用户名: 密码: 验证码:
高沸醇木质素的制备、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素是世界上第三大量的天然有机物。目前可作为工业原料的木质素主要是造纸制浆废液的副产品,其中只有少量做为初级工业品得到应用,其余绝大部分作为燃料烧掉。为了有效利用生物质资源,采用高沸醇溶剂法分离纤维素和木质素,得到了高沸醇木质素(HBSL)。选择资源丰富的花生壳、竹子和松木为植物原料,以反应温度、固液质量比、醇浓度和反应时间为因素,以HBSL提取率为目标,进行正交实验研究,得到最佳提取工艺,为HBSL产业化提供基础参数。
     HBSL与传统造纸工业得到的木质素产品相比,较好地保留了天然木质素所拥有的活性官能团。用传统化学方法测定HBSL的总羟值、灰份、残糖量、元素组成等数据,由此计算得到HBSL的C9结构模型。通过分析红外、紫外、核磁共振谱,研究HBSL的结构特征,并与酶解木质素比较,考察结构和官能团的异同点。
     通过固体超强酸催化氧化降解实验,得到了较为理想的工艺参数。采用气相色谱—质谱联用分析,可以确认降解产物中存在多种芳香族化合物,说明木质素存在多酚、多苯环结构。为将来大规模利用木质素,代替石化工业制备化工原料提供参考数据。
     另一方面,随着人们对可再生、可持续发展的高分子材料的密切关注,木质素改性高聚物研究不断深入。但是,受传统木质素产品化学活性差的限制,制备木质素改性材料都要预先对木质素磺酸盐或碱木素进行提纯、改性,生产工艺较为繁琐。但如果使用HBSL,可以取消纯化处理过程,直接加入HBSL或其衍生物来制备各种产品,将促进木质素的利用。HBSL改性的橡胶、环氧树脂、聚氨酯不仅可以节省石油化工原料,还达到了比较理想的改性效果。
     橡胶是最重要的高分子材料之一,把HBSL应用于橡胶工业,对木质素资源的充分利用有重要意义。为了提高HBSL与不同种类橡胶之间的相容性,分别对氯丁胶、丁腈胶和乙丙三元胶添加不同的HBSL衍生物。在氯丁橡胶改性中,选择环氧化HBSL作为硫化剂。对环氧化HBSL用量的影响因素进行探讨,发现在一定范围内随环氧化HBSL用量增大,对硫化胶的耐老化性能、耐溶剂性能、力学性能等都有所改善。羟甲基化后的HBSL通过共沉的方法作为补强剂用于丁腈橡胶,可以提高拉伸强度等性能。将不同原料的HBSL应用于丁腈胶,发现松木HBSL对橡胶性能提高较为有利。把HBSL与纳米SiO2制成的复合材料用于乙丙橡胶,可以有效提高断裂伸长率和耐老化性能。
     环氧树脂可以作为涂料、胶粘剂和工程材料,在电气、电子、光学机械、工程技术、土木建筑及文体用品制造等领域得到广泛应用。用HBSL全部或部分代替双酚A制备木质素基环氧树脂,可以减少双酚A对环境的污染,也有效地代替了石油化工原料。由于以HBSL为原料不需化学改性可以直接合成环氧树脂,节省了工艺成本,而且HBSL改性环氧树脂可以明显提高树脂涂膜的耐溶剂性、耐热性和耐老化性能。
     聚氨酯是近年来发展迅速的高分子弹性体。HBSL由于其丰富的醇羟基和酚羟基,替代多元醇与异氰酸酯反应可以制备木质素基聚氨酯,不仅降低成本,还可以改善聚氨酯的性能。通过探讨HBSL加入量和HBSL种类对聚氨酯性能的影响。发现HBSL可以提高聚氨酯的硬度、拉伸强度和耐溶剂性能。HBSL添加量控制在15%左右时,改性聚氨酯可以保持优良的综合性能。松木HBSL基聚氨酯对提高耐溶剂性和拉伸强度更为有利,而花生壳HBSL对提高聚氨酯断裂伸长率更好。
Lignin is the third abundant organic substance in nature. Presently, most industrial lignin products were produced from the black liquid of pulp and paper industry. Only small amount of them were used to prepare lignin sulfonate, and others were burned as fuel. For efficacious application of biomass resources, the high boiling solvent method was developed to produce high boiling solvent lignin (HBSL). In order to obtain the optimum technology for HBSL extraction, orthogonal experiments were carried out on peanut shell, bamboo, and masson pine. The effects of some factors on the extraction of HBSL were studied, such as reaction temperature, mass ratio of solid to liquid, concentration of solvent and reaction time. This research will lay a foundation for industrial application of lignin resources.
     Compared with traditional lignin products, more functional groups were well preserved in HBSL. The general hydroxyl value, ash content, residual polysaccharide content, and element composition of HBSL were investigated by traditional chemical methods. The C9formula of HBSL was then calculated by these basic data of chemical groups. The structure characteristics of HBSL were analyzed by FT-IR, UV and NMR spectrum. The similarities and the differences in structure and functional groups between enzymatic hydrolysis lignin and HBSL were also discussed.
     The optimum conditions were acquired by degrading HBSL with solid super acid as a catalyst. The aromatic substance was confirmed by GC-MS analysis in the degradation products of HBSL, which indicated that HBSL contained polyhydroxybenzene or polybenzene compound. The research on the degradation of lignin provided a reference for the potential application of HBSL in replacing petrochemical materials in the future.
     Moreover, as a natural polymer, lignin was renewable and biodegradable. With the increasingly serious problems of environmental pollution and the crisis of oil resources, more and more attention has been paid to the use of renewable and degradable natural polymer. Due to the defects of traditional lignin, the purification and modification are usually necessary before using lignosulfate or alkali lignin effectively. However, HBSL can be used in various fields without the process of purification or modification because of its high chemical activity and purity. HBSL has successfully been used in modifing rubber, epoxy resin and polyurethane. Results show that it can not only reduce the consumption of petrochemical materials, but also improve some properties of the polymers.
     Rubber is one of most important polymer materials and the application of HBSL in rubber industry is of great significance. The compatibility of HBSL derivatives with different rubbers were investigated, including chloroprene rubber (CR), nitrile butadiene rubber (NBR) and ethylene propylene diene methylene (EPDM). The epoxidized HBSL could be used as a curing agent in CR and the amount of it was an important factor affecting the properties of CR. The anti-aging, solvent resistance and the mechanical properties of CR were improved with increasing amount of epoxidized HBSL. The tensile strength of NBR was improved when the hydromethyl modified HBSL was added by coprecipitating HBSL with NBR. The breaking elongation and the anti-aging property of EPDM were also improved when the composite material of HBSL/nano-silica was added.
     Epoxy resin has been used as dope, adhesive or engineering material in many fields. In the process of making the lignin based epoxy resin, biphenol-A (BPA) was replaced by HBSL entirely or partly, which may not only minimize the potential pollution of BPA but also reduce the cost effectively. HBSL could be used directly in epoxy resin preparation without further modification. The solvent resistance and the thermal endurance properties of the modified epoxy resin were improved considerably.
     Polyurethane was a macromolecule elastomer developed rapidly in recent years. Since HBSL had abundant aliphatic and phenolic hydroxyl groups which could substitute polyol to react with the isocyanate, HBSL was used in polyurethane synthesis in this article. The rigidity, tensile strength and solvent resistance of polyurethane were improved by adding appropriate amount of HBSL. The best performance of polyurethane could be achieved when the lignin dosage was about15%. The masson pine HBSL modified polyurethane had favorable solvent resistance and tensile strength; while the peanut shell HBSL modified polyurethane performed well in breaking elongation test.
引文
[1]Gandini A, Belgacem N M. Recent advances in the elaboration of polymeric materials derived from biomass components[J]. Polymer International,1998,47 (3):267-276.
    [2]南京林业大学主编.木材化学[M].北京:中国林业出版社,1990.38.
    [3]衣守志,石淑兰,李翠珍.制浆废液中木质素的分离与利用新进展[J]. 国际造纸,2001,20(6):56-58.
    [4]Adler E. Lignin chemistry-past, prensent and future[J]. Wood Science and Technology,1977,11: 169-218.
    [5]韩金梅.制浆工艺与技术[M].北京:化学工业出版社,2005.1.
    [6]Ushmarin N F, Koltsov N I. Lignin as a filler for rubber mixes in footwear production [J]. Polymer Recycling,2000,5(4):235-239.
    [7]Setua D K, Shukla M K, Nigam Vineeta, et al. Lignin reinforced rubber composites [J]. Polymer Composites,2000,21(6):988-995.
    [8]李航,王迪珍,罗东山.热处理木质素高填充SBR的结构与性能[J].合成橡胶工业,1995,18(4):241-243.
    [9]Sarkar S, Adhikari B. Thermal stability of lignin-hydroxy-terminated polybutadiene copolyurethane[J]. Polymer Degradation and Stability,2001,73(1):169-175.
    [10]Zhao B, Chen G, Liu Y, et al. Synthesis of lignin base epoxy resin and its characterization [J]. Journal of Materials Science Letters,2001,20(9):859-862.
    [11]Sarkar Sanjay, Adhikari Basudam. Lignin-modified phenolic resin:synthesis optimization, adhesive strength, and thermal stability[J]. Journal of Adhesion Science and Technology,2000,14(9): 1179-93.
    [12]Feldman D, Banu D, Campanelli J, et al. Blends of vinylic copolymer with plasticized lignin:thermal and mechanical properties [J]. Journal of Applied Polymer Science,2001,81(4):861-874.
    [13]Nitz H, Semke H, Landers R, et al. Reactive extrusion of polycaprolactone compounds containing wood flour and lignin[J]. Journal of Applied Polymer Science,2001,81(8):1972-1984.
    [14]Bruno F F, Samuelson L, Nagarajan R, et al. Biochemical synthesis of water soluble conducting molecular complex of polyaniline and lignosulfonate[J]. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry,2000,41(2):1802-1803.
    [15]Berry B C, Lindquist D, Smith J P, et al. Novel ferromagnetic conducting lignosulfonic acid-doped polyaniline nanocomposite[J]. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry,2000,41(2):1110-1111.
    [16]刘南杰,网妙英,李开畅.木质素缓蚀阻垢剂在工业循环水中的应用[J].林产化学通讯,1994,28(1):12-15.
    [17]谢燕,陈文瑛,曾祥钦.改性木素的阻垢性能研究[J].贵州工业大学学报(自然科学版),2001,30(1):11-13.
    [18]周强.草类碱木素在采油中的应用[J].纸和造纸,1998,7(2):46-47.
    [19]Feldman D, Banu D. Contribution to the study of rigid PVC polybleuds with different lignins[J]. Journal of Application Polymer Science,1997,66(9):1731-1744.
    [20]程贤甦,陈云平,吴耿云,陈耀庭,杨相玺.高沸醇木质素的研究进展[J].化工进展,2006,25(2):147-151.
    [21]Glasser W G, Kelley S S. Lignin[M]. Encyclopedia of Polymer Science and Engineering(Volume 8). USA:John Wiley & Sons, Inc.1987.843.
    [22]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [23]中野淮三.木质素的化学[M].北京:轻工业出版社,1988.
    [24]Feldman D, Lacasse M, Beznaczuk L M. Lignin-polymer systems and some applications[J]. Progress of Polymer Science,1986,11(12):271-299.
    [25]Faix O. Classification of lignins from different botanical origins by FTIR spectroscopy[J]. Holzforschung.1991,45(supply):21-25.
    [26]Schultz T P. Quantitative structural analysis of lignin by Diffuse Reflectance Fourier Transform Infrared Spectrometry[J]. Holzforschung.1986,40(supply):37-40.
    [27]Mansson P. Quantitative determination of phenolic and lignin total hydroxyl groups in lignins [J]. Holzforschung,1983,37:143-146.
    [28]Balogh D T, Curvelo A A S, De Groote R. Solvent effects on organosolv lignin from Pinus caribaea hondurensis[J]. Holzforschung,1992,46:343-348.
    [29]Adler E, Marton J. Zur kenntnis der carbonyl-gruppen in lignin (Ⅰ) [J]. Acta Chemica Scandinavica, 1959,13:75-96.
    [30]Marton E, Adler E. Carbonyl groups in lignin III:mild catalytic hydrogenation of Bjorkman lignin[J]. Acta Chemica Scandinavica,1961,15:357-370.
    [31]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003.
    [32]Lu F C, John R. Non-degradation dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR [J]. The Plant Journal,2003,35:535-544.
    [33]Freudenberg K. The constitution and biosynthesis of lignin[M]. New York,Springer Verlag,1986.
    [34]Nimz H H. Chemistry of potential chromophoric groups in beech lignin[J]. Tappi.1973,56(5):125.
    [35]Glasser W G, Glasser H R. Simulation of reactions with lignin by computer. II. A model for softwood lignin[J]. Holzforschung.1974,28:5.
    [36]冯建豪,Glasser W G甘蔗渣木素的化学结构[J].中国造纸,1986,5(1):25-29.
    [37]Noritsugu Terashimal, Jonas Hafren, Ulla Westermark, et al. Nondestructive analysis of lignin structure by NMR spectroscopy of specifically 13C-enriched lignins. Part 1:solidstate study of ginkgo wood[J]. Holzforschung,2002,56(1):43-50.
    [38]Noritsugu Terashima, Pajai H Atalla, David L Vanderhart. Solid state nmr spectroscopy of specifically 13C-enriched lignin in wheat straw from coniferin [J]. Phytochemistry,1997,46(5): 863-870.
    [39]刘华开,余家鸾,陈嘉翔.木素酚羟基和羧基测定新方法-非水电导滴定法[J].中国造纸,1990,9(1):55.
    [40]Glasser W G Pulp and paper:chemistry and chemical technology,3rd ed., Col.3[M]. Wiley-Interscience, New York,1980.39.
    [41]Chang L C, Chang J E, Wen T C. Electrochemical oxidation process for the treatment of coke-plant wastewater[J]. Journal of Environmental Science and Health, Part A:Environmental Science and Engineering & Toxic and Hazardous Substance Control,1995,30(5):753-771.
    [42]赵玉波.蔗渣木质素磺酸盐结构与性能的研究:[硕士学位论文].南京:南京林业大学,2005.
    [43]Vazquez G G, Gonzalez J A and Freire S. FTIR,1H and 13CNMR Characterization of acetosolv solubilized pine and eucalyptus lignins[J]. Holzforschung,1975,51:158-166.
    [44]Connors W J, Ayers J S, Sarkanen K V, Gratzl J S. Demethylation and ortho-quinone formation in enzymic dehydrogenation of lignin model phenols[J]. Tappi Journal,1971,54(8):1284-8.
    [45]Aloys H, Andrzej M, et al. Transformation of lignin-related compounds with laccase in organic solvents[J]. Journal of Biotechnology,1993,30(7):37-48.
    [46]魏兰,以木质素为原料合成环氧树脂的研究:[硕士学位论文].天津:天津科技大学,2004.
    [47]刘学苏,李广学.木质素的应用进展[J].广州化工,2005,33(4):9-11.
    [48]王剑波,隋智慧.木质素的应用研究进展[J].皮革化工,2002,20(1):9-11.
    [49]武书彬.造纸工业水污染控制与治理技术[M].北京:化学工业出版社,2001.
    [50]Harkin J M. Lignin:a natural polymeric product of phenol oxidation[M]. In Oxidative Coupling of Phenols. New York.1967.
    [51]Lundquist K. Fractionatation purification of an industrial kraft lignin[J]. Tappi J.,1980,63(1):80-82.
    [52]Vazquez G Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods[J]. Bioresource Technology,1999,70:209-214.
    [53]Ni Y, van Heiningen, Adriaan R P. Lignin removal from Alcell pulp by washing with ethanol and water[J]. Tappi Journal,1996,79(3):239-243.
    [54]宋伟明,谢亚杰,关明星,等.木质素醇醚非离子表面活性剂的合成及性能[J].精细石油化工,2000,(1):7-9.
    [55]王鹏,谢益民,敖日格勒,等.含乙酸木质素的聚氨酯的合成及其特性的研究[J].林产化学与工业,2004,24(2):6-10.
    [56]Barry G, Darrel D N, Schuitz T P. Wood deterioration and preservation[M]. Washington D C: American Chemical Society,2003.73.
    [57]Ibarra D, del Rio J C, Gutierrez A, et al. Isolation of high-purity residual lignins from eucalypt paper pulps by cellulose and proteinase treatments followed by solvent extraction [J]. Enzyme and Microbial Technology,2004,35(2):173-181.
    [58]Bludworth J, Knopf F C. Reactive extraction of lignin from wood using supercritical ammonia-water mixtures[J]. The Journal of Supercritical Fluids,1993,6:249-254.
    [59]Daniel P, Maria T B P, Luiz H F, et al. Sugar cane bagasse pulping using supercritical CO2 associated with co-solvent 1-butanol/water[J]. Journal of Supercritical Fluids,2005,34(2):125-132.
    [60]Heather D W, Huddleston J G, Li M, et al. Inves-tigation of aqueous biphasic systems for the separation of lignins from cellulose in the paper pulping process[J]. J. Chromatogr B,2000,743: 127-135.
    [61]Laura E B, Miguel C D, Colin E S, et al. Application of catalytic hydropyrolysis for the rapid preparation of lignin concentrates from wood[J]. Organic Geochemistry,2004 35:61-72.
    [62]Nidhi J, Anil K, Sushma C, Chauhan S M S. Chemical and biochemical transformation sinionic liquids[J]. Tetrahedron,2005,61:1015-1060.
    [63]Zhao D B, Wu M, Kou Y, et al. Ionic liquids:applications in catalysis[J]. Catalysis Today,2002,74: 157-189.
    [64]Paszner, Laszlo, Chang P C. Organosolv delignification and saccharification process for lignocellulosic plant materials[P]. US:4409032,1983-10-11.
    [65]廖俊和,罗学刚.木质素、纤维素高效分离技术[J].纤维素科学与技术,2003,11(4):60-64.
    [66]Vandernoek. Method for the delignification of lignocellulosic material in ammine delignifying liquor containing a quinone or hydroquinone compound[P]. US:4178861,1979-12-18.
    [67]Black. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars [P]. US:5730837,1998-03-24.
    [68]Dehaas. Ammonia-ketone pulping process[P]. US:3951734,1976-04-20.
    [69]Kajimoto J, Sano Y, Widodo, Wahyu E, et al. HBS pulping (1)-pulping of softwood[J]. Japan Tappi Journal,2000,54(9):88-95.
    [70]Widodo, Wahyu E, Kajimoto J, et al. HBS pulping(2)-pulping of hardwood and annual plants[J]. Japan Tappi Journal,2000,54(10):86-94.
    [71]Cheng X S, Chen W J, Chen Y P, et al. A new method for making cellulose and lignin by using high boiling solvents[J]. Chemical Research in Chinese Universities,2004,20(2):25-228.
    [72]Cheng X S, Fang H S, Chen Y X, et al. Preparation and properties of HBS lignin[C]. IUPAC World Polymer Congress. Beijing.2002.1021.
    [73]Cheng X S, Chen W J, Chen Y X, et al. Preparation and properties of HBS lignin from mason pine[C]. The 13th International Symposium on Fine Chemistry and Functional Polymer. Quanzhou.2003.45.
    [74]吕永松,廖凯荣.木质素磺酸镁的改性及其对水泥的减水性能研究[J].造纸科学与技术.2002,21(4):27-29.
    [75]王德全,朱兆华.氨氧化木质素对玉米生物化木质素量和土壤脲酶活性的影响初报[J].广东造纸,1999,(3):5-8.
    [76]李健法,宋湛谦.木质素磺酸盐及其接枝产物作沙土稳定剂的研究[J].林产化学与工业,2002,22(1):19-20.
    [77]Slamenova, Darina. Reduction of carcinogenesis by bio-based lignin derivatives [J]. Biomass and Bioenergy,2002,23(8):153-159.
    [78]高新,李国钟,陈健.造纸黑液中木质素的综合利用[J].陕西化工,1998,27(4):1-3.
    [79]吕晓静,杨军,王迪珍,等.木质素的高附加值应用新进展[J].化工进展,2001,20(5):10-14.
    [80]王晓光,王迪珍,吴向东,等.丁腈橡胶/木质素树脂硫化胶的微观结构与性能[J].橡胶工业,1989,36(4):193-197.
    [81]王迪珍,刘鸿.木质素分子间的结合对天然橡胶性质的影响[J].特种橡胶制品,1984,5(5):8-11.
    [82]王迪珍,罗东山,贾立成.NBR-26/木质素树脂硫化胶的结构与性能[J].合成橡胶工业,1992,15(1):12-15.
    [83]Feldman D, Lacasse M, Beznaczuk L M. Lignin-polymer systems and some applications [J]. Progress of Polymer Science,1986,11(12):271-299.
    [84]橡胶工业手册编写组,橡胶工业手册(第一分册——生胶与骨架材料),北京:石油化学工业出版社,1978.
    [85]王剑波,隋智慧.木质素的应用研究进展[J].皮革化工,2002,20(1):9-11.
    [86]穆环珍,杨问波,黄衍初.造纸黑液木质素利用研究进展[J].环境污染治理技术与设备,2001,2(3):26-30.
    [87]Keilen J J and Arthur P. Lignin for reinforcing rubber[J]. Industrial and Engineering Chemistry,1947, 39(4):480-483.
    [88]Keilen J J, Dougherty W K and Cook W R. Lignin-reinforced nitrile, beoprene, and batural rubbers [J]. Industrial and Engineering Chemistry.1952,44(1):163-167.
    [89]杨军,王迪珍,罗东山.羟甲基化木质素对BIIR的补强作用[J].橡胶工业,2000,47(10):579-583.
    [90]杨军,王迪珍,罗东山.木质素粉末化改性及其在BIIR中的应用[J].橡胶工业,2000,47(11):643.
    [91]Chen Z H, Lu X J, Wang D Z, Yin X M,et al. The effect of crosslink and reinforcement of hydroxymethylated kraft lignin on bromobutyl rubber-I:effect of hydroxymethylated kraft lignin content[C]. International Symposiun on Emerging Technology of Pulping and Papermaking. Guangzhou.2002.788-795.
    [92]杨军,王迪珍,张仲伦,等.羟甲基化木质素用量对PVC/NBR热塑性弹性体性能的影响.合成橡胶工业,2001,24(6):358-360.
    [93]王迪珍,杨军,张仲伦,等.PVC/NBR/木质素热塑性弹性体的制备与性能[J].特种橡胶制品,2000,21(5):b1-4.
    [94]Ball F J. Precipitated lignin and products containing same and the production thereof[P]. US: 3223697,1965-12-14.
    [95]钟汉权,王迪珍,杨军,等.细粒子木质素的制备及其对NBR补强作用[J].橡胶工业,2001,48(1):20-24.
    [96]张静.超细木质素粉末的制备及其在橡胶中的应用[J].特种橡胶制品,2002,23(6):29-31.
    [97]徐鸽,张静.木质素作为橡胶偶联剂、补强剂的研究[J].河南化工,2000,(7):16-17.
    [98]张静,丁永红.木质素作为偶联剂在橡胶中的作用[J].特种橡胶制品,2001,22(6):22-23.
    [99]Kumaran M G and Sadhan K D, et al. Utilization of lignin in rubber compounding [J]. Journal of Applied Polymer Science,1978,22:1885-1893.
    [100]陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社,2004.
    [101]魏兰,刘忠.以木质素为原料合成环氧树脂的研究[J].西南造纸.2003,32(2):12-14.
    [102]赵斌元,李恒德,胡克鳌,等.木质素基环氧树脂合成及其表征[J].纤维素科学与技术,2000,8(4):20-25.
    [103]Kosbar L L, Gelorme J. Biobased epoxy resins for computer components and printed wiring boards[C]. IEEE International Symposium. USA.1997.28-32.
    [104]Hirose S, Hatakeyama T, Hatakeyama H. Synthesis and thermal properties of epoxy resins from ester-carboxylic acid derivative of alcoholysis lignin[C]. Macromolecular Symposia.Guangzhou. 2003.157.
    [105]Simionescu. Lignin-epoxy resins physical and chemical characterization of the solid products[J]. Cellulose Chemical Technology,1990,24:397-405.
    [106]Hofmann K, Glasser W G. Lignin-based epoxy resins. Synthesis and cure[J]. Polymer Preprint Division, Polymer Chemical, American Chemical Social,1990,31(1):657-659.
    [107]Wang J S. Synthetic polymer-lignin copolymers and blend[J]. Progress Polymer Science,1992,17: 611-616.
    [108]Glasser W G. Polyurethane intermediates and products and methods of producing same from lignin[P]. US 4017474,1977-04-12.
    [109]冯建豪.木素改性合成聚氨酯的研究[J].广东造纸,1983,(3):38.
    [110]Sanjay S, Basudam A. Synthesis and characterization of lignin-HTPB copolyurethane[J]. Europe Polymer Journal,2001,37(7):1391-1401.
    [111]Hirose S, Kobashigawa K, Izuta Y, Hatakeyama H. Thermal degradation of polyurethanes containing lignin studied by TG-FTIR[J]. Polymer International,1998,47(3):247-256.
    [112]Zhang L, Huang J. Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films[J]. Journal of Application Polymer Science,2001,80:1213-1219.
    [113]Tan T T M. Cardanol-lignin-based polyurethanes [J]. Polymer International,1996,41(1):13-16.
    [114]Yoshida H, Morck R, Kringstad K P, et al. Kraft lignin in polyurethanes. II. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system[J]. JAppl Polym Sci,1990,40(11):1819-1832.
    [115]Hatakeyama H. Asano Y, Hirose S, et al. Rigid polyurethane foams containing kraft lignin and lignosulfonic acid in the molecular chain[C]. Proceedings of the Pulp and Paper Research Conference. Tokyo.2001.38-41.
    [116]谢益民,伍红,刘群华,等.含硫酸盐木素的聚氨酯的合成及其特性的研究[J].中国造纸学报,1999,14(增刊):91-96.
    [117]刘全校,杨淑蕙,李建华,等.改性麦草氧碱木素在聚氨酯合成中的应用[J].中国造纸学报,2003,18(1):11-14.
    [118]Wu X D. The influence of inter-domain interactions on the physical properties of polyurethane: [Electronic Doctoral Dissertations]. USA:University of Massachusetts Amherst,2001.
    [119]Thring R W, Vanderlaan M N, Griffin S L. Polyurethanes from Alcell lignin[J]. Biomass and Bioenergy,1997,13(3):125-132.
    [120]Vanderlaan M N, Thring R W. Polyurethanes from Alcell lignin fractions obtained by sequential solvent extraction [J]. Biomass and Bioenergy,1998,14(5/6):525-531.
    [121]Evtuguin D V, Andreolety J P, Gandini A. Polyurethanes based on oxyegn-organosolv lignin[J]. Europe Polymer Journal,1998,34(8):1163-1169.
    [122]许金仙,程贤甦,陈云平,等.高沸醇木质素改性丁腈橡胶[J].特种橡胶制品,2004,25(5):1-4.
    [123]吴耿云,程贤甦,杨相玺.高沸醇木质素聚氨酯的合成及其性能[J].精细化工,2006,23(2):165-169.
    [124]陈嘉翔.制浆化学[M].北京:轻工业出版社,1990.
    [125]陈为健,程贤甦,陈云平,等.高沸醇溶剂法提取花生壳中木质素的研究[J].花生学报,2003,32(2):7-11.
    [126]陈为健,程贤甦.高沸醇溶剂法制备竹子木质素[J].林产化学与工业,2004,24(1):34-38.
    [127]程贤甦,沈锋.高沸醇木质素残留糖分的分析[J].闽江学院学报,2004,25(2):76-79.
    [128]Lundquist K, Simonson R. Lignin preparations with very low carbohydrate content[J]. Svens Kpapper Stidning,1975,11:390.
    [129]张铁垣,程泉寿,张仕斌.化验员手册[M].北京:水利电力出版社,1988.
    [130]谌凡更.龙须草碱木素特性的研究[J].纤维素科学与技术,1994,2(3-4):89.
    [131]孙耀宗,李忠正.碱木素特性及其使纸页增强的机理研究[J].中国造纸,1989,8(5):28.
    [132]Chen Z H, Li Z Q, Lin S M. Distribution and characterization of bamboo lignin[J]. Cellulose Chemistry and Technology,1993,27:519-524.
    [133]邰瓞生,潘小琪,纪文兰,等.禾草木素的化学特性[J].中国造纸,1989,1:10-15.
    [134]Scholze B, Meier D. Characterization of the water-insoluable fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups[J]. Journal of Analytical and Applied Pyrolysis.2001,60:41-54.
    [135]Terashima N, Atalla R H, and Vanderhart D L. Solid state NMR spectroscopy of specifically C-enriched lignin in wheat straw from coniferin[J]. Phytochemistry 1997,46:863-870.
    [136]Benjaram M R, Pavani M S,Vangala R R. Modified zirconia solid acid catalysts for organic synthesis and transformations[J]. Journal of Molecular Catalysis A:Chemical,2005,225(1):71-78.
    [137]Hedges J I and Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemical,1982,54(2):174-178.
    [138]Christopher H V. The molecular composition of lignin in spruce decayed by white-rot fungi Phanerochaete chrysosporium and Trametes versicolor using pyrolysis-GC/MS and thermochemolysis with tetramethylammonium hydroxide [J]. International Biodeterioration & Biodegradation,2003,51:67-75.
    [139]Del Rio J C, Gutierrez A, Romero J, Martinez M J, Martinez A T, Identification of residual lignin markers in eucalypt kraft pulps by Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2001,58:425-439.
    [140]Sun R C, Jeremy T, Wan S Q, et al. Characterization of lignin from wheat straw by alkaline peroxide treatment[J]. Polymer Degradation and Stability,2000,67(1):101-109.
    [141]Gharpuray M M, Lee Y H, Fan L T, et al. Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis [J]. Biotechnol Bioeng,1983,25:157-172.
    [142]徐勇,勇强,余世袁,等.汽喷玉米秸秆纤维素酶水解的研究[J].林产化工通讯,1999,33(6):15-18.
    [143]Ford R C, Senauer B. Biofuel:corn isn't the king of this growing domain[J]. Nature,2007,450(22): 478.
    [144]Stewart C N. Biofuels and biocontainment[J]. Nature Biotechnology,2007,25(3):283-284.
    [145]Cheng X S, Chen Y P, Yang X X, et al. Separation and properties of enzymatic hydrolysis lignin[C]. 7th International Symposium on Green Chemistry. Zhuhai, P. R. China.2005.
    [146]黄道战.蔗渣碱法制纸浆黑液中提取木质素[J].广西民族学院学报(自然科学版),1998,4(2):32-35.
    [147]廖俊和,罗学刚.乙酸乙酯法竹材木质素分离技术研究[J].林产化工通讯,2004,38(4):19-21.
    [148]郭京波,陶宗娅,罗学刚.不同提纯方法对竹木质素结构特性的影响分析[J].分析测试学报,2005,24(3):77-81.
    [149]金永灿,李忠正.硫酸盐蒸煮过程中溶出木质素特性的变化[J].纤维素科学与技术,2001,9(1):28-34.
    [150]Lawther J M, Sun R C, Banks W B. Rapid isolation and structural characterization of alkali-soluble lignins during alkaline treatment and atmospheric refining of wheat straw[J]. Industrial Crops and Products,1996,5(2):97-105.
    [151]Sun R C, Tomkinson J, Sun X F, et al. Fractional isolation and hysico-chemical characterization of alkali-soluble lignins from fast-growing poplar wood[J]. Polymer,2000,41:8409-8417.
    [152]Sirianni. Reinforcing polymers with laundered amorphous lignin[P]. US:3984362,1976-10-5.
    [153]Davidson. Latex coagulation process using lignin compound[P]. US:4025711,1977-5-24.
    [154]谢遂志,刘登祥,周鸣峦.橡胶工业手册第一分册[M].北京:化学工业出版社,1989.
    [155]毕莲英.提高橡胶衬里耐氧化剂作用的稳定性[J].世界橡胶工业,2003,31(3):17-18.
    [156]Kumaran M G, Mukhopadhyay R, De S. Effect of accelerator system and addition of lignin on the network structure of natural rubber vulcanizate[J]. Polymer,1978,19(4):461-462.
    [157]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.
    [158]朱玉俊.弹性体的力学改性-填充补强及共混[M],北京:科学技术出版社,1992.
    [159]Lora. Rubber compositions containing high purity lignin derivatives[P]. US:5196460,1993-3-23.
    [160]Dimitri. Process for making lignin reinforced polymers[P]. US:3991022,1976-11-9.
    [161]杨军.木质素对丁腈橡胶交联与增强研究:[博士学位论文].广州:华南理工大学,2001.
    [162]陶用珍,管映亭.木质素的化学结构及其应用[J],纤维素科学与技术,2003,11(1):42-55.
    [163]魏兰,刘忠.木素基环氧树脂的合成[J]. 中国纸浆和造纸工业,2004,25(1):44-46.
    [164]Simionescu C I, Cazacu G, Macouueau M M. Lignin-epoxyresins Ⅱ:physical and chemical characterization [J]. Cellulose Chemistry and Technology,1987,21:525-534.
    [165]Simionescu C I, Rusan V, Turta K I, et. al. Synthesis and characterization of some iron-lignosulfonae-based lignin epoxy resins[J]. Cellulose Chemistry and Technology,1993,27: 627-644.
    [166]龚云表,石安富.合成树脂与塑料手册[M].上海:上海科学技术出版社,1993.
    [167]Mozaffar A K, Sayed M A, Malhotrab V P. Development and characterization of a wood adhesive using bagasse lignin[J]. International Journal of Adhesion & Adhesives,2004,24:485-486.
    [168]秦特夫.杉木和“三北”一号杨磨木木质素化学官能团特征的研究[J].林业科学,1999,35(3):69-75.
    [169]Chen C L and Robert D. Characterization of lignin by 1H and 13C NMR spectroscopy[M]. Methods in Enzymology, Vol 161. USA, San Diego:Academic Press,1988.
    [170]Koberstein J T, Stein R S. Small-angle X-ray scattering studies of microdomain structure in segmented polyurethane elastomers [J]. Journal of Polymer Science Part B:Polymer Physics,1983, 21(8):1439-1472.
    [171]Ciobanu C, Ungureanu M, Ignat L, et al. Properties of lignin-polyurethane films prepared by casting method[J]. Industrial Crops and Products,2004,4:1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700