用户名: 密码: 验证码:
木质素基环氧树脂的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素在自然界中的含量仅次于纤维素,是复杂的芳香化合物,是化工原料重要的潜在资源。利用可再生的木质素制备高分子材料,实现木质素在高分子材料领域对石油原料的有效替代,对于有效利用生物质资源和保护环境,具有重要意义。在本研究中,通过将乙酸木质素(AAL)以不同方式和环氧树脂共混以及对AAL的分级,探讨了AAL的不同级分的结构特性对制备的环氧树脂的性质的影响。
     将AAL和E-44环氧树脂按不同比例共混。木质素环氧树脂共混物的初始热分解温度(T_d)随着AAL含量的增大缓慢降低,残炭率逐渐升高,其黏结剪切强度,其拉伸强度随着AAL含量的增大而减小,其吸水率随着AAL含量的增大而增大。
     将AAL和双酚A按不同比例混合经环氧化后得到木质素改性双酚A环氧树脂(LBEP)。随着木质素含量的增大,LBEP固化物的T_d逐渐降低,残炭率逐渐升高,LBEP的黏结剪切强度略有降低。延长固化时间和提高固化温度有利于提高LBEP固化物的黏结剪切强度。随着AAL含量的增大,LBEP固化物的吸水率逐渐增大,AAL在LBEP固化物里的分布变得越来越不均匀。
     AAL经过酚化改性后得到酚化木质素(PL),其酚羟基含量明显提高,相对分子质量略有降低。这有利于下一步环氧化反应制备木质素基环氧树脂(LER)。将LER和E-44环氧树脂共混固化,随着LER含量的增大,环氧树脂共混物的T_d逐渐降低,但残炭率逐渐升高;黏结剪切强度首先增大,并在LER含量为20%时具有最大值,此后趋于下降;拉伸强度逐渐降低。AAL在环氧树脂共混固化物中的分布变得越来越不均匀,吸水率逐渐增大。
     采用沉淀法在不同浓度的乙酸水溶液中将AAL分成具有不同相对分子质量的3个级分。其中,相对分子质量最低的级分酚羟基含量最高,而初始热分解温度和残炭率都最低。3个级分经过酚化改性后,得到3种PL,其酚羟基含量较酚化前明显提高。3种酚化产物与环氧氯丙烷反应得到3种LER。由最低相对分子质量的PL制备的LER环氧值最高,T_d最高,但残炭率最低。由相对分子质量最低的AAL级分酚化及环氧化制备的LER与E-44环氧树脂共混固化后黏结剪切强度最高,达到7.9MPa。PL作为双酚A的替代物合成环氧树脂是可行的。
Lignin, the most abundant biopolymers on earth second only to cellulose, is a kind of complicated aromatic polymer. It is thought to be a potential resource for chemical raw materials. The conversion of lignin into polymer materials is of great importance in the utilization of biomass and protection of the environment. In this study, AAL was used in preparation of epoxy resin in different ways. AAL was fractionated and the impact of structural characteristics and blending method on the properties of epoxy resin was studied.
     AAL was blended with E-44 epoxy resin with different ratio. With an increase in AAL content, the initial thermal decomposition temperature (T_d) of the cured lignin epoxy blends decreased slowly, the char content and water absorption of the cured lignin epoxy blends increased, and adhesive shear strength of cured lignin epoxy blends firstly increased and then decreased, the tensile strength was decreased. AAL was distributed in lignin-based epoxy blends in more heterogeneous way.
     AAL was mixed with bisphenol A with different ratio and then the mixture was epoxidised to prepare lignin modified bisphenol A epoxy resin (LBEP). The increase of the curing time and curing temperature improved the adhesive shear strength of the cured LBEP. With the increase in AAL content, the T_d and the adhesive shear strength of cured LBEP decreased, char content and water absorption of cured LBEP increased, and adhesive shear strength slightly decreased. The existence of AAL in LBEP became heterogeneous.
     Lignin-based epoxy resin (LER) was prepared from phenolated lignin (PL) and epichlorohydrin (ECH) in the presence of sodium hydroxide. LER was mixed with E-44 epoxy resin. As the increase of LER content, the T_d of the cured epoxy blends decreased, and the char content increased. The existence of LER in the cured epoxy blends became heterogeneous and the water absorption of the cured epoxy blends increased.
     AAL was fractionated into three fractions by precipitation at different concentration of acetic acid- water solution. The fraction with the lowest relative molecular mass showed the highest phenolic hydroxyl content, the lowest T_d and the lowest char content. The three fractions reacted with phenol and yielded the corresponding PL. The phenol hydroxyl content of phenolated lignin fraction was higher than that of corresponding fraction. Three kinds of LER were prepared from PL by reacting with ECH. LER prepared from PL with the lowest relative molecular mass showed the highest epoxy value, the highest T_d and the lowest char content. The adhesive shear strength of the cured blends of LER and E-44 epoxy resin was improved compared with E-44 epoxy resin. Furthermore, the cured blend of E-44 epoxy resin and LER prepared from the AAL fraction with lowest relative molecular mass showed the highest adhesive shear strength up to 7.9MPa. PL can be used as a substitute for bisphenol A to prepare epoxy resin.
引文
[1]Hu T. Q. Chemical modification, properties, and usage of lignin[M]. New York: Kluwer Academic/Plenum Publishers, 2002: 1-5
    [2]Hon D. N. S.; Shiraishi N. Wood and cellulosic chemistry[M]. 2nd edition. New York: Marcel Dekker Inc., 2001: 64-67
    [3]Orlandi M.; Canevali C.; Rindone B., et al. Biomimetic approach to lignin degradation: A mechanistic study of Metallosalen catalysed oxidation of lignin and lignin model compounds[C]. 7th European Workshop on Lignocellulosics and Pulp, 2002: 369-373
    [4]杨淑蕙.植物纤维化学[M].第三版.北京:中国轻工业出版社, 2006: 69-96
    [5]中野准三.木质素的化学-基础与应用[M].高洁等译.北京:轻工业出版社, 1988: 264-283
    [6]赵斌元,李恒德,胡克鳌,等.木质素基环氧树脂合成及表征[J].纤维素科学与技术, 2000, 8(4): 19-26
    [7]Feldman, D.; Banu, D.; Natansohn, A, et al. Structure-properties relations of thermally cured epoxy-lignin polyblends[J]. Journal of Applied Polymer Science, 1991, 42(6): 1537-1550
    [8]Feldman, D.; Banu, D.; Luchian, C., et al. Epoxy-lignin polyblends: correlation between polymer interaction and curing temperature[J]. Journal of Applied Polymer Science, 1991, 42(5): 1307-1318
    [9]Nonaka Y.; Tomita B.; Hatano Y. Synthesis of lignin/epoxy resin in aqueous systems and their properties[J]. Holzforschung, 1997, 51(2), 183-187
    [10]陈云平,程贤甦,方华书,等.高沸醇溶剂法制备松木纸浆和木质素[J].纤维素科学与技术, 2003, 11(1): 19-22
    [11]林玮,程贤甦.高沸醇木质素环氧树脂的合成与性能研究[J].纤维素科学与技术, 2007, 15(2): 8-12
    [12]程贤甦,陈为健,方华书.福州大学.高沸醇木质素环氧树脂的制备方法[P].中国: 200410061295.X, 2008. 01. 23
    [13]程贤甦.福州大学.酶解木质素环氧树脂的原料配方及其制备方法[P].中国: 200610069529.4, 2009. 08. 19
    [14]Nakamura Y.; Sawada T.; Kuno K., et al. Resinification of woody lignin and its characteristic on safety and biodegradation[J]. Journal of Chemical Engineering of Japan,2001, 34(10): 1309-1312
    [15]Shiraishi N. Lignin properties and materials[M]. Washington DC: American Chemical Society, 1989: 488-495
    [16]赵斌元,胡克鳌,范永忠等.木质素磺酸及其衍生物红外光谱研究[J].分析化学, 2000, 28(6): 716-719
    [17]Zhao B.Y.; Fan Y.Z.; Hu K.A., et al. Development of lignin epoxide—a potential matrix of resin matrix composite[J]. Journal of Wuhan University of Technology—Material Science Edition, 2000, 15(3): 6-12
    [18]Zhao B.Y.; Chen G.; Liu Y., et al. Synthesis of lignin base epoxy resin and its characterization[J]. Journal of materials science letters, 2001, 20(9): 895-862
    [19]Sun G.; Sun H.G.; Liu Y., et al. Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system[J]. Polymer, 2007, 48(1): 330-337
    [20]王海洋,陈克利.木质素的氢解及其合成环氧树脂探索[J].化工时刊, 2004, 18(3): 27-30
    [21]魏兰,刘忠.木素基环氧树脂的合成[J].中华纸业, 2004, 25(1): 44-48
    [22]叶菊娣,洪建国.改性木质素合成环氧树脂的研究[J].纤维素科学与技术, 2007, 15(4): 28-32
    [23]Hirose S.; Hatakeyama T.; Hatakeyama H. Synthesis and thermal properties of epoxy resins from ester-carboxylic acid derivative of alcoholysis lignin[J]. Macromolecular Symposia, 2003, 197(1): 157-169
    [24]Hirose S.; Hatakeyama T.; Hatakeyama H. Glass transition and thermal decomposition of epoxy resins from the carboxylic acid system consisting of ester-carboxylic acid derivatives of alcoholysis lignin and ethylene glycol with various dicarboxylic acids[J]. Thermochimica Acta, 2005, 431(1-2): 76–80
    [25]陈为健,程贤甦,方润.木质素基聚酯型环氧树脂的制备及表征[J].纤维素科学与技术, 2009, 17(2): 1-5
    [26]程贤甦,陈为健.一种酶解木质素环氧树脂及其制备方法[P].中国: 200810071746.6, 2009. 01. 29
    [27]Khan M.A.; Ashraf S.M.; Malhotra V.P. Development and characterization of a wood adhesive using bagasse lignin[J].International Journal of Adhesion&Adhesives,2004,24(6): 485-493
    [28]王迪珍,卜忠东,杨兆禧.木质素树脂/线型酚醛树脂模压材料的研究[J].高分子材料科学与工程, 1996, 12(3): 104-108
    [29]Kelley S.S.; Ward T.C.; Glasser W.G. Multiphase materials with lignin. VIII. Interpenetrating polymer networks from polyurethanes and poly(methyl methacrylate)[J]. Journal of applied polymer science, 1990, 41(11-12): 2813-28
    [30]刘全校,杨淑慧,李建华.改性麦草氧碱木素在聚氨酯合成中的应用[J].中国造纸, 2003, 18(1): 11-14
    [31]范娟,詹怀宇,尹覃伟.球形木质素基离子交换树脂的合成及其对阳离子染料的吸附性能[J].造纸科学与技术, 2004: 23(5), 26-29
    [32]刘明华,邹锦光,洪树楠,等.造纸黑液制备球形阳离子木质素吸附树脂[J].环境科学, 2005, 26(5): 120-124
    [33]Raskin M.; Ioffe L.O.; Pukis A.Z., et a1. Composition board binding material[P]. US 6291558, 2001
    [34] Felby C.; Hassingboe J.; Lund M., et al. Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin[J]. Enzyme and Microbial Technology, 2002, 31(6): 736-741
    [35]王德中.环氧树脂生产与应用[M].第二版.北京:化学工业出版社, 2001: 1-16
    [36]Sano Y.; Shimamoto S.; Enoki M., et al. Fractionation of woody biomass with boiling aqueous acetic acid containing a small amount of mineral acid at atmospheric pressure: Reactivity of arylglycerol-β-aryl ethers in lignins with aqueous acetic acid containing H2SO4 [J]. Journal of wood science, 1998, 44(3): 217-221
    [37]Schuerch C. The solubility properties of liquids and their relation to the solubility, isolation and fractionation of lignin[J]. Journal of the American Chemical Society, 1952, 74(20): 5061-5067
    [38]Pei Ni, Ronald W. Thring. Synthesis of polyurethane from solvolysis lignin using a polymerization catalyst: mechanical and thermal properties[J]. Int. J. Polym. Mater, 2003, 52(8): 685-707
    [39]Pan, X.J.; Sano, Y. Acetic acid pulping of wheat straw under atmospheric pressure[J]. Wood Sci., 1999, 45(4): 319–325
    [40]Pan, X.J.; Sano, Y. Characterization and utilization of acetic acid lignins: Methylolation of lignins and preparation of lignin-based adhesives[C]. Proceedings of the 43rd lignin symposium, Fuchu, Japan, 1998: 5–8
    [41]Li Y.; Aorigele; Chen F.G., et al. Study on utilization of acetic acid lignin in synthesis of polyurethane foams[C]. 2nd International Papermaking and Environment Conference, 2008:171-174
    [42]Xie Y.M.; Peng W.; Zeng S.Q. Synthesis of polyurethane composite with acetic acid lignin[C]. International Conference on Pulping, Papermaking and Biotechnology, 2008: 39-42
    [43]黄国红,谢益民,敖日格勒,等.三倍体毛白杨乙酸法制浆的研究[J].中华纸业, 2002, 2(2): 38-40
    [44]Lundquist K, Kirk T K. Fractionation-purification of an industrial kraft lignin[J]. Tappi, 63(1), 80-82
    [45]Granata A.; Argyropoulous D.S. 2-chloro-4,4,5,5-tetramethyl--1,2,3- dioxaphosholane. A reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins[J]. J. Agric. Food Chem, 1995, 43(6): 1538-1544
    [46]Argyropoulos D.S.; Sun Y.; Palus E. Isolation of residual kraft lignin in high yield and purity[J]. Journal of Pulp and Paper Science, 2002, 28(2): 50-54
    [47]Seo J.; Jang W.; Han H. Thermal Properties and Water Sorption Behaviors of Epoxy and Bismaleimide Composites[J]. Macromolecular Research, 2007, 15(1): 10-16
    [48]Kubo S.; Uraki Y.; Sano Y. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping[J]. Carbon, 1998, 36(7-8): 1119-1124
    [49]Alonso M.V.; Oliet M.; Rodríguez F., et al. Modification of ammonium lignosulfonate by phenolation for use in phenolic resins[J]. Bioresource Technology, 2005, 96(9): 1013-1018
    [50]Matsushita Y.; SANO H.; IMAI M, et al. Phenolization of hardwood sulfuric acid lignin and comparison of the behavior of the syringyl and guaiacyl units in lignin[J]. Journal of Wood Science, 2007, 53(1): 67-70
    [51]Goldschmid O. Determination of phenolic hydroxyl content of lignin preparation by ultraviolet spectrophotometry[J]. Analytical Chemistry, 1954, 26(9): 1421-1423
    [52]谌凡更,金永灿,李忠正.麦草碱木素分级和结构特性的研究[J].纤维素科学与技术, 1997: 5(1), 34-40
    [53]Simionescu CR. I.; Cazacu G.; Macouvean M.M. Lignin-epoxy resins. II. Physical and chemical characterization[J]. Cellulose Chemistry and Technology, 1987, 21(5): 525-534
    [54]Simionescu CR.I.; Rusan V.; Turta K. I., et al. Synthesis and characterization of some iron-lignosulfonze-based 1ignin-epoxy resins[J]. Cellulose Chem Technol, 1993, 27: 627-644
    [55]Hofinann K.; Glasser W.G. Engineering plastics from lignin 21.Sythesis and properties of epoxidized lignin-poly(propylene oxide) copolymer[J]. Journal of Wood Chemistry and Technology, 1993, 13(1): 73-95
    [56]Glasser W.G.; Sarkanen S. Lignin: Properties and Materials[M]. American ChemicalSociety, Washington, D.C., 1989, 506-513
    [57]Malutan T.; Nicu R.; Popa V.I. Lignin Modification by epoxidation[J]. Bioresources, 2008, 3(4): 1371-1376
    [58]Mansouri El.; Yuan Q.L.; Huang F.X. Synthesis and characterization of Kraft lignin-based epoxy resins[J], BioResources, 2011, 6(3): 2492-2503
    [59]Mansouri El.; Yuan Q.L.; Huang F.X. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins[J], BioResources, 2011, 6(3): 2647-2662

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700