用户名: 密码: 验证码:
2’,5,6’,7-四羟基二氢黄酮醇的定向分离及其拮抗细菌脓毒症的生物学活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脓毒症是感染因素介导的全身炎症反应综合征(systemic inflammatory response syndrome, SIRS),是烧伤、创伤和感染性疾病患者的常见并发症。流行病学资料显示,每年全球有超过1800万的脓毒症病例,且患者数目每年以1.0%速度递增。重症脓毒症和脓毒性休克是重症监护病房(intensive care units, ICU)病人死亡的首要因素,死亡率高达50%-60%。
     内毒素(endotoxin/Lipopolysaccharide, LPS)是G-菌外膜的主要成分,是介导细菌脓毒症的重要病原体相关分子模式(pathogen-associated molecular patterns,PAMPs)。LPS进入机体内后,首先与内毒素结合蛋白(lipopolysaccharide-binding protein,LBP)结合,在LBP的作用下,LPS与单核/巨噬细胞膜上的受体CD14结合形成LPS-CD14复合物,复合物中的LPS与跨膜受体TLR4(Toll like receptor 4,TLR4)结合,将信号转入胞内,导致靶细胞的活化,释放TNF-α、IL-6等炎症介质,介导脓毒症的发生。尽管对脓毒症的病理生理机制及其防治策略的研究较为深入,但至今仍无特殊有效的药物供临床治疗。
     中草药在脓毒症中的应用具有悠久的历史,已证实多种中草药具有较好的拮抗内毒素作用,但由于中药成分复杂,加之缺乏有效的分离检测手段,限制了中草药在脓毒症防治中的应用与发展。在前期的研究中,我们将LPS的活性中心Lipid A包被于生物传感器上,建立了以Lipid A为靶点的筛选拮抗LPS药物的实验平台。基于此技术平台,本研究采用大孔吸附树脂、超滤膜分离和高效液相色谱(high performance liquid chromatogram, HPLC)技术,对中药水提液进行多级分离纯化,以期从天然药物中获取具有拮抗LPS活性的单体化合物,为脓毒症防治药物的研发提供新的思路和方法。
     方法
     1.应用以Lipid A为靶点的生物传感器技术平台,检测60种中药水煎液与Lipid A的结合活性;对明确具有与Lipid A结合活性的中药,采用大孔吸附树脂分离技术、超滤膜技术和HPLC技术进行分离提取,应用生物传感器进行活性追踪监测,收集能与Lipid A结合的组分,并对其进行针对LPS的体内外生物学活性评估。对活性明确的有效组分,用HPLC作进一步的分离纯化,选择与Lipid A具有较高结合活性的HPLC产物作进一步的研究,对所得单体化合物进行纯度分析和结构解析。
     2.对得到的单体化合物进行针对细菌脓毒症的体内外生物学活性评价,包括:①鲎试剂法检测单体对LPS的体内外中和作用;②ELISA法检测单体对LPS刺激巨噬细胞产生细胞因子(TNF-α和IL-6)的抑制作用;③RT-PCR法检测单体对LPS诱导巨噬细胞TLR4和TNF-αmRNA表达的影响;④观察单体化合物对脓毒症模型小鼠的保护作用。
     结果
     1.应用生物传感器技术平台,从60种中药中筛选出黄芩、胡连、赤芍、五倍子、诃子等5种具有与Lipid A较高结合活性的中药(RU>200 arc seconds)。以黄芩为研究对象,从黄芩水提液中分离出与Lipid A具有结合活性的组分SbG-4;SbG-4 (40mg/kg)能显著提高热灭活大肠埃希氏菌攻击小鼠72h的存活率;物质属性鉴定SbG-4为黄酮类物质。应用膜分离技术从SbG-4中分离出分子量小于5000Da的5KL,5KL经HPLC分离获得5个HPLC组分(5KL-1~5);在5个组分中,以5KL-1与Lipid A的结合活性最高;在体外5KL-1对LPS具有直接中和作用、可显著抑制LPS诱导的RAW264.7细胞释放TNF-α,体内评价显示5KL-1对脓毒症模型小鼠具有显著的保护作用;5KL-1经HPLC进一步分离后,得到5KL-1A、5KL-1B和5KL-1C三个产物;其中仅5KL-1B是单一物质并与Lipid A的结合活性最高,纯度分析显示,5KL-1B的纯度因子为999.685;经质谱、核磁、红外等波谱分析,对5KL-1B的结构指认为2’, 5, 6’, 7-四羟基二氢黄酮醇(2’, 5, 6’, 7-tetrahydroxy-flavanonol, THF),分子式为:C15H12O7。
     2.对THF的活性研究显示:①、THF在体内外对LPS均具有直接中和作用;②、THF能够显著抑制LPS诱导RAW264.7细胞释放TNF-α和IL-6,并具有明显的量效关系;③、THF对LPS诱导的RAW264.7细胞TLR4和TNF-α在mRNA水平的表达均具有显著的抑制作用;④、THF对致死剂量热灭活大肠埃希氏菌攻击的小鼠具有显著的保护作用。
     结论
     应用现代生物技术从黄芩中定向分离出2’, 5, 6’, 7-四羟基二氢黄酮醇;2’, 5, 6’, 7-四羟基二氢黄酮醇在体内外对LPS均具有拮抗作用,对脓毒症模型小鼠具有保护作用。
Introduction Sepsis is defined as suspected or proven infection plus a systemic inflammatory response syndrome. It is the most common complication of burn, trauma and infectious diseases. An epidemiological study found that there were approximately 18 million cases of sepsis annually worldwide and the incidence was expected to increase 1% per year. Septic shock and multiorgan dysfunction resulting from sepsis are the leading cause of death in intensive care units, with the mortality rates between 50 and 60%.
     Lipopolysaccharide (LPS; known also as endotoxin) is an outer membrane component of gram-negative bacteria, and thought to be a major PAMP of sepsis. In the presence of lipopolysaccharide-binding protein (LBP), LPS interacts with monocyte/macrophage cells via CD14 and the two form the LPS-CD14 complex. Then the complex binds to TLR4 and triggers the TLR4-mediated signal transduction to induce the release of pro-inflammatory cytokines, including TNF-αand IL-6. Over expression of cytokines will trigger systemic inflammatory response syndrome, as a result, sepsis and septic shock take place. Although great attentions have been paid in studies of the pathophysiology and treatment of sepsis, there is currently no effective anti-sepsis drug in clinical use.
     Application of traditional Chinese medicines in septic therapy has a long history. Recent clinical trials and studies also demonstrated that a lot of herbs possess the properties of anti-LPS. However, herbs usually have a large number of complex constituents and thus extremely difficult to identify the anti-LPS ones, which limit their clinical uses. In previous studies, we successfully established an effective method to screen anti-LPS compound from traditional Chinese herbs using affinity biosensor technology. In this study, based on this technology platform, the aqueous extracts from traditional Chinese herbs were isolated by using macroporous adsorptive resins technology, ultra filtration membrane technology and high performance liquid chromatography (HPLC) technology in order to obtain anti-LPS monomer to be used for sepsis therapy.
     Methods First, the aqueous extracts from sixty traditional Chinese herbs were tested for detecting the binding activity to Lipid A using the affinity biosensor technology. Herb has high Lipid A-binding activity in the screening test was isolated by using macroporous adsorptive resins technology, ultra filtration membrane technology and HPLC technology. In the isolation proceedings of aqueous extract from the herb, the biosensor affinity technology has been used to detect Lipid A-binding activity for various kinds of elutes in order to screen the active site from them. Furthermore, we evaluated the anti-LPS activity of the elute fraction which has the highest binding activity to Lipid A among them in vitro and in vivo, As a result, the active compound against LPS was attained.
     Second, the active compound was purified by HPLC and the purified monomer with high Lipid A-binding activity was analyzed by infrared, mass spectrometry and NMR (nuclear magnetic resonance) in order to identify its structure.
     Finally, anti-sepsis activity of the monomer was studied in vitro and in vivo. In detail, the neutralization of the monomer to LPS was detected by kinetic turbidimetric limulus test. Meanwhile, ELISA and RT-PCR was used respectively to measure the release of cytokine (TNF-αand IL-6) and detect the expression of TLR4 mRNA in RAW264.7 cells exposure to LPS with or without pretreatment of the monomer. Furthermore, the protective effect on mice subjected to lethal dose of heat-killed E.coli challenge with or without treatment of the monomer was observed.
     Result Five herbs were found to possess high Lipid A-binding activity in the screening test of aqueous extracts from sixty traditional Chinese herbs (RU>200 arc second). They were Radix Paeoniae Rubra, Rhizoma Picrorhizae, Galla Chinensis, Scutellaria baicalensis Georgi and Fructus Chebulae. To weigh the merits and demerits, we selected Scutellaria baicalensis Georgi for further study. Subsequently, SbG-4 was isolated from the herb, which had high Lipid A-binding activity. Moreover, SbG-4 could significantly increase the survival rate of sepsis mice induced by heat-killed E.coli. Interestingly, the Chemical compound assessment of SbG-4 indicated it is a flavonoid compound. So, we selected SbG-4 further to isolate using ultra filtration membrane technology and HPLC technology. In this step, we collected five HPLC fractions and named from 5KL-1 to 5. Among them, 5KL-1 had the highest Lipid A-binding activity and significantly neutralizing LPS in vitro. In RAW264.7 cells, the supernatant TNF-αlevel was increased after the cells exposure to LPS, however, this effect was attenuated by the pretreatment with 5KL-1. Likewise, 5KL-1 could protect mice from heat-killed E.coli challenge. Collectively, 5KL-1 has anti-LPS activity and deserves further study.
     After purified by HPLC, 5KL-1 yielded three products and named from 5KL-1A to C. among them, 5KL-1B had the highest binding activity to Lipid A. So, we selected it for further study. HPLC analysis to show that 5KL-1B is a single peak and purity factor is 999.685. After the structure was analyzed by mass spectrometry, infrared and NMR, 5KL-1B was confirmed as 2’,5 ,6’,7-tetrahydroxy-flavanonol (THF), molecular formula is C15H12O7.
     A series of experiments were used to evaluate the anti-LPS activity of THF. In detail, THF could neutralize LPS and decrease the release of TNF-αand IL-6 in LPS-induced RAW264.7 cells in a dose-dependent manner. Furthermore, THF reduced the expression of TLR4 and TNF-αmRNA in RAW264.7 cells induced by LPS in a dose-dependent manner too. In vivo experiments, Escherichia coli 35218 (E.coli 35218) was used to induce sepsis in an animal model. We also found that THF could protect mice against a lethal challenge with heat-killed E.coli in a dose-dependent manner.
     Conclusion An active monomer, 2’, 5, 6’, 7-tetrahydroxy-flavanonol (THF) was attained from Scutellaria baicalensis Georgi. In vitro, THF could neutralize LPS and suppress the activating of RAW264.7 cells induced by LPS. In vivo, THF could significantly decrease the plasme LPS level in endotoxemia mice and protect mice against a lethal challenge with heat-killed E.coli. Collectively, THF has anti-sepsis activity.
引文
1. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference[J]. Crit Care Med, 2003, 31(4):1250-1256.
    2. Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care[J]. Crit Care Med, 2001, 29(7):1303-1310.
    3. Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000[J]. N Engl J Med, 2003, 348(16):1546-1554.
    4. Medzhitov R. Recognition of microorganisms and activation of the immune response[J]. Nature, 2007, 449(7164):819-826.
    5. Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity[J]. Shock, 2001, 16(2):83-96.
    6. Sparwasser T, Miethke T, Lipford G, et al. Bacterial DNA causes septic shock[J]. Nature, 1997, 386(6623):336-337.
    7. Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4(7):499-511.
    8.蒋建新,姚咏明,郑江.细菌内毒素基础与临床[M].第一版.北京:人民军医出版社, 2004. 402-416.
    9. Cohen J. The immunopathogenesis of sepsis[J]. Nature, 2002, 420(6917):885-891.
    10. Ishii KJ, Akira S. Toll-like Receptors and Sepsis[J]. Curr Infect Dis Rep, 2004, 6(5):361-366.
    11. Philpott DJ, Girardin SE. The role of Toll-like receptors and Nod proteins in bacterial infection[J]. Mol Immunol, 2004, 41(11):1099-1108.
    12. Wu X, Qian G, Zhao Y, et al. LBP inhibitory peptide reduces endotoxin-induced macrophage activation and mortality[J]. Inflamm Res, 2005, 54(11):451-457.
    13. Lin WJ, Yeh WC. Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock[J]. Shock, 2005, 24(3):206-209.
    14. Russell JA. Management of sepsis[J]. N Engl J Med, 2006, 355(16):1699-1713.
    15. Gogos CA, Drosou E, Bassaris HP, et al. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options[J]. J Infect Dis, 2000, 181(1):176-180.
    16. Hotchkiss RS, Swanson PE, Freeman BD, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction[J]. Crit Care Med, 1999, 27(7): 1230-1251.
    17. Crouser ED, Julian MW, Weinstein DM, et al. Endotoxin-induced ileal mucosal injury and nitric oxide dysregulation are temporally dissociated[J]. Am J Respir Crit Care Med, 2000, 161(5):1705-1712.
    18. Macagno A, Molteni M, Rinaldi A, et al. A cyanobacterial LPS antagonist prevents endotoxin shock and blocks sustained TLR4 stimulation required for cytokine expression[J]. J Exp Med, 2006, 203(6):1481-1492.
    19. Nakamura M, Shimizu Y, Sato Y, et al. Toll-like receptor 4 signal transduction inhibitor, M62812, suppresses endothelial cell and leukocyte activation and prevents lethal septic shock in mice[J]. Eur J Pharmacol, 2007, 569(3):237-243.
    20. Abraham E, Anzueto A, Gutierrez G, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group[J]. Lancet, 1998, 351(9107):929-933.
    21. Abraham E, Laterre PF, Garbino J, et al. Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients[J]. Crit Care Med, 2001, 29(3):503-510.
    22. Fisher CJ Jr, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group[J]. JAMA, 1994, 271(23):1836-1843.
    23. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis[J]. N Engl J Med, 2001, 344(10):699-709.
    24. Marti-Carvajal A, Salanti G, Cardona AF. Human recombinant activated protein C forsevere sepsis[J]. Cochrane Database Syst Rev, 2007(3):CD004388.
    25. Wu X, Liu Y, Sheng W, et al. Chemical constituents of Isatis indigotica[J]. Planta Med, 1997, 63(1):55-57.
    26. Nagaki Y, Hayasaka S, Abe T, et al. Effects of oral administration of Gardeniae fructus extract and intravenous injection of crocetin on lipopolysaccharide- and prostaglandin E2-induced elevation of aqueous flare in pigmented rabbits[J]. Am J Chin Med, 2003, 31(5):729-738.
    27. Genfa L, Jiang Z, Hong Z, et al. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology[J]. Int Immunopharmacol, 2005, 5(6):1007-1017.
    28. Frecer V, Ho B, Ding JL. Molecular dynamics study on lipid A from Escherichia coli: insights into its mechanism of biological action[J]. Biochim Biophys Acta, 2000, 1466(1-2):87-104.
    29. Yibin G, Jiang Z, Hong Z, et al. A synthesized cationic tetradecapeptide from hornet venom kills bacteria and neutralizes lipopolysaccharide in vivo and in vitro[J]. Biochem Pharmacol, 2005, 70(2):209-219.
    30. D'Orazio P. Biosensors in clinical chemistry[J]. Clin Chim Acta, 2003,334(1-2):41-69.
    31. Jiang Z, Hong Z, Guo W, et al. A synthetic peptide derived from bactericidal/permeability-increasing protein neutralizes endotoxin in vitro and in vivo[J]. Int Immunopharmacol, 2004, 4(4):527-537.
    32.郭毅斌,曹红卫,陈莉萍.白鲜皮提取物拮抗内毒素/脂多糖的实验观察[J].中华烧伤杂志, 2007, 23(2): 104-107.
    33. Wang J, Zhou H, Zheng J, et al. The antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli challenge by decreasing proinflammatory cytokine release[J]. Antimicrob Agents Chemother, 2006, 50(7):2420-2427.
    34.于海,黄泰康,吴春福.中药现代化发展的进程和趋势[J].中草药, 2005, 36(1): 147-149.
    35.孙耀光.中药抗内毒素的作用及其机制[J].现代中医药, 2004(6): 40-42.
    36. O'Neill LA. Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases[J]. Curr Opin Pharmacol, 2003, 3(4):396-403.
    37. Caroff M, Karibian D. Structure of bacterial lipopolysaccharides[J]. Carbohydr Res, 2003, 338(23):2431-2447.
    38. Fujihara M, Muroi M, Tanamoto K, et al. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex[J]. Pharmacol Ther, 2003, 100(2):171-194.
    39.蒋栋能,郑江.大蒜黄酮的分离及抗内毒素活性的评价[J].中国临床药理学与治疗学, 2004, 9(10): 1154-1156.
    40. Huang WH, Lee AR, Yang CH. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI[J]. Biosci Biotechnol Biochem, 2006, 70(10):2371-2380.
    41.王跃生,王洋.大孔吸附树脂研究进展[J].中国中药杂志, 2006, 31(12): 961-965.
    42. Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage[J]. Nat Rev Drug Discov, 2005, 4(10):854-865.
    43. Mannel DN. Advances in sepsis research derived from animal models[J]. Int J Med Microbiol, 2007, 297(5):393-400.
    44. Guo YB, Chen LP, Cao HW, et al. Polymyxin B antagonizing biological activity of lipopolysaccharide[J]. Chin J Traumatol, 2007,10(3):180-183.
    45. Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock[J]. Clin Microbiol Rev, 2003, 16(3):379-414.
    46.刘小平,李湘南,徐海星.中药分离工程[M].第一版.北京:化学工业出版社, 2005. 95-100.
    47.朱丹,袁芳,孟坤.黄酮类化合物的研究进展[J].中华中医药杂志, 2007, 22(6): 387-389.
    48. Liu XQ, Du LL, Li WW, et al. Simultaneous qualitative and quantitative analysis of commercial bistorta rhizome and its differentiation from closely related herbs using TLC and HPLC-DAD fingerprinting[J]. Chem Pharm Bull (Tokyo), 2008, 56(1):75-78.
    49. Ganzera M, Choudhary MI, Khan IA. Quantitative HPLC analysis of withanolides in Withania somnifera[J]. Fitoterapia, 2003, 74(1-2):68-76.
    50. Ong KG, Leland JM, Zeng K, et al. A rapid highly-sensitive endotoxin detection system[J]. Biosens Bioelectron, 2006, 21(12):2270-2274.
    51. Lin HH, Huang SP, Hsieh HC, et al. Performance characteristics of the limulus amebocyte lysate assay and gas chromatography-mass spectrum analysis of lipopolysaccharides relative to nitric oxide production by peritoneal exudates of cells[J]. J Hazard Mater, 2007, 145(3):431-436.
    52. Obata T, Nomura M, Kase Y, et al. Early detection of the Limulus amebocyte lysate reaction evoked by endotoxins[J]. Anal Biochem, 2008, 373(2):281-286.
    53. Netea MG, van Deuren M, Kullberg BJ, et al. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors?[J]. Trends Immunol, 2002, 23(3):135-139.
    54. Jean-Baptiste E. Cellular mechanisms in sepsis[J]. J Intensive Care Med, 2007, 22(2):63-72.
    55. Annane D, Bellissant E, Cavaillon JM. Septic shock[J]. Lancet, 2005, 365 (9453): 63-78.
    56. Liaw PC, Esmon CT, Kahnamoui K, et al. Patients with severe sepsis vary markedly in their ability to generate activated protein C[J]. Blood, 2004, 104(13):3958-3964.
    57. Ulloa L, Tracey KJ. The "cytokine profile": a code for sepsis[J]. Trends Mol Med, 2005, 11(2):56-63.
    58. Zhou L, Mao B, Reamer R, et al. Impurity profile tracking for active pharmaceutical ingredients: case reports[J]. J Pharm Biomed Anal, 2007, 44(2):421-429.
    59.吴立军主编.天然药物化学[M].第一版.北京:科学技术文献出版社, 2006. 16-20.
    60.宁永成主编.有机化合物结构鉴定与有机波谱学[M].第二版.北京:科学出版社, 2000. 266-317.
    61.孟令芝,龚淑玲,何永柄.有机波谱分析[M].第二版.武汉:武汉大学出版社, 2003. 194-233.
    62.陆蕴如主编.中药化学[M].北京:学苑出版社, 2005. 24-29.
    63. Feng P, Meissler JJ Jr, Adler MW, et al. Morphine withdrawal sensitizes mice tolipopolysaccharide: elevated TNF-alpha and nitric oxide with decreased IL-12[J]. J Neuroimmunol, 2005, 164(1-2):57-65.
    64. Yamamoto S, Tin-Tin-Win-Shwe, Ahmed S, et al. Effect of ultrafine carbon black particles on lipoteichoic acid-induced early pulmonary inflammation in BALB/c mice[J]. Toxicol Appl Pharmacol, 2006, 213(3):256-266.
    65. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408.
    66. Zhang YY, Don HY, Guo YZ, et al. Comparative study of Scutellaria planipes and Scutellaria baicalensis[J]. Biomed Chromatogr, 1998, 12(1):31-33.
    67. Cheng PY, Lee YM, Wu YS, et al. Protective effect of baicalein against endotoxic shock in rats in vivo and in vitro[J]. Biochem Pharmacol, 2007, 73(6):793-804.
    68. Van Dien M, Takahashi K, Mu MM, et al. Protective effect of wogonin on endotoxin-induced lethal shock in D-galactosamine-sensitized mice[J]. Microbiol Immunol, 2001, 45(11):751-756.
    69.吕根法,龚小云,卫国.应用生物传感技术测定多粘菌素B中和内毒素活性物质能力的实验研究[J].中华烧伤杂志, 2004, 20(1): 23-25.
    70.郑江,龚小云,吕根发.杀菌性通透性增加蛋白模拟肽与LPS/Lipid A的亲和力测定[J].解放军医学杂志, 2003, 28(3): 197-199.
    71. Chen CH, Sheu MT, Chen TF, et al. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways[J]. Biochem Pharmacol, 2006, 72(8):1001-1009.
    72. Mathison JC, Tobias PS, Wolfson E, et al. Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS[J]. J Immunol, 1992, 149(1):200-206.
    73.蒋建新,姚咏明,郑江.细菌内毒素基础与临床[M].第一版.北京:人民军医出版社, 2004. 75-76.
    74. Tsujimoto H, Ono S, Majima T, et al. Neutrophil elastase, MIP-2, and TLR-4 expression during human and experimental sepsis[J]. Shock, 2005, 23(1):39-44.
    75. Pathan N, Hemingway CA, Alizadeh AA, et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock[J]. Lancet, 2004, 363(9404):203-209.
    76. Pritts T, Hungness E, Wang Q, et al. Mucosal and enterocyte IL-6 production during sepsis and endotoxemia--role of transcription factors and regulation by the stress response[J]. Am J Surg, 2002, 183(4):372-383.
    77. Yagmur Y, Ozturk H, Unaldi M, et al. Relation between severity of injury and the early activation of interleukins in multiple-injured patients[J]. Eur Surg Res, 2005, 37(6):360-364.
    78. Manley MO, O'Riordan MA, Levine AD, et al. Interleukin 10 extends the effectiveness of standard therapy during late sepsis with serum interleukin 6 levels predicting outcome[J]. Shock, 2005, 23(6):521-526.
    79. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response[J]. Nature, 2000, 406(6797):782-787.
    80. Opal SM, Huber CE. Bench-to-bedside review: Toll-like receptors and their role in septic shock[J]. Crit Care, 2002, 6(2):125-136.
    81. Edelman DA, Jiang Y, Tyburski J, et al. Toll-like receptor-4 message is up-regulated in lipopolysaccharide-exposed rat lung pericytes[J]. J Surg Res, 2006, 134(1):22-27.
    82. Niessner A, Steiner S, Speidl WS, et al. Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo[J]. Atherosclerosis, 2006, 189(2):408-413.
    83. Remick DG. Pathophysiology of sepsis[J]. Am J Pathol, 2007, 170(5):1435-1444.
    1. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference[J]. Crit Care Med, 2003, 31(4):1250-1256.
    2. Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000[J]. N Engl J Med, 2003, 348(16):1546-1554.
    3. Ulloa L, Tracey KJ. The "cytokine profile": a code for sepsis[J]. Trends Mol Med, 2005, 11(2):56-63.
    4. Philpott DJ, Girardin SE. The role of Toll-like receptors and Nod proteins in bacterial infection[J]. Mol Immunol, 2004, 41(11):1099-1108.
    5. Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4(7):499-511.
    6. Medzhitov R. Recognition of microorganisms and activation of the immune response[J]. Nature, 2007, 449(7164):819-826.
    7. Janeway CA Jr, Medzhitov R. Introduction: the role of innate immunity in the adaptive immune response[J]. Semin Immunol, 1998, 10(5):349-350.
    8. Opal SM, Huber CE. Bench-to-bedside review: Toll-like receptors and their role in septic shock[J]. Crit Care, 2002, 6(2):125-136.
    9. Netea MG, van Deuren M, Kullberg BJ, et al. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors?[J]. Trends Immunol, 2002, 23(3):135-139.
    10. Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product[J]. J Immunol, 1999, 162(7):3749-3752.
    11. Opitz B, Schroder NW, Spreitzer I, et al. Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation[J]. J Biol Chem, 2001, 276(25):22041-22047.
    12. Asai Y, Ohyama Y, Gen K, et al. Bacterial fimbriae and their peptides activate human gingival epithelial cells through Toll-like receptor 2[J]. Infect Immun, 2001, 69(12):7387-7395.
    13. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA[J]. Nature, 2000, 408(6813):740-745.
    14. O'Neill LA. Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases[J]. Curr Opin Pharmacol, 2003, 3(4):396-403.
    15. Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity[J]. Shock, 2001, 16(2):83-96.
    16. Russell JA. Management of sepsis[J]. N Engl J Med, 2006, 355(16):1699-1713.
    17. Cavaillon JM, Adib-Conquy M, Fitting C, et al. Cytokine cascade in sepsis[J]. Scand J Infect Dis, 2003, 35(9):535-544.
    18. Nathan C. Points of control in inflammation[J]. Nature, 2002, 420(6917):846-852.
    19. Annane D, Bellissant E, Cavaillon JM. Septic shock[J]. Lancet, 2005, 365(9453): 63-78.
    20. Napoleone E, Di Santo A, Bastone A, et al. Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation[J]. Arterioscler Thromb Vasc Biol, 2002, 22(5): 782-787.
    21.蒋建新,姚咏明,郑江.细菌内毒素基础与临床[M].第一版.北京:人民军医出版社, 2004. 243-258.
    22. Creasey AA, Reinhart K. Tissue factor pathway inhibitor activity in severe sepsis[J]. Crit Care Med, 2001, 29(7 Suppl):S126-129.
    23. Faust SN, Levin M, Harrison OB, et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis[J]. N Engl J Med, 2001, 345(6):408-416.
    24. Levi M, Keller TT, van Gorp E, et al. Infection and inflammation and the coagulation system[J]. Cardiovasc Res, 2003, 60(1):26-39.
    25. Ertel W, Kremer JP, Kenney J, et al. Downregulation of proinflammatory cytokine release in whole blood from septic patients[J]. Blood, 1995, 85(5):1341-1347.
    26. Efron PA, Tinsley K, Minnich DJ, et al. Increased lymphoid tissue apoptosis in baboons with bacteremic shock[J]. Shock, 2004, 21(6):566-571.
    27. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis[J]. N Engl J Med, 2003, 348(2):138-150.
    28. Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock[J]. Lancet, 2002, 360(9328): 219-223.
    29. 29Landry DW, Oliver JA. The pathogenesis of vasodilatory shock[J]. N Engl J Med, 2001, 345(8):588-595.
    30. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock[J]. N Engl J Med, 2001, 345(19):1368-1377.
    31. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock[J]. Crit Care Med, 2004, 32(3):858-873.
    32. Schumer W. Steroids in the treatment of clinical septic shock[J]. Ann Surg, 1976, 184(3):333-341.
    33. Sprung CL, Caralis PV, Marcial EH, et al. The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study[J]. N Engl J Med, 1984, 311(18):1137-1143.
    34. Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study[J]. Crit Care Med, 1999, 27(4):723-732.
    35. Assmann SF, Pocock SJ, Enos LE, et al. Subgroup analysis and other (mis)uses of baseline data in clinical trials[J]. Lancet, 2000, 355(9209):1064-1069.
    36. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock[J]. JAMA, 2002, 288(7):862-871.
    37. Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids for severe sepsis and septic shock: a systematic review and meta-analysis[J]. BMJ, 2004, 329(7464):480.
    38. Dandona P, Aljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect?[J]. J Clin Endocrinol Metab, 2001, 86(7):3257-3265.
    39. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients[J]. N Engl J Med, 2001, 345(19):1359-1367.
    40. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin[J]. N Engl J Med, 2001, 345(10):747-755.
    41. Alejandria MM, Lansang MA, Dans LF, et al. Intravenous immunoglobulin for treating sepsis and septic shock[J]. Cochrane Database Syst Rev, 2002(1):CD001090.
    42. Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-doseantithrombin III in severe sepsis: a randomized controlled trial[J]. JAMA, 2001, 286(15):1869-1878.
    43. Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial[J]. JAMA, 2003, 290(2):238-247.
    44. Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death[J]. N Engl J Med, 2005, 353(13):1332-1341.
    45. Marti-Carvajal A, Salanti G, Cardona AF. Human recombinant activated protein C for severe sepsis[J]. Cochrane Database Syst Rev, 2007(3):CD004388.
    46. Marshall JC. Such stuff as dreams are made on: mediator-directed therapy in sepsis[J]. Nat Rev Drug Discov, 2003, 2(5):391-405.
    47. Aneja R, Fink MP. Promising therapeutic agents for sepsis[J]. Trends Microbiol, 2007, 15(1):31-37.
    48.于海,黄泰康,吴春福.中药现代化发展的进程和趋势[J].中草药, 2005, 36(1): 147-149.
    49.孙耀光.中药抗内毒素的作用及其机制[J].现代中医药, 2004(6): 40-42.
    50.蒋建新,姚咏明,郑江.细菌内毒素基础与临床[M].第一版.北京:人民军医出版社, 2004. 402-416.
    51.蒋栋能,郑江.大蒜黄酮的分离及抗内毒素活性的评价[J].中国临床药理学与治疗学, 2004, 9(10): 1154-1156.
    52.郭毅斌,曹红卫,陈莉萍.白鲜皮提取物拮抗内毒素脂多糖的实验观察[J].中华烧伤杂志, 2007, 23(2): 104-107.
    53. Genfa L, Jiang Z, Hong Z, et al. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology[J]. Int Immunopharmacol, 2005, 5(6):1007-1017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700