测试学报, 2000, 19(5): 41-44
    [315] Monticone V, Mannebach M H, Treiner C. Coadsorption of 2-naphthol and cetylpyridinium chloride at a silica/water interface in relation with the micellar solubilization effect. Langmuir, 1994, 10(7): 2395-2398
    [316]浦跃武,张浩嘉,梁世中,等. 5L发酵罐生产鼠李糖的试验研究.华南理工大学学报, 2000, 28(4): 26-29
    [317] Bodour A A, Miller-Maier R M. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 1998, 32(3): 273-280
    [318]石杰.仪器分析.郑州:郑州大学出版社, 2003, 372
    [319] Zhong H, Zeng G M, Liu J X, et al. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Applied Microbiology and Biotechnology, 2008, 79(4): 671-677
    [320] Yu G, Wen X, Li R, et al. In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process Biochemistry, 2006, 41(9): 1987-1993
    [321] Desai C, Madamwar D. Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments. Bioresource Technology, 2007, 98(4): 761-768
    [322] Macarena S, Fernando L L, Mónica V, et al. Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium. FEMS Microbiology Letters, 2005, 242(1): 37-44
    [323] Kara P, Cavdar S, Berdeli A, et al. Electrochemical genoassay design for allele-specific detection of toll-like receptor-2 gene polymorphism. Electroanalysis, 2007, 19(18): 1875-882
    [324] Mao X, Yang L, Su X L, et al. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 2006, 21(7): 1178-1185
    [325] Liu N, Gao Z, Zhou H, et al. Detection of SEB gene by bilayer lipid membranes nucleic acid biosensor supported by modified patch-clamp pipette electrode. Biosensors and Bioelectronics, 2007, 22(9-10): 2371-2376
    [326] Erdem A, Ariksoysal D O, Karadeniz H, et al. Electrochemical genomagnetic assay for the detection of hepatitis B virus DNA in polymerase chain reaction amplicons by using disposable sensor technology. Electrochemistry Communications, 2005, 7(8): 815-820
    [327] Herne T M, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society, 1997, 119(38): 8916-8920
    [328] Casta?o-álvarez M, Fernández-Abedul M T, Costa-García A. Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence. Biosensors and Bioelectronics, 2005, 20(11): 2251-2260
    [329] Nicewarner Pe?a S R, Raina S, Goodrich G P, et al. Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. Journal of the American Chemical Society, 2002, 124(25): 7314-7323
    [330] Du H, Strohsahl C M, Camera J, et al. Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. Journal of the American Chemical Society, 2005, 127(21): 7932-7940
    [331] Chen D, Li J. Interfacial design and functionization on metal electrodes through self-assembled monolayers. Surface Science Reports, 2006, 61(11):445-463
    [332] Mehdinia A, Kazemi S H, Bathaie S Z, et al. Electrochemical studies of DNA immobilization onto the azide-terminated monolayers and its interaction with taxol. Analytical Biochemistry, 2008, 375(2): 331-338
    [333] Mao X, Jiang J, Xu X, et al. Enzymatic amplification detection of DNA based on "molecular beacon" biosensors. Biosensors and Bioelectronics, 2008, 23(10): 1555-1561
    [334] Xie H, Zhang C, Gao Z. Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Analytical Chemistry, 2004, 76(6): 1611-1617
    [335] Hianik T, Gajdo V, Krivanek R, et al. Amperometric detection of DNA hybridization on a gold surface depends on the orientation of oligonucleotide chains. Bioelectrochemistry, 2001, 53(2): 199-204
    [336] Steel A B, Herne T M, Tarlov M J. Electrochemical quantitation of DNA immobilized on gold. Analytical Chemistry, 1998, 70(22): 4670-4677
    [337] Rant U, Arinaga K, Fujita S, et al. Structural properties of oligonucleotide monolayers on gold surfaces probed by fluorescence investigations. Langmuir, 2004, 20(23): 10086-10092
    [338] LoaizaóA, Campuzano S, Pedrero M, et al. DNA sensor based on an Escherichia coli lac Z gene probe immobilization at self-assembled monolayers-modified gold electrodes. Talanta, 2007, 73(5): 838-844
    [339] Miranda-Castro R, de-los-Santos-álvarez P, Lobo-Casta?ón M J, et al. Hairpin-DNA probe for enzyme-amplified electrochemical detection of Legionella pneumophila. Analytical Chemistry, 2007, 79(11): 4050-4055
    [340] Reisinger C, Kern A, Fesko K, et al. An efficient plasmid vector for expression cloning of large numbers of PCR fragments in Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77(1): 241-244
    [341] Lin J X, Ishikawa K , Sakamoto M, et al. Direct and accurate measurement of CAG repeat configuration in the ataxin-1 (ATXN-1) gene by "dual-fluorescence labeled PCR-restriction fragment length analysis". Journal of Human Genetics, 2008, 53(4): 287-295
    [342]汪天虹,吴静,邹玉霞.瑞氏木霉分子生物学研究进展.菌物系统, 2000, 19(1): 147-152
    [343] Win K Y, Feng S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005, 26(15): 2713-2722
    [344] Kouassi G K, Irudayaraj J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Analytical Chemistry, 2006, 78(10): 3234-3241
    [345] Lin J, Zhou W, Kumbhar A, et al. Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly. Journal of Solid State Chemistry, 2001, 159(1): 26-31
    [346]匡汉茂,邓兆祥,李春辉,等. CdS/SiO2纳米棒核/壳结构的制备和发光性能.物理化学学报, 2002, 18(5): 477-480
    [347] Sun Q Y, Vrieling E G, Van Santen R A, et al. Bioinspired synthesis of mesoporous silicas. Current Opinion in Solid State and Materials Science, 2004, 8(2): 111-120
    [348] Frens G. Controlled nucleation for the regulation of the particle Size in monodisperse gold solutions. Nature Phys. Sci., 1973, 241: 20-22
    [349] Pham T, Jackson J B, Halas N J, et al. Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir, 2002, 18(12): 4915-4920
    [350] Stoeva S I, Huo F, Lee J-S, et al. Three-layer composite magnetic nanoparticle probes for DNA. Journal of the American Chemical Society, 2005, 127(44): 15362-15363
    [351] Liu Z M, Liu Y L, Yang H F, et al. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Analytica Chimica Acta, 2005, 533(1): 3-9
    [352]宫培军,赵素芳,洪军, et al. Au/Fe3O4磁性复合粒子的光化学制备.辐射研究与辐射工艺学报, 2008, 26(2): 108-111
    [353] P?nke O, Kirbs A, Lisdat F. Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay. Biosensors and Bioelectronics, 2007, 22(11): 2656-2662
    [354] Park N, Hahn J H. Electrochemical sensing of DNA hybridization based on duplex-specific charge compensation. Analytical Chemistry, 2004, 76 (4): 900-906
    [355] Carpini G, Lucarelli F, Marrazza G, et al. Oligonucleotide-modifiedscreen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosensors and Bioelectronics, 2004, 20 (2): 167-175
    [356] Banks C E, Moore R R, Davies T J, et al. Investigation of modified basal plane pyrolytic graphite electrodes: Definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chemical Communications, 2004, 10(16): 1804-1805
    [357] Lefrant S, Baibarac M, Baltog I, et al. Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diamond and Related Materials, 2005, 14(3-7): 867-872
    [358] Wang J, Musameh M, Lin Y J. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 2003, 125(9): 2408-2409
    [359] Manisankar P, Viswanathan S, Pusphalatha A M, et al. Electrochemical studies and square wave stripping voltammetry of five common pesticides on poly 3,4-ethylenedioxythiophene modified wall-jet electrode. Analytica Chimica Acta, 2005, 528(2): 57-163
    [360] Kanungo M, Srivastava D N, Kumar A, et al. Conductimetric immunosensor based on poly(3,4-ethylenedioxythiophene). Chemical Communications, 2002, (7): 680-681
    [361] Viswanathan S, Wu L-C, Huang M-R, et al. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Analytical Chemistry, 2006, 78(4): 1115-1121
    [362] Hazani M, Naaman R, Hennrich F et al. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Letters,2003,3(2): 153-155
    [363] Xiao L, Wildgoose G G, Compton R G. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Analytica Chimica Acta, 2008, 620(1-2): 44-49
    [364]张志波,曾光明,时进刚,等. Tween-80和鼠李糖脂对铜绿假单胞菌及枯草芽孢杆菌产蛋白酶的影响.环境科学学报, 2006, 26(7): 1152-1158
    [365] Cahyani V R, Matsuya K, Asakawa S, et al. Succession and phylogenetic profile of eukaryotic com- munities in the composting process of rice straw estimated by PCR-DGGE analysis. Biology and Fertility of Soils, 2004, 40(5): 334-344
    [366] Franke-Whittle I H, Klammer S H, Insam H. Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. Journal of Microbiological Methods, 2005, 62(1): 37- 56
    [367]陈勇,郑向群,张丛,等.降解菌对堆肥中多环芳香烃降解作用的初步研究.农业环境保护, 2000, 19(1): 53-55
    [368]何丽芳,唐红星,王柯敏,等.分子信标用于p53 mRNA的体外定量检测.化学学报, 2006, 64(11): 1116-1120
    [369] Bessant C, Saini S. Simultaneous determination of ethanol fructose and glucose at an unmodified platinum electrode using artificial neural networks. Analytical Chemistry, 1999, 71(14): 2806-2813
    [370] Hajmeer M N, Basheer I A. A hybrid Bayesian - Neural network approach for probabilistic modeling of bacterial growth/no-growth interface. International Journal of Food Microbiology, 2003, 82(3):233-243
    [371] Gutés A, Céspedes F, Alegret S, et al. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosensors and Bioelectronics, 2005, 20 (8S): 1668-1673
    [372] Sahoo G B, Ray C, Mehnert E, et al. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Science of the Total Environment, 2006, 367(1): 234-251
    [373] Lek S, Guégan J F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling, 1999, 120(2-3): 65-73
    [374] Gutés A, Céspedes F, Alegret S, et al. Sequential injection system with higher dimensional electrochemical sensor signals: Part 1. Voltammetric e-tongue for the determination of oxidizable compounds. Talanta, 2005, 66(5): 1187-1196
    [375] Reddy G V B, Gelpke M D S, Gold M H. Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. Journal of Bacteriology, 1998, 180(19): 5159-5164
    [376] Field J A, Jong E, Costa G F, et al. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Applied and Environmental Microbiology, 1992, 58(7): 2219-2226
    [377] Akhtar M, Blanchette R A, Myers G, et al. An overview of biomechanical pulping research. In: Young R, Akhtar M, editors. Environmentally Friendly Technologies for the Pulp and Paper Industry. New York: J. Wiley & Sons, 1998, 309-340
    [378] Dorado J, Almendros G, Camarero S, et al. Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme and Microbial Technology, 1999, 25(7): 605-612
    [379] Baldrian P, In Der Wiesche C, Gabriel J, et al. Influence of cadmium andmercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Applied and Environmental Microbiology, 2000, 66(6): 2471-2478
    [380] Gold M H, Kuwahara M, Chiu A A, et al. Purification and characterization of an extra-cellular H2O2-requiring diarylpropane oxygenase from the white-rot basidiomycete Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 1984, 234(2): 353-362
    [381] Gold M H, Glenn J K, Alic M. Use of polymeric dyes in lignin biodegradation assays. In: Wood WA, editor. Methods in Enymology, Vol. 161. San Diego, CA: Academic Press, 1988, 74-78; 259-271
    [382] Kersten P J, kalyanaraman B, Hammel K E, et al. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochemical Journal, 1990, 268(2): 475-480
    [383] Miki K, Renganathan V, Mayfield M B, et al. Aromatic ring cleavage of aβ-biphenyl ether dimmer catalyzed by lignin peroxidase of Phanerochaete chrysosporium. FEBS Letters, 1987, 210(2): 199-203
    [384] Tien M, Kirk T K. Lignin degrading enzyme from Phanerochaete chrysosporium. Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(8): 2280-2284
    [385] Perez J, Jeffries T W. Mineralization of 14C-ring-labeled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase. Applied and Environmental Microbiology, 1990, 56(6): 1806-1812
    [386] Archibald F S. A new assay for lignin-type peroxidase employing the dye Azure B. Applied and Environmental Microbiology, 1992, 58(9): 3110-3116
    [387] Kuwahara M, Glenn J K, Morgan M A, et al. Separation and charaterisation of two extracellular H2O2 dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters, 1984, 169(2): 247-250
    [388] Paszczy?ski A, Huynh V B, Crawford R. Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Letters, 1985, 29(1-2): 37-41
    [389] Wariishi H, Valli K, Gold M H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: kinetic mechanism and role of chelators. Journal of Biological Chemistry, 1992, 267(33): 23688-23695
    [390] Castillo M D, Stenstrom J, Ander P. Determination of manganese peroxidase activity with 3-methyl-2-benzothiazolinone hydrazone and 3-(dimethylamino)benzoic acid. Analytical Biochemistry, 1994, 218(2): 399-404
    [391]周金燕,张发群.真菌产生的锰过氧化物酶和漆酶研究II.一株产锰过氧化物酶的担子菌—血红密孔菌K-2352.微生物学通报, 1994, (3): 152-156
    [392] Sarkar S, Martínez A T, Martínez M J. Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1997,1339(1): 23-30
    [393] Glenn J K, Akileswaran L, Gold M H. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 1986, 251(2): 688-696
    [394] Neufeld T, Schwartz-Mittelmann A, Brian D, et al. Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. Anal Chem, 2003, 75(3): 580-585
    [395] Huang X, Wang D, Liu C, et al. The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase. Biochemical and Biophysical Research Communications, 2003, 311(2): 491-494
    [396] Gutés A, Ibá?ez A B, Céspedes F, et al. Simultaneous determination of phenolic compounds by means of an automated voltammetric "electronic tongue". Analytical and Bioanalytical Chemistry, 2005, 382(2):471-476
    [397] Tien M, Kirk K T. Lignin peroxidase of Phanerochaete chrysosporium. In: Wood WA, editor. Methods in Enymology, Vol. 161. San Diego, CA: Academic Press, 1988, 238-249
    [398] Banci L, Ciofi-Baffoni S, Tien M. Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry, 1999, 38(10): 3205-3210
    [399] Farhangrazi Z S, Sinclair R, Yamazaki I, et al. Haloperoxidase activity of Phanerochaete chrysosporium lignin peroxidases H2 and H8. Biochemistry, 1992, 31(44): 10763-10768
    [400] Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 1958, 65(6): 386
    [401] Looner C G. Pattern Recognition Using Neural Networks, Theory and Algorithms for Engineers and Scientists. New York: Oxford University Press, 1997, 75
    [402] Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme andMicrobial Technology, 2003, 32(1): 78-91
    [403] Olden J D, Joy M K, Death R G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 2004, 178(3-4): 389
    [404] Lante A, Crapisi A, Krastanov A, et al. Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochemistry, 2000, 36(1-2): 51-58
    [405] Topping D C, Bernard L G, O’Donoghue J L, et al. Hydroquinone: Acute and subchronic toxicity studies with emphasis on neurobehavioral and nephrotoxic effects. Food and Chemical Toxicology, 2007, 45(1):70-78
    [406] Campitelli P, Ceppi S. Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma, 2008, 144(1-2): 325-333
    [407] Faure D, Bouillant M L, Jacoud C, et al. Phenolic derivatives related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry, 1996, 42(2):357-359
    [408] Kim K R, Kim H. Gas chromatographic profiling and screening for phenols as isobutoxycarbonyl derivatives in aqueous samples. Journal of Chromatography, 2000, 866(1): 87-96
    [409] Corcia A D, Bellioni A, Madbouly M D, et al. Trace determination of phenols in natural waters extraction by a new graphitized carbon black cartridge followed by liquid chromatography and re-analysis after phenol derivatization. Journal of Chromatography, 1996, 733(1-2):383-393
    [410] MiróM, Frenzel W. A novel flow-through microdialysis separation unit with integrated differential potentiometric detection for the determination of chloride in soil samples. Analyst, 2003, 128(10):1291-1297
    [411]季立才.漆酶制中铜的研究.中国生漆, 1990, 9(4): 22-25
    [412] Yaropolov A I, Skorobogat’ko O V, Vartanov S S, et al. Laccase - Properties, catalytic mechanism, and applicability. Applied Biochemistry and Biotechnology, 1994, 49(3): 257-280
    [413] Siripatrawan U, Linz J E, Harte B R. Electronic sensor array coupled with artificial neural network for detection of Salmonella Typhimurium. Sensors and Actuators, B: Chemical, 2006, 119(1):64-69
    [414] Günaydin H M, Do?an S Z. A neural network approach for early cost estimation of structural systems of buildings. International Journal of Project Management, 2004, 22(7): 595-560
    [415] Bachmann T T, Leca B, Vilatte F, et al. Improved multianalyte detection oforganophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosensors and Bioelectronics, 2000, 15(3-4):193-201
    [416] Roy J J, Abraham T E, Abhijith K S, et al. Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosensors and Bioelectronics, 2005, 21(1):206-211
    [417] Shan X-Q, Lian J, Wen B. Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere, 2002, 47(7): 701-710
    [418] Arias M, Pérez-Novo C, Osorio F, et al. Adsorption and desorption of copper and zinc in the surface layer of acid soils. Journal of Colloid and Interface Science, 2005, 288(1): 21-29
    [419] Altin A, Degirmenci M. Lead (II) removal from natural soils by enhanced electrokinetic remediation. Science of the Total Environment, 2005, 337(1-3): 1-10
    [420] Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology, 2000, 34(20): 4259-4265
    [421] Kelsey J W, Alexander M. Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environmental Toxicology and Chemistry, 1997, 16(3): 582-585
    [422] Hatzinger P B, Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability. Environmental Science & Technology, 1995, 29(2): 537-545
    [423] SITE A D. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. Journal of Physical and Chemical Reference Data, 2001, 30(1): 187-439
    [424] Webe J B, Coble H D. Microbial decomposition of diquat adsorbed on montmorillonite and kaolinite clays. Journal of Agricultural Food and Chemistry, 1968, 6(3): 475-478
    [425] Chung N, Alexander M. Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere, 2002, 48(1): 109-115
    [426] Minasny B, McBratney A B. The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal, 2002, 66(2): 352-361
    [427] Oorts K, Vanlauwe B, Merckx R. Cation exchange capacities of soil organic matter fractions in a Ferric Lixisol with different organic matter inputs. Agriculture, Ecosystems and Environment, 2003, 100(2-3): 161
    [428] Oorts K, Vanlauwe B, Pleysier J, et al. A New method for the simultaneous measurement of pH-dependent cation exchange capacity and pH buffering capacity. Soil Science Society of America Journal, 2004, 68(5): 1578-1585
    [429] Horn A L, During R-A, Gath S. Comparison of the prediction efficiency of two pedotransfer functions for soil cation-exchange capacity. Journal of Plant Nutrition and Soil Science, 2005, 168(3): 372-374
    [430] Hartmann A, Grasle W, Horn R. Cation exchange processes in structured soils at various hydraulic properties. Soil and Tillage Research, 1998, 47(1-2): 67-72
    [431] Neal C, Robson A J. Integrating variations of soil-adsorbed cations into a cation exchange model. Science of the Total Environment, 1997, 199(3): 277-292
    [432] De Matos A T, Fontes M P F , Da Costa, et al. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environmental Pollution, 2001, 111(3): 429-435
    [433] Madeira M, Auxtero E, Sousa E. Cation and anion exchange properties of Andisols from the Azores, Portugal, as determined by the compulsive exchange and the ammonium acetate methods. Geoderma,2003,117(3-4): 225-241
    [434] Auxtero E, Madeira M, Sousa E. Variable charge characteristics of selected Andisols from the Azores, Portugal. Catena, 2004, 56(1-3): 111-125
    [435] Minasny B, Hopmans J W, Harter T, et al. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Science Society of America Journal, 2004, 68(2): 417-429
    [436] Panagou E Z, Kodogiannis V, Nychas G J-E. Modelling fungal growth using radial basis function neural networks: The case of the ascomycetous fungus Monascus ruber van Tieghem. International Journal of Food Microbiology, 2007, 117(3): 276-286
    [437] Mclean E O. Soil pH and lime requirement. In: Page A L, Miller R H, Keeney D R, editors. Methods of Soil Analysis, Part 2. 2nd Edn. Madison, WI, USA: American Society of Agronomy, 1982, 199
    [438] Gee G W, Bauder J W. Particle size analysis. In: Klute A, editor. Methods of Soil Analysis, Part 1. 2nd Edn. Madison, WI, USA: American Society of Agronomy, 1986, 383
    [439] Nelson D W, Sommers L E. Total carbon, organic carbon and organic matter. In:Page A L, Miller R H, Keeney D R, editors. Methods of Soil Analysis, Part 2. 2nd Edn. Madison, WI, USA: American Society of Agronomy, 1982, 539
    [440] Rhoades J D. Cation exchange capacity. In: Page A L, Miller R H, Keeney D R, editors. Methods of Soil Analysis, Part 2. 2nd Edn. Madison, WI, USA: American Society of Agronomy, 1982, 149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700