用户名: 密码: 验证码:
中耳及邻近结构在颞骨冠状HRCT及薄层切片上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观测中耳内诸结构及中耳邻近结构在耳颞区高分辨率CT(High-Resolution Computed Tomography,HRCT)冠状扫描图像及冠状薄层切片标本上的态特点及各结构间的毗邻关系,探讨中耳及邻近结构的冠状断层影像解剖学特点,积累国人耳冠状断层影像解剖学资料,为耳颞部病变的影像诊断和手术治疗提供态学基础和解剖学依据。
     方法:10%甲醛固定的成人头颅标本15例(30侧),实验标本按与眦耳线(Canthomeatal Line, CML)相垂直的标线作扫描基线,用GE Hi-speed N X/ i Sys # CT按标本所作的基线进行扫描,获得厚度为1.00 mm的HRCT连续冠状扫描图像。扫描后的标本经开颅取脑后,以耳颞区为中心截取80 mm×80 mm×80 mm大小的组织块。组织块经常规脱钙、脱水、火棉胶溶液浸胶、包埋并切片制成厚为1.00 mm的连续冠状薄层切片。选取经锤骨头前部层面、经锤骨头中部层面、经颈内动脉垂直段后1/3部层面、经横嵴中部层面、经圆窗龛层面和经面神经垂直段(Vertical Segment of Facial Nerve, VSFN)层面等六个冠状断层(面),对中耳及邻近的解剖结构进行定位和观测,经SPSS统计学软件处理得出结论。
     结果:上述六个层面中耳及邻近结构相关定性、定量研究结果如下:经锤骨头前部层面:锤骨头上缘至鼓室盖上缘间的距离为(3.54±1.42) mm( x±s, mm,以下同);锤骨头内侧至膝状神经节(Geniculate Ganglion, GG)间的距离为(5.46±0.50) mm;GG到耳蜗的距离为(1.45±0.31) mm;GG到鼓室盖间的距离为(3.46±1.52) mm;耳蜗下缘至颈内动脉间的距离为(2.96±1.13) mm。
     经锤骨头中部层面:锤骨短突到GG间的距离为(7.40±0.65) mm;锤骨短突至耳蜗间的距离为(6.68±0.69) mm;鼓室底到颈内动脉垂直段间的距离为(2.42±1.00) mm;耳蜗至鼓室内侧壁间的距离为(1.64±0.34) mm。
     经颈内动脉垂直段后1/3部层面:面神经迷路段(Labyrinthine Segment of Facial Nerve, LSFN)至耳蜗间的距离为(0.83±0.21) mm;LSFN至弓状隆起间的距离为(4.68±1.32) mm;面神经水平段(Horizontal Segment of Facial Nerve, HSFN)至耳蜗间的距离为(2.83±0.84) mm;砧骨短脚至HSFN间的距离为(3.08±0.37) mm。
     经横嵴中部层面:内耳道的长度左侧为(11.85±1.65) mm,右侧为(12.67±1.61) mm;盾板尖至HSFN间的距离为(5.57±1.28) mm;横嵴尖至内耳道上壁间的距离为(1.98±0.33) mm;横嵴至内耳道下壁间的距离为(2.69±0.37) mm;砧骨豆状突到卵圆窗间的距离为(3.35±0.23) mm;砧骨豆状突到HSFN间的距离为(1.87±0.16) mm;HSFN至外半规管(Lateral Semicircular Canal, LSC)间的距离为(1.06±0.21) mm;LSC到鼓室内侧壁间的距离为(1.26±0.30) mm;上半规管(Superior Semicircular Canal, SSC)到弓状隆起间的距离为(1.21±0.95) mm;其中左耳的内耳道长度比右耳要短,左、右两侧有显著性差异(P<0.05)。
     经圆窗龛层面:面神经隐窝至LSC间的距离为(1.96±0.80) mm;面神经隐窝的内外径为(1.36±0.20) mm;面神经隐窝的深度为(1.39±0.27) mm;锥隐窝的内外径为(1.40±0.31) mm;锥隐窝的深度为(1.67±0.49) mm;圆窗龛的内外径(1.36±0.24) mm;圆窗龛的深度为(1.54±0.25) mm;LSC到乳突窦间的距离左侧为(1.47±0.42) mm,右侧为(1.26±0.25) mm;鼓室下壁到颈静脉区间的距离为(4.22±1.69) mm;其中右耳LSC到乳突窦间的距离较左耳短,左、右两侧有显著性差异(P<0.05)。
     经VSFN层面:VSFN的长度为(14.71±1.86) mm;VSFN至后半规管(Posterior Semicircular Canal, PSC)间的距离为(3.66±0.61) mm;VSFN至颈静脉区间的距离为(7.27±1.53) mm;VSFN出茎乳孔处至乳突外侧壁间的距离为(11.05±2.24) mm;SSC至PSC间的距离为(4.65±0.76) mm。
     结论:颞骨HRCT冠状扫描图像与颞骨火棉胶连续冠状薄层切片标本进行对照研究,能清楚地辨识中耳及邻近的各细微解剖学结构。本研究结果为耳科临床的影像诊断及显微外科手术治疗提供态学基础和解剖学依据,并丰富了国人耳冠状断层影像解剖学资料。
Objective:To observe morphology character and the adjacent relationship between the high-resolution computed tomography (HRCT) coronal images and thin coronal section slices specimens of all structures within the middle ear and its adjacent structures of the temporal bone. To discuss the anatomical features of HRCT images in the middle ear and its adjacent structure and accumulate Chinese ears coronal HRCT images anatomical data. In order to provide morphological basis and anatomical foundation for imaging diagnosis and surgical treatment of the auriculotemporal pathological changes.
     Methods:15(30sides) adult’s skull specimens were fixed by 10% formalin, experimental specimens use the marked line which was perpendicular with the canthomeatal line(CML) as a basic line of coronal scanning, through using GE Hi-speed N X / i Sys # CT to scan, we can gain the thickness of 1.00 mm HRCT consecutive coronal scan images. After scaning the specimens, then removed brain tissues from the skull. Tissues (80 mm×80 mm×80 mm) were intercepted at the center of temporal bone, and routine decalcified, dehydrated, soaked in collodion, embedded and sliced into 1.00 mm continuous coronal pieces. Then six coronal sections were selected, such as through the anterior part of the head of malleus, the middle part of the head of malleus, 1/3 posterior part of the vertical segment of internal carotid artery, the middle of the transverse crest, the round window niche and the vertical segment of facial nerve (VSFN) and so on. Then some anatomy structures of middle ear and its near part were measured and localized. The data was dealed by SPSS software then get the conclusion.
     Results:The result of relative qualitative and quantitative investigation of the middle ear and nearly structures of six sections above-mentioned as follow.
     Through the anterior part head of malleus of coronal HRCT section. The distance from superior border of head of malleus to tegmen tympani was 3.54±1.42 mm( x±s, mm, the same as follow). The distance from wall head of malleus to ganglion geniculatum was 5.46±0.50 mm. The distance from ganglion geniculatum to cochlear was 1.45±0.31 mm. The distance from ganglion geniculatum to tegmen tympani was 3.46±1.52 mm. The distance from inferior border of cochlear to internal carotid canal was 2.96±1.14 mm.
     Through the middle part head of malleus of coronal HRCT section. The distance from short process of malleus to ganglion geniculatum was 7.40±0.65 mm. The distance from short process of malleus to cochlear was 6.68±0.69 mm. The distance from floor of tympanum to vertical segment of internal carotid artery was 2.42±1.00 mm. The distance from cochlear to medial wall of tympanic cavity was 1.64±0.34 mm.
     Through the 1/3 posterior part of the vertical segment of internal carotid artery of coronal HRCT section. The distance from labyrinthine segment of facial nerve to cochlear was 0.83±0.21 mm. The distance from labyrinthine segment of facial nerve to arcuate eminence was 4.68±1.32 mm. The distance from horizontal segment of facial nerve to cochlear was 2.83±0.84 mm. The distance from short crus of incus to horizontal segment of facial nerve was 3.08±0.37 mm.
     Through the middle transverse crest of coronal HRCT section. The length of the internal acoustic meatus left side was 11.85±1.65 mm,right side was 12.67±1.61 mm. The distance from the tip of scute to horizontal facial nerve was 5.57±1.28 mm. The distance from the tip of transverse crest to superior wall of internal acoustic meatus was 1.98±0.33 mm. The distance from the tip of transverse crest to inferior wall of internal acoustic meatus was 2.69±0.37 mm. The distance from lenticular process of incus to oval window was 3.35±0.23 mm. The distance from lenticular process of incus to horizontal facial nerve was 1.87±0.16 mm. The distance from horizontal facial nerve to lateral semicircular canal was 1.06±0.21 mm. The distance from lateral semicircular canal to medial wall of tympanic cavity was 1.26±0.30 mm. The distance from superior semicircular canal to arcuate eminence was 1.21±0.95 mm. The length of the internal acoustic meatus was shorter in the left ears than in the right ears, this difference was satistically significant(P<0.05).
     Through the round window niche of coronal HRCT section. The distance from facial recess to lateral semicircular canal was 1.96±0.80 mm. The exterior and interior diameter of facial recess was 1.36±0.20 mm. The depth of facial recess was 1.39±0.27 mm. The exterior and interior diameter of pyramidal recess was 1.40± 0.31 mm. The depth of pyramidal recess was 1.67±0.49 mm. The exterior and interior diameter of round window niche was(1.36±0.24)mm. The depth of round window niche was 1.54±0.25 mm. The distance from lateral semicircular canal to mastoid antrum left side was 1.47±0.42 mm,right side was 1.26±0.25 mm. The distance from inferior wall of tympanic cavity to region of jugular vein was 4.22±1.69 mm. The distance between lateral semicircular canal and mastoid antrum was shorter in the right ears than in the left ears, this difference was satistically significant(P<0.05).
     Through the vertical segment of facial nerve of coronal HRCT sections. The length of vertical segment of facial nerve was 14.71±1.86 mm. The distance from vertical segment of facial nerve to posterior semicircular canal was 3.66±0.61 mm. The distance from vertical segment of facial nerve to region of jugular vein was 7.27±1.53 mm. The distance from mastoid segment of facial nerve ex-stylomastoid foramen to lateral wall of mastoid process was 11.05±2.24 mm. The distance from superior semicircular canal to posterior semicircular canal was 4.65±0.76 mm.
     Conclusions:Compared with the temporal bone’s HRCT coronal scan images and consecutive coronal celloidin slices specimens, we can clearly identify apiece subtle anatomical structures of middle ear and something else around it. The results of this study offer morphological basis and anatomical foundation for otology clinical diagnostic imaging and microsurgery treatment, and also enrich our knowledge about ear coronal HRCT images information for sectional anatomy.
引文
[1] Qiu MG, Zhang SX, Liu ZJ, et al. Visualization of the temporal bone of the Chinese Visible Human[J]. Surg Radiol Anat, 2004, 26(2):149~152.
    [2] 段菊如,魏江平,李明智,等.后鼓室颞骨切片与 CT 对照研究[J].中国临床解剖学杂志,2006, 24(4):355~358.
    [3] Bartling SH, Shukla V, Becker H, et al. High-resolution flat-panel volume-CT of temporal bone—part I: axial preoperative anatomy[J]. J Comput Assist Tomogr, 2005,29(3):420~423.
    [4] Bartling SH, Shukla V, Becker H, et al. High-resolution computed tomography of temporal bone: Part II: coronal preoperative anatomy[J]. J Comput Assist Tomogr, 2005,29(4):566~569.
    [5] Powitzky ES, Hayman LA, Chau J, et al. High-resolution computed tomography of temporal bone: Part IV: Coronal postoperative anatomy[J]. J Comput Assist Tomogr, 2006,30(3):548~554.
    [6] Powitzky ES, Hayman LA, Bartling SH, et al. High-resolution computed tomography of temporal bone: Part Ⅲ: Axial postoperative anatomy[J]. J Comput Assist Tomogr,2006,30(2): 337~343.
    [7] Luntz M, Malatskey S, Braun J. The Anatomic Relationship Between the Second Genu of the Facial Nerve and the Incus:A High-Resolution Computed Tomography Study[J].The American Journal of Otology, 2000,21(5):686~689.
    [8] Tuccar E, Tekdemir I, Aslan A, et al. Radiological anatomy of the intratemporal course of facial nerve[J]. Clinical Anatomy, 2000,13(2):83~87.
    [9] 张晓宏,巫北海,刘筠,等. 颞骨内面神经的影像学研究:多层面 CT 和场强 MR[J]. 中国医学计算机成像杂志, 2001,7(5):295~297.
    [10] 张道行,张岩昆,田吴,等.术前面隐窝气房 CT 测量对人工耳蜗植入术的意义[J].听力学及言语疾病杂志, 2006,14(3):182~184.
    [11] 刘中林,兰宝森,任江坤,等. 正常颞骨斜矢状面 CT 扫描的解剖学表现[J].中华放射学杂志, 2001,35(3):181~184.
    [12] 邱明国,张绍祥,刘正津,等.颞骨及其邻近区塑化薄层断面解剖研究[J].第三军医大学学报, 2002,24(3):252~253.
    [13] 靳颖,刘津平,田德润,等.颞骨的断面解剖学研究及其临床意义[J].中国临床解剖学杂志, 2004,22(4):353~356.
    [14] 刘军,王克强,张天宇,等.颞骨岩部的临床应用解剖研究[J].中国局解手术学杂志,2000,9(2):102~104.
    [15] 姜泗长.耳解剖学与颞骨组织病理学[M].北京:人民军医出版社, 1999.
    [16] 段菊如,林 敏,熊俊平,等.面神经颞骨内段在横断薄层和 CT 上的定位及临床意义[J].中国临床解剖学杂志, 2004,22(3):257~260.
    [17] 段菊如,罗红强,鲁纯纠,等. 圆窗区颞骨切片和 CT 对照观察[J].中华耳鼻咽喉科杂志,2004,39(5):269~272.
    [18] Chakeres DW, Augustyn MA. Temporal Bone Imaging. In: Som PM, Curtin HD, (eds). Head and Neck Imaging[M], 4th ed. Mosby, St. Louis, MO. 2003.
    [19] Yates PD, Flood LM, Banerjee A, et al. CT scanning of middle ear cholesteatoma: what does the surgeon want to know? [J]. The British Journal of Radiology, 2002,75(898):847~852 .
    [20] Chan L-L, Manolidis S, Taber KH, et al. In vivo measurements of temporal bone on reconstructed clinical highresolution computed tomography scans[J]. Laryngoscope,2000,110(8): 1375~1378.
    [21] Lacout A, Marsot-Dupuch K, Smoker WR, et al. Foramen Tympanicum or Foramen of Huschke: Pathologic Cases and Anatomic CT Study[J]. AJNR Am J Neuroradiol,2005, 26(6):1317~1323.
    [22] Czerny C, Franz P, Imhof H. Computed tomography and magnetic resonance tomography of the normal temporal bone[J]. Radiologe, 2003,43(3):200~206.
    [23] Mazziotti S, Arceri F, Vinci S, et al. Role of coronal oblique reconstruction as a complement to CT study of the temporal bone: normal anatomy[J].Radiol Med (Torino), 2006,111(4):607~617.
    [24] Purcell DD, Fischbein NJ, Patel A, et al. Two temporal bone computed tomography measurements increase recognition of malformations and predict sensorineural hearing loss[J].Laryngoscope,2006,116(8):1439~1446.
    [25] Propst EJ, Blaser S, Gordon KA, et al. Temporal bone findings on computed tomography imaging in branchio-oto-renal syndrome[J].Laryngoscope. 2005,115(10):1855~1862
    [26] 王正敏. 耳显微外科学[M].上海, 上海科技教育出版社, 2004.
    [27] 蒲红,白林,付凯,等.慢性中耳炎继发面神经管破坏 HRCT 评价[J].临床放射学杂志,2002,21(8): 602~604.
    [28] Gupta R, Bartling SH, Basu SK, et al. Experimental Flat-Panel High-Spatial-Resolution Volume CT of the Temporal Bone[J]. AJNR Am J Neuroradiol, 2004,25(8):1417~1424.
    [29] Mylanus EA, Rotteveel LJ, Leeuw RL. Congenital Malformation of the Inner Ear andPediatric Cochlear Implantation[J]. Otology & Neurotology, 2004, 25(3):308~317.
    [30] Swartz JD.The facial nerve canal: CT analysis of the protruding tympanic egement[J]. Radiology, 1984,153(2): 443~447.
    [31] Rafael L. Boemo, M. Luisa Navarrete, Félix Pumarola,et al. Morphometric Study of the Mastoid Segment of the Facial Nerve[J]. Acta Otorrinolaringol Esp, 2007,58(5):178~181.
    [32] Sakai O, Curtin HD, Fujita A, et a1.Otosclerosis: computed tomography and magnetic resonance findings[J].Am J Otolaryngol, 2000, 21(2):116~118.
    [33] Karhuketo TS, Dastidar PS, Ryymin PS, et al. Virtual endoscopy imaging of the middle ear cavity and ossicle[J]. Eur Arch Otorhinolaryngol, 2002,259(2):77~83.
    [34] Booth TN, Vezina LG, Karcher G, et al. Imaging and Clinical Evaluation of Isolated Atresia of the Oval Window[J]. AJNR Am J Neuroradiol, 2000, 21(1):171~174.
    [35] 姜泗长. 耳鼻咽喉-头颈外科手术学[M]. 北京, 人民军医出版社, 2005.
    [36] Paleri V, Watson C. Objective assessment of the perineural vascular plexus as a landmark for the horizontal part of the facial nerve in middle ear and mastoid surgery[J]. Otol Neurotol, 2005, 26(2):280~283.
    [37] Aslan A, Guclu G , Tekdemir I , et al. Anatomic limitations of posterior exposure of the sinus tympani[J]. Otolaryngol Head Neck Surg, 2004,131(4):457~460.
    [38] 殷善开. 颞骨与侧颅底手术解剖图谱[M]. 西安, 世界图书出版公司, 2004.
    [39] Wysocki J, Ska mskj H. Cochleostomy during the mtracochlear implantation: Anatomical eonditiond in chlldren and adults[J].otolaryngol Pol,1998,52(6):689~694.
    [40] Lenarz T,Battmer RD,Lestinskl A,et a1. Nucleus double elect rode array: a new approach for ossified cochleae [J]. Am J Otol, 1997,18 (6): 39~41.
    [41] Antonelli PJ, Varela AE, Mancuso AA. Diagnostic yield of high-resolution computed tomography for pediatric sensorineural hearing loss[J]. Laryngoscope,1999,109(10):1642~1647.
    [42] McClay JE, Tandy R, Grundfast K, et al. Major and minor temporal bone abnormalities in children with and without congenital sensorineural hearing loss[J]. Arch Otolaryngol Head Neck Surg, 2002,128(6):664~671.
    [43] Mafong DD, Shin EJ, Lalwani AK. Use of laboratory evaluation and radiologic imaging in the diagnostic evaluation of children with sensorineural hearing loss[J]. Laryngoscope, 2002, 112(1):1~7.
    [44] Kruschinski C, Weber BP, and Pabst R. Clinical Relevance of the Distance Between theCochlea and the Facial Nerve in Cochlear Implantation[J]. Otology & Neurotology, 2003,24(5): 823~827.
    [45] Minor LB. Superior canal dehiscence syndrome[J]. Am J Otol, 2000, 21(1):9~19.
    [46] Minor LB, Solomon D, Zinreich JS, et al. Sound- and/or pressureinduced vertigo due to bone dehiscence of the superior semicircular canal[J]. Arch Otolaryngol Head Neck Surg, 1998, 124(3):249~258.
    [47] Krombach GA, DiMartino E, Schmitz-Rode T, et al. Posterior semicircular canal dehiscence: a morphologic cause of vertigo similar to superior semicircular canal dehiscence[J].Eur Radiol, 2003,13(6):1444~1450.
    [48] Olson KL, Manolidis S, Hayman LA, et al. Use of Reconstructed Sagittal Computed Tomography Images to Plan Middle Cranial Fossa Surgery[J]. The American Laryngological, Rhinological and Otological Society, 2001,111(12):2095~2099.
    [1] 许安廷,丁元萍,丁寿龄,等.面神经隐窝的显微解剖及其临床应用[J].山东医药,2004,44(12):1~2.
    [2] Teszler CB,Ruimi D,Bar-Meir E,et a1.Width of the extended facial recess: a numerical study of ultra high resolution computed tomography and its implications in minimally invasive otologic surgery[J]. Otol Neurotol, 2005, 26(4): 782~789.
    [3] Warren FM, Balachandran R, Fitzpatrick JM, et al. Percutaneous Cochlear Access Using Bone-Mounted,Customized Drill Guides: Demonstration of Concept In Vitro[J].Otology & Neurotology, 2007,1~5.
    [4] Labadie RF, Chodhury P, Cetinkaya E, et al. Minimally Invasive, Image-Guided, Facial Recess Approach to the Middle Ear:Demonstration of the Concept of Percutaneous Cochlear Access In Vitro[J].Otology & Neurotology, 2005, 26(4):557~562.
    [5] 赵晓埝,王登元,邢光前,等.与人工耳蜗植入术相关的面神经垂直段应用解剖[J].听力学及言语疾病杂志,2003,11(1):38~39.
    [6] 段菊如,魏江平,李明智,等.后鼓室颞骨切片与CT对照研究[J].中国临床解剖学杂志,2006,24(4):355~358.
    [7] 朱杭军,廖建春,王海青,等.鼓索神经颞骨部的解剖及临床应用[J].解剖与临床,2003,8(4):201~202.
    [8] 张道行,张岩昆,田吴,等.术前面隐窝气房CT测量对人工耳蜗植入术的意义[J].听力学及言语疾病杂志,2006,14(3):182~184.
    [9] Howard JD,Elster AD,May JS.Temporal bone,three-dimonsional CT.PartⅡ:Pathologic alterations [J].Radiology.1990,177(2):427~430.
    [10] Paprocki A,Biskup B,Kozlowska K,et a1.The topographical anatomy of the round window and related structures for the purpose of cochlear implant surgery[J].Folia Morphol(warsz), 2004,63(3):309~312.
    [11] 徐金操,郭梦和,张宏征,等.人工耳蜗植入术相关结构的解剖测量[J].听力学及言语疾病杂志,2006,14(3):185~186.
    [12] Wysocki J,Ska mskj H.Cochleostomy during the mtracochlear implantation:Anatomical eonditiond in chlldren and adults[J] .otolaryngol Pol, 1998,52(6):689~694.
    [13] Lenarz T,Battmer RD,Lestinskl A,et a1.Nucleus double elect rode array:a new approach for ossified cochleae[J]. Am J Otol, 1997,18(6):39~41.
    [14] 姜学钧,惠莲,杨柠,等.人工耳蜗植入手术中应注意问题及并发症的防治[J].中国医科大学学报,2005,34(3):259~260、262.
    [15] 徐钢,田湘娥,冯永,等.电子耳蜗植入术相关解剖标志及手术入路的探讨[J].中国耳鼻咽喉颅底外科杂志,2002,8(3):177~179.
    [16] Green JD,Marion MS,Hinojosa R.Labyrinthitis ossificans:histopathologic considerationfor cochlear implantation[J] Oto.1aryngol Head Neck Surg, 1991,104(3):20~26.
    [17] 赵丽敏,王海英,徐达君,等.CT 扫描在人工耳蜗植入中的价值[J].医学影像学杂志2006,16(11):1236~1237.
    [18] 陈锡辉,刘敏,熊观霞,人工耳蜗植入术:附 70 例临床分析[J].中山大学学报(医学科学版),2006,27(6):690~693.
    [19] 朱俭,温志波,聂世琨,等.多通道人工耳蜗植入术的影像评估[J].临床放射学杂志,2002,2l(l0):774~777.
    [20] 刘寒波,冯永,陈登明,等.CT三维重建对人工耳蜗植人术后电极位置的观察[J].临床耳鼻咽喉科杂志,2006,20(13):597~599.
    [21] Gleeson TG,Lacy PD,Bresnihan M,et al. High resolution computed tomography and magnetic resonance imaging in the preoperative assessment of cochlear implant patients[J].Laryngol Otol, 2003, 117(9):692~695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700