用户名: 密码: 验证码:
高摩尔消光钌染料敏化剂的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过引入噻吩、呋喃、3,4-乙烯二氧噻吩(EDOT)、并二噻吩和并三噻吩基团,延伸天线配体的π系统,合成5种多吡啶金属钌配合物染料,即C系列钌染料。提高了摩尔消光系数,适当增强了染料在介孔二氧化钛膜上的光吸收率,缩短了光吸收长度,提高了电荷收集率,制备了更加高效的染料敏化太阳能电池。
     利用紫外-可见分光光度法,荧光分析法,ATR-FTIR,循环伏安法,对染料的摩尔消光系数,激发光谱,与TiO_2薄膜固定模式,氧化-还原电位等性能进行研究。
     结果表明,C101,C102,C104染料的摩尔消光系数分别为17.5×10~3M~(-1)·cm~(-1),16.8×10~3 M~(-1)·cm~(-1)和20.5×10~3 M~(-1)·cm~(-1)。C系列钌染料基态时的氧化还原电位(vs NHE)分别为0.904 V,0.919 V,0.901 V,0.961 V和0.942 V,均比电解质中I_3~-/I~-电子对的氧化还原电位0.535 V要高,因此为染料再生和净电荷的分离提供了充足的驱动力。另外,从红外光谱图中可以看到染料与TiO_2膜的固定模式是染料羧酸基团与表面的钛离子之间通过双齿螯合作用连接固定。
     染料器件的效率、光电性能及光热稳定性的测试结果表明,以乙腈体系电解质制备的C101染料器件,在长期老化测试中达到了令人瞩目的效率11.0%~11.3%;基于低挥发性的3-甲氧基丙腈电解质和无挥发性的离子液体电解质的器件效率分别高于9.0%和7.4%,经过1000小时全太阳光照射,效率仍能够保持最初的95%,是迄今为止最高效稳定的染料敏化剂,建立了评价染料敏化太阳能电池性能的国际新标准。C104染料在初步的器件测试中,其电池的功率转换效率已经达到10.53%,相信经过进一步的优化会成为更加有前景的染料。
     此外,通过电阻抗测试,比较C101乙腈做电解质和离子液体做电解质的器件,结果表明电子扩散长度的缩短与电子扩散系数减小和电子寿命缩短有关,这也解释了两个器件光电流的差异。因此,离子液体电解质的器件需要做更多的努力来提高效率,促进实现大规模生产柔性薄膜太阳能电池。
In this thesis,by introducing thiophene,furan,3,4-ethylenedioxythiophene (EDOT),thieno[3,2-b]thiophene,and dithieno[3,2-b:2',3'-d]thiophene units in order to extend theπconjugation of spectator ligands,we have synthesized five new heteroleptic polypyridyl ruthenium complexes coded C101-C105 with high molar extinction coefficients to enhance the optical absorptivity of mesosporous titania film and charge collection yield in dye-sensitized solar cell,further,to prepare higher effective dye-sensitized solar cells.
     The sensitizers' molar extinction coefficients,emission spectra,anchored modes on the surface of TiO_2 film,the redox potentials were studied by using of UV-vis,spectrofluorometer,ATR-FTIR and cyclic voltammetry.The devices efficiencies,photovoltaic characterization and stability were also tested.
     It demonstrated that the molar extinction coefficients(ε) of the low-energy MLCT absorption bands for C101,C102 and C104 are 17.5 M~(-1)·cm~(-1),16.8×10~3 M~(-1)·cm~(-1),and 20.5×10~3 M~(-1)·cm~(-1),respectively.The redox potentials of the ruthenium center in sensitizers determined by ultramicroelectode square-wave volammetry are 0.904 V,0.919 V,0.901 V,0.961 V and 0.942 V(vs NHE), which are all higher than that of the iodide electron donor,providing ample driving force for efficient dye regeneration,avoiding the geminate charge recombination.
     According to the tests of devices' efficiencies,photovoltaic characterations and stabilities,along with an acetonitrile based electrolyte,the C101 sensitizer has already achieved a strikingly high efficiency of 11.0%~11.3%even under a preliminary testing.More importantly,based on a low volatility 3-methoxypropionitrle electrolyte and a solvent-free ionic liquid electrolyte cells having corresponding>9.0%and~7.4%efficiencies retained over 95%of their initial performances after 1,000 h full sunlight soaking at 60℃.The more striking is that with this C101 sensitizer,several new DSSC benchmarks under the air mass 1.5 global(AM 1.5G) sunlight have been reached.The preliminary tests show that for a newly developed C104 dye,the achievement of over 10.5%power conversion efficiencies is very encouraging,and we will further systematically optimize the cell parameters of different DSCs to take the full potential of this promising sensitizer with enhanced optical absorptivity.
     With the aid of electrical impedance measurements we further disclose that compared to the cell with an acetonitrile based electrolyte,a dye-sensitized solar cell with an ionic liquid electrolyte shows a feature of much shorter electron diffusion lengths due to the lower electron diffusion coefficients and shorter electron life times,explaining the photocurrent difference between these two type devices.This highlights the necessary efforts to further improve the efficiency of cells with ionic liquid electrolytes,facilitating the large-scale production and application of flexible thin film mesoscopic solar cells.
引文
[1]Gr(a|¨)tzel M.Powering the planet[J].Nature 2000,403:363.
    [2]Gr(a|¨)tzel M.Photoelectrochemical cells[J].Nature 2001,414:338.
    [3]Green.M.A.Recent developments in photovoltaic cells[J].Sol.Energy.,2004,76:3-8.
    [4]雷永泉.二十一世纪新材料丛书一新能源材料[M].天津,天津大学出版社,2002:222.
    [5]施敏.现代半导体器件物理[M].北京,科学出版社,2001:100.
    [6]O'Regan B.,Schwartz D.T.Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO_2/RuLL'NCS/CuSCN:initiation and potential mechanisms[J].Chem.Mater.,1998,10:1501.
    [7]O'Regan B.,Gr(a|¨)tzel M.A low,high-efficiency solar cell based on dye-senstized colloidal TiO_2 films[J].Nature,1991,353:737.
    [8]Nazeeruddin M.K.,Kay A.,Rodicio I.,et al.Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ)charge-transfer sensitizers(X=Cl~-,Br~-,I~-,CN~-,and SCN~-) on nanocrystalline titanium dioxide electrodes[J].J.Am.Chem.Soc.,1993,115:6382-6390.
    [9]Nazeeruddin M.K.,Péchy P.,Gr(a|¨)tzel M.Metallodendrimers:metal ions as supramolecular glue[J].Chem.Commun.,1997:1075.
    [10]Nazeeruddin M.K.,Péchy P.,Renouard T.,et al.Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells[J].J.Am.Chem.Soc.,2001,123:1613-1624.
    [11]Gr(a|¨)tzel M.Mesoscopic solar cells for electricity and production from sunlight[J].Chem.Lett.,2005,34(1):8-13.
    [12]Nazeeruddin M.K.,Humphry-Baker R.,Liska P.,et al.Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO:solar cell[J].J.Phys.Chem.B.,2003,107:8981-8987.
    [13]Wang P.,Zakeeruddin S.M.,Moser J.-E.,et al.A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte[J].Nat.Mater.,2003,2:402.
    [14]Wang P.,Zakeeruddin S.M.,Humphry-Baker R.,et al.Molecular-scale interface engineering of TiO_2 nanocrystals:improve the efficiency and stability of dye-sensitized solar cells[J].Adv.Mater.,2003,15:2101.
    [15]Wang P.,Klein C.,Humphry-Baker R.,et al.A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells[J].J.Am.Chem.Soc.,2005,127:808.
    [16]Wang P.,Klein C.,Humphry-Baker R.,et al.Stable≥8%efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility[J].Appl.Phys.Lett.,2005,86:123508.
    [17]Klein C.,Nazeeruddin M.K.,Liska P.,et al.Synthesis of a vanadium(Ⅲ)tris(arylthiolato) complex and its reactions with azide and azo compounds:formation of a sulfenamide complex via cleavage of an azo N=N bond[J].Inorg.Chem.,2005,44:178-180.
    [18]Kuang D.B.,Ito S.,Wenger B.,et al.High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells[J].J.AM.Chem.Soc.,2006,128:4146-4154.
    [19]Jiang K.-J.,Masaki N.,Xia J.-B.,et al.A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO_2 solar cells[J].Chem.Commun.,2006:2460.
    [20]Jang S.-R.,Lee C.,Choi H.,et al.Oligophenylenevinylene-ftmctionalized Ru(Ⅱ)-bipyridine sensitizers for efficient dye-sensitized nanocrystalline YiO_2solar cells[J].Chem.Mater.,2006,18:5604.
    [21]Chen C.-Y.,Wu S.-J.,Wu C.-G.,et al.A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells[J].Angew.Chem.Int.Ed.,2006,45:5822.
    [22]Kuang D.,Klein C.,Ito S.,et al.High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells[J].Adv.Funct.Mater.,2007,17:154-160.
    [23]Karthikeyan C.S.,Wietasch H.,Thelakkat M.Highly efficient solid-state dye-sensitized TiO2 solar cells using donor-antenna dyes capable of multistep charge-transfer cascades[J].Adv.Mater.,2007,19:1091.
    [24]Chert C.-Y.,Wu S.-J.,Li J.-Y.,et al.A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells[J].Adv.Mater.,2007,19:3888.
    [25]Kuang D.B.,Ito S.,Moser J.-E.,et al.High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte[J].Adv.Mater.,2007,19:1133-1137.
    [26]Hoyer E,Weller H.Potential-dependent electron injection in nanoporous colloidal ZnO films[J].J.Phys.Chem.,1995,99:14096.
    [27]Rensmo H.,Keis K.,Lindstrom,H.,et al.High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes[J].J.Phys.Chem.B.,1997,101:2598.
    [28]Kamat E V.,Bedja I.,Hotchandani S.,et al.Photosensitization of nanocrystalline semiconductor films.Modulation of electron transfer between excited ruthenium complex and SnO2 nanocrystallites with an externally applied bias[J].J.Phys.Chem.,1996,100:4900.
    [29]Chappel S.,Zaban A.Nanoporous SnO2 electrodes for dye-sensitized solar cells:improved cell performance by the synthesis of 18 nm SnO_2 colloids[J].Solar Energy Materials and Solar Cells,2002,71:141.
    [30]Sayama K.,Sugihara H.,Arakawa H.Photoelectrochemical properties of a porous Nb_2O_5 electrode sensitized by a ruthenium dye[J].Chem.Mater.,1998,10:3825.
    [31]Nogueira A.F.,Depaoli M.A.A dye sensitized TiO_2 photovoltaic cell construted with an elastom eric electrolyte[J].Sol.Energy Mater.Sol.Cells.,2000,61:135-139.
    [32]Hagfeldt A.,Gr(a|¨)tzel M.Light-induced redox reactions in nanocrystalline systems[J].Chem.Rev.,1995,95:49-52.
    [33]Hagfeldt A.,Gr(a|¨)tzel M.Molecular photovoltaics[J].Acc.Chem.Res.,2000,33:269-277.
    [34]Greg S.,Carlo B.,Roberto A.Testing of dye sensitized TiO_2 solar cells 1:Experimental photocurrent output and conversion efficiencies[J].Sol.Energy Mater.Sol.Cells.,1994,32:259-263.
    [35]Cahen D.,Hodes G.,Gr(a|¨)tzel M.,et al.Nature of photovoltaic action in dye-sensitized solar cells[J].J.Phys.Chem.B.,2000,104:2053-2059.
    [36]Zaban A.,Ferrere S.,Gregg B.A.Relative energetics at the semiconductor/sensitizing dye/electrolyte interface[J].J.Phys.Chem.B.,1998,102:452-460.
    [37]Haque S.A.,Tachibana Y.,Klug D.R.,Dun'ant J.R.Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films[J].J.Phys.Chem.B.,1998,102:1745-1749.
    [38]Zaban A.,Meier A.,Gregg B.A.Electric potential distribution and short-range screening in nanoporous TiO2 electrodes[J].J.Phys.Chem.B.,1997,101:7985-7990.
    [39]Klein C.,Nazeeruddin M.K.,Censo D.D.,et al.Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells[J].Inorg.Chem.,2004,43:4216-4226.
    [40]Desilvestro J.,Gr(a|¨)tzel M.,Kavan L.,et al.Highly efficient sensitization of titanium dioxide[J].J.Am.Chem.Soc.,1985,107:2988-2990.
    [41]Siegel R.W.,Ramasamy S.,Hahn H.,et al.Synthesis,characterization,and properties ofnanophase TiO_2[J].J.Mater.Rres.,1988,3:1367.
    [42]Morrison P.W.,Raghavan R.,Timpone A.J.Artelt C.P.,et al.In situ fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO_2 particles[J].Chem.Mater.,1997,9:2702.
    [43]Chen Q.W.,Qian Y.T.,Chen Z.Y.,et al.Preparation of TiO_2 powders with different morphologies by an oxidation-hydrothermal combination method[J].Mater.Lett.,1995,22:77.
    [44]Vlachopoulos N.,Liska P.,Augustynski J.,et al.Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films[J].J.Am.Chem.Soc.,1988,110:1216-1220.
    [45]Anderson M.A.,Gieselmane M.J.,Xu Q.Y.Titania and Alumina Ceramic Membranes[J].J.Membrane.Sci.,1988,39:243.
    [46]O'Regan B.,Moser J.-E,Anderson M.,et al.Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation[J].J.Phys.Chem.,1990,94:8720-8726.
    [47]Barbé C.J.,Arendse F.,Comte P.,et al.Nanocrystalline titanium oxide electrodes for photovoltaic application[J].J.Am.Ceram.Soc.,1997,80:3157.
    [48]Jongh P.E.De.,Vanmaekelbergh D.Trap-limited electronic transport in assemblies of nanometer-size TiO_2 particles[J].J.Phys.Rev.Lett.,1996,77:3427.
    [49]Shichthorl G.,Huang S.Y.,Spague J.,et al.Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells:A study by intensity modulated photovoltage spectroscopy[J].J.Phys.Chem.B.,1997,101:8141.
    [50]Zaban A.,Chen S.G.,Chappel S.,et al.Bilayer nanoporous electrodes for dye sensitized solar cells[J].Chem.Commun.,2000:2231-2232.
    [51]Oskam G.,Bergeron B.V.,Meyer G.J.,et al.Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells[J].J.Phys.Chem.B.,2001,105,6967-6973.
    [52]Sapp S.A.,Elliott C.M.,Contad C.,et al.Substituted polypyridine complexes of Cobalt(Ⅱ/Ⅲ) as efficient eElectron-transfer mediators in dye-sensitized solar cells[J].J.Am.Chem.Soc.,2002,124:11215-11222.
    [53]Nusbaumer H.,Moser J.-E.,Zakeeruddin S.M.,et al.Co~Ⅱ(dbbip)_2~(2+) complex rivals tri-iodide/Iodide redox mediator in dye-sensitized photovoltaic cells[J].J.Phys.Chem.B(Letter),2001,105:10461-10464.
    [54]Haque S.A.,Tachibana Y.,Willis R.L.,et al.Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films[J].J.Phys.Chem.B.,2000,104:538-547.
    [55]Garcia C.G.,Nakano A.K.,Kleverlaan C.J.,et aI.Mechanism of photochemical reduction of chromium(VI) by alcohols and its environmental aspects[J].J.Photochem.Photobio.A:Chem,2002,151:163-170.
    [56]Zakeeruddin S.M.,Nazeeruddin M.K.,Péchy P.,et al.Molecular engineering of photosensitizers for nanocrystalline solar cells:Synthesis and characterization of Ru dyes based on phosphonated terpyridines[J].Inorg.Chem.,1997,36:5937-5946.
    [57]Péchy P.,Rotzinger P.R.,Nazeeruddin M.K.,et al.Preparation of phosphonated polypyfidyl ligands to anchor transition-metal complexes on oxide surfaces:application for the conversion of light to electricity with nanocrystalline TiO_2 films[J].Chem.Commun.,1995:65-66.
    [58]Meyer T.J.,Meyer G.J.,Pfennig B.W.,et al.Molecular-level electron transfer and excited state assemblies on surfaces of metal oxides and glass[J].Inorg.Chem.,1994,33:3952-3964.
    [59]Olea A.,Ponce C.,Ssbastian P.J.Electron transfer via organic dyes for solar conversion[J].Sol.Energy Mat.Sol.Cells.,1999,59:137-143.
    [60]Smestad G.P.,Gr(a|¨)tzel M.Demonstrating electron transfer and nanotechnology:A natural dye-sensitized nanocrystalline energy converter[J].J.Chem.Educ.,1998,75:752-756.
    [61]Tennakone K.,Perera V.P.S.Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin(IV) oxide films[J].Phys.D:Appl Phys,1999,32:374-379.
    [62]Bonh(?)te P.,Dias A.-P.,Armand M.,et al.Hydrophobic,highly conductive ambient-temperature molten salts[J].Inorg.Chem.,1996,35:1168.
    [63]Pilarski B.A new method for N-alkylation of imidazoles and benzimidazoles[J].Liebigs Ann.Chem.,1983:1078.
    [64]Fuller L.S.,Iddon B.,Smith K.A.Thienothiophenes.Part 2.Synthesis,metallation and bromine→lithium exchange reactions of thieno[3,2-b]thiophene and its polybromo derivatives[J].J.Chem.Soc.,Perkin Trans,1997,3465-3469.
    [65]Frey.J.,Proemmel.S.,Armitage.M.A.,Holmes.A.B.Synthesis of dithieno[3,2-b:2',3'-d]thiophene[J].Org.Synth.,2006,83:209-216.
    [66]Maerker G.,Case F.H.The Synthesis of some 4,4'-Disubstituted 2,2'-Bipyridines[J].J.Am.Chem.Sot.,1958,80:2745.
    [67]Wenkert D., Woodward R. B. Studies of 2,2'-bipyridyl N,N-dioxides[J]. J.Org. Chem, 1983,48: 283.
    
    [68]Wang P., Zakeeruddin S. M., Comte P., et al. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO_2 nanocrystals[J]. J. Phys. Chem. B, 2003,107:14336.
    
    [69] Wang P, Zakeeruddin S. M, Moser J. -E, et al. A solvent-free,SeCN7(SeCN)~(3-) based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells[J]. J. Am. Chem. Soc, 2004, 126:7164.
    
    [70]Wang P, Zakeeruddin S. M, Humphry-Baker R., et al. Molecular-scale interface engineering of TiO_2 nanocrystals: improve the efficiency and stability of dye-sensitized solar cells[J]. Adv. Mater, 2003, 15: 2101.
    
    [71] Wang P, Zakeeruddin S. M, Comte P., et al. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO_2 nanocrystals[J]. J. Phys. Chem. B, 2003, 107:14336.
    
    [72]Wang P, Wenger B, Humphry-Baker R., et al. Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids[J]. J. Am. Chem. Soc, 2005,127: 6850.
    
    [73]Papageorgiou N, Athanassov Y., Armand M, et al. The performance and stability of ambient temperature molten salts for solar cell applications[J]. J.Electrochem. Soc., 1996,143: 3099.
    
    [74]Matsumoto H., Matsuda T., Tsuda T, et al. The Application of room temperature molten salt with low viscosity to the electrolyte for dye-sensitized solar cell[J]. Chem. Lett, 2001: 26.
    
    [75]Kubo W, Kitamura T., Hanabusa K, et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator[J].Chem.Commun.,2002:374.
    [76]Wang P.,Zakeeruddin S.M.,Exnar I.,et al.High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte[J].Chem.Commun.,2002:2972.
    [77]Wang P.,Zakeeruddin S.M.,Comte P.,et al.Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells[J].J.Am.Chem.Soc.,2003,125:1166.
    [78]Wang P.,Zakeeruddin S.M.,Moser J.-E.,et al.A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells[J].J.Phys.Chem.B.,2003,107:13280.
    [79]Wang P.,Zakeeruddin S.M.,Humphry-Baker R.,et al.A binary ionic liquid electrolyte to achieve ≥7%power conversion efficiencies in dye-sensitized solar cells[J].Chem.Mater.,2004,16:2694.
    [80]Kuang D.,Wang P.,Ito S.,et al.Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte.J.Am.Chem.Soc.2006,128:7732.
    [81]Kato T.,Okazaki A.,Hayase S.Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells[J].Chem.Commun.,2005:363.
    [82]Zistler M.,Wachter P.,Schreiner C.,et al.Temperature dependent impedance analysis of binary ionic liquid electrolytes for dye-sensitized solar cells[J].J.Electrochem.Soc.,2007,154:B925.
    [83]Gorlov M.,Pettersson H.,Hagfeldt A.,et al.Electrolytes for dye-sensitized solar cells based on interhalogen ionic salts and liquids[J].Inorg.Chem.,2007,46:3566.
    [84]Macfarlane D.R.,Forsyth M.,Howlett P.C.,et al.Ionic Liquids in electrochemical devices and processes:Managing interfacial electrochemistry[J]. Acc. Chem. Res., 2007,40: 1165.
    
    [85]Paulsson H., Hagfeldt A., Kloo L. Molten and solid trialkylsulfonium iodides and their polyiodides as electrolytes in dye-sensitized nanocrystalline solar cells[J]. J. Phys. Chem. B., 2003, 107: 13665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700