用户名: 密码: 验证码:
室温芬顿试剂高级氧化技术条件选择及效果评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类活动的不断增加、环境资源的不断改变,导致各类排放污水的复杂性不断增加,废水对环境所造成的影响也日益严重,与当前提倡的节能减排,建设资源节约型、环境友好型的人与自然和谐发展的社会理念相悖。Fenton试剂作为具有独特优势的一种高级氧化技术,近年来成为环境科学与工程领域的研究热点,也广泛地应用于各类废水处理实践中。但在实际的工程实践中,芬顿试剂的链反应的进行受到一系列因素的影响,导致存在着建设和运行成本较高或处理效率低等问题。因此系统分析这些影响因素及影响程度的大小,对芬顿试剂在工程实践中的应用有着重要的指导意义。
     Fenton法处理含有羟基有机化合物的废水时存在明显的选择性。羟基取代基类型、羟基数量、羟基取代位置、主链链长及主链的饱和度对Fenton法处理效果均存在不同程度的影响。实验结果表明:一元酚羟基对Fenton反应有着促进作用,而一元醇羟基对其有强烈的抑制作用;当碳原子数相同而羟基数不同时,随羟基数量的增加其对Fenton反应的影响逐渐下降;饱和一元醇主链碳原子个数越多,则其对Fenton反应的抑制作用越明显;主链的不饱和度对Fenton反应的影响也是不同的,脂肪族不饱和羟基化合物的Fenton法处理效果很差,而对苯环类羟基化合物有着很好的氧化处理效果;链长与醇羟基个数都不同时,随主链的增长和羟基数量的增加,其对Fenton反应的抑制作用随之下降,表现出良好的氧化降解效果。
     影响Fenton反应过程H_2O_2分解及其有效利用率的因素有很多,其中[Fe~(2+)]要求控制在3mmol/L以上。酚类体系H_2O_2的有效利用率不仅受H_2O_2浓度变化的影响,且受初始COD_(Cr)的影响。一般表现为随COD_(Cr)的增加,H_2O_2有效利用率迅速增加,当初始COD_(Cr)一定时,H_2O_2浓度在600和1800mg/L时,一元酚与二元酚体系的H_2O_2有效利用率均出现了两个峰值,前者的峰值分别为11.83和12.99gCOD_(Cr)/gH_2O_2,后者的峰值分别为9.01和11.95gCOD_(Cr)/gH_2O_2。而醇类体系H_2O_2的有效利用率受H_2O_2浓度的影响较大,但与初始COD_(Cr)的关系不明显。当H_2O_2浓度低于300mg/L时,乙醇比对照体系H_2O_2的分解率高1-3%,而有效利用率仅为0.6gCOD_(Cr)/gH_2O_2;随H_2O_2用量的继续增加,其有效利用率趋于0gCOD_(Cr)/gH_2O_2。而二元醇体系H_2O_2有效利用率与其浓度间呈“倒U”型规律,H_2O_2低于300mg/L时,其有效利用率仅为1.25gCOD_(Cr)/gH_2O_2;H_2O_2浓度在300-900mg/L之间时,其有效利用率可达8.96gCOD_(Cr)/gH_2O_2;其后随着H_2O_2的增加,有效利用率迅速下降到与乙醇体系相当。在混合体系中,醇羟基和酚羟基所占比例对H_2O_2有效利用率也有显著的影响,当乙醇比例小于60%时,H_2O_2有效利用率稳定在13.0gCOD_(Cr)/gH_2O_2;随乙醇比例的增加,其对H_2O_2的分解抑制效应表现出剂量依赖关系,H_2O_2有效利用率也逐渐下降到近于0gCOD_(Cr)/gH_2O_2,说明这部分H_2O_2并没有得以有效地分解用于氧化废水中的COD_(Cr),这在工程实践中应引起高度的重视。
     芬顿氧化技术的选择性体现在不同体系中羟基自由基的不同产生量上。亚甲基蓝分光光度法测得的ΔA可直接反映出不同体系中产生的不同羟基自由基的量,而ΔA越大,羟基的生成量越大。氧化效果差的一元饱和醇(乙醇体系中),相同实验条件下其ΔA_(乙醇)仅为0.020,远远小于ΔA_(丙三醇)(1.000)、ΔA_(聚乙烯醇)(1.190)及ΔA_(苯酚)(1.200),ΔA_(丙三醇)又稍小于ΔA_(聚乙烯醇)及ΔA_(苯酚),因此我们可以明确判断出乙醇对羟基生成的抑制作用,亚甲基蓝分光光度法测定不同体系中的羟基自由基产生量可用来直接判断底物对芬顿试剂的抑制效应及抑制程度。脉冲式加温对室温下芬顿试剂的氧化效果有着促进作用,且加热频率越大,效果越明显。
The complexity of waste water is increasing and its harming to the environment is more and more serious because of the increasing of human activity and the ceaseless change of the environment resources,these object to the ideas of energy saving and emission reduction,environment amicably society and resources economizing society. The Fenton reagent is a unique superiority oxidation technology of kinds of advanced oxidation processes which is used in treating waste water widely and is a hot spot in environmental science and project research.But in the practice,there are high cost and low efficency in present processes because of the influencing of some factors to the Fenton reagent.So we need to analyse these factors and their influencing extents systematically which can do great benefit to the practice.
     Fenton reagent was selective to the organic compounds with different kinds of hydroxyl such as the hydroxyl type,hydroxyl quantity,the hydroxyl position,the length of the chain and the chain's saturation.The experimental results indicated some concludes:the monohydric phenol hydroxyl can promote the Fenton reaction,but the monohydroxy-alcohol hydroxyl suppress it fiercely;when the hydroxy compounds had the same carbon but the hydroxy quantity,their effects wound unincreased as the hydroxy quantity increasing;to the saturated monohydroxy-alcohol,the suppression became more and more obviously while the carbons of the chain were increasing;the effects of the chain's unsaturation on Fenton reaction were different:the oxidized effects were very well for the hydroxyl compounds with the phenyl but the acyclic unsaturated compounds;when the length of the chain and the hydroxyl quantity were increasing,the suppression descended and the oxidized effects were well.
     The free radical chain reaction in the Fenton reaction is influenced by many factors,[Fe2+] is required to control in 3mmol/L.In the phenol's system,the availably utilized ratios of H_2O_2 were not only influenced by its concentration but also the COD_(Cr) of this system.Generally,with the increasing of the COD_(Cr), the availably utilized ratios H_2O_2 were increasing.When the COD_(Cr) was constant and the concentration of H_2O_2 was from 600 to 1800mg/L,there were two peaks of H_2O_2’s availably utilized ratios in one phenol and dual phenol's systems respectively,the former peaks were 11.83 and 12.99gCOD_(Cr)/gH_2O_2,the latter peaks were 9.01 and 11.95gCOD_(Cr)/gH_2O_2.In the alcohol’s system,the availably utilized ratios of H_2O_2 were influenced by the concentration of H_2O_2 obviously,but not the system’s COD_(Cr).When the concentration of H_2O_2 was less than 300mg/L, the decomposition rate of H_2O_2 was higher by 1-3 percent in the ethanol than the control system,and the availably utilized ratios were only 0.6gCOD_(Cr)/gH_2O_2;with the increasing of H_2O_2,its availably utilized ratios tended to 0gCOD_(Cr)/gH_2O_2.In the system of 1,3 propanediol,the availably utilized ratios of H_2O_2 displayed a "inverted U",with its concentration increasing,when the concentration of H_2O_2 was less than 300mg/L,its availably utilized ratios were only 1.25gCOD_(Cr)/gH_2O_2; but the availably utilized ratios H_2O_2 could be up to 8.96gCOD_(Cr)/gH_2O_2 when the concentration H_2O_2 is 300-900mg/L,later it fell rapidly to the level of ethanol.In the mixed system,the availably utilized ratios of H_2O_2 was also influenced obiviously by the proportion of phenol and alcohol,when the proportion of ethanol was less than 60%,the H_2O_2’s availably utilized ratios stabilized in 13.0gCOD_(Cr)/gH_2O_2;and when its proportion surpassed 60%,it displayed the dosage dependent inhibitory action and the H_2O_2’s availably utilized ratios also tended to near 0gCOD_(Cr)/gH_2O_2,it was confirmed that this part of H_2O_2 could’t be decomposited effectivly for the oxidizition of COD_(Cr),consequently,we must pay more attention to it in engineering.
     The selection of Fenton was expressed by the different hydroxyl radical quantity,and the hydroxyl radical quantity can be obtained by theΔA which was detected in the method based on its reaction with thiazine.the bigger was theΔA,the more was the hydroxyl radical quantity.Under the same experimental condition,ΔAethanol <<ΔA_(glycerol),ΔA_(polyvinyl alcohol_,ΔA_(phenol) andΔA_(glycerol) <ΔA_(polyvinyl alcohol),ΔA_(phenol).We can conclude that ethanol suppressed the oxidation of Fenton fiercely.So the thiazine spectrophotometric analysis can be used as an effective method which estimates the suppression and the extent of suppression of different organic compands.
     The pulse warming can promote the oxidation effect of Fenton at room temperature,and the more increasing was the frequency,the more obvious was the promotion.
引文
[1] Carey J H.Introduction to advanced oxidation processes( AOP) for destruction of organics in wastewater[J].WaterPollut.Res.J.Canada,1992,27(1):1-21.
    [2] LegriniO,OliverosE,BraunA M.Photochemical processes for water treatment[J].Chem.Rev.,1993,93(2):671-698.
    [3] Espfugas S.Gimenez J,Contreras S.etc.Comparison of different advanced oxidation processes for phenol degradation[J].Water Res.,2002.36:1034-1042.
    [4]陈德强.高级氧化法处理难降解有机废水研究进展[J].环境保护科学,2005,31(132):20-23.
    [5]沈信儒,杨明.高级氧化技术处理印染废水[J].净水技术,2005,24(4):25-27.
    [6]苏晓娟,陆雍森,Laurent Bromet.湿式氧化技术的应用现状与发展[J].能源环境保护,2005,19(6):1-4.
    [7]孙杰,杨再鹏,刘正.超临界水氧化技术发展现状及展望[J].化工环保,2005,25(1):33-36.
    [8]张志杰,葛红光,张开勋.超临界水氧化处理废水研究进展[J].环境污染治理技术与设备, 2003, 4(2):41-43.
    [9] Yusuf G Adewuyi.Sonochemistry:Environmental science and engineering application[J].Ind Eng Chem Res,2003,40:4681-4715.
    [10]周志刚,李杰,吴彦.低温等离子体技术的应用及其反应器的研究[J].环境科学与技术,2004,27(增刊):92-94.
    [11]韩育宏,陆彬.高压脉冲放电等离子体水处理技术研究进展[J].河北大学学报,2007,27(增刊):190-194.
    [12]卞文娟,杨彬,雷乐成.液电等离子体处理有机废水[J].环境污染治理技术与设备,2003,4(5):80-84.
    [13]周爱姣,陶涛.高压脉冲放电等离子体处理垃圾渗滤液[J].武汉城市建筑学院学报,2001,18(3-4):44-47.
    [14]雷乐成,汪大 .水处理高级氧化技术.北京:化学工业出版社. 2001.
    [15] Lucking P.Iron powder,graphite and activated carbon as catalysts for the oxidation of 4-chlorphenol with hydrogen peroxide in aqueous solution[J].Wat.Res.,1998,32(9):2607-2614.
    [16]李丽洁,华兆哲,陈坚,等.新型光催化固定膜反应器对2,4-二硝基苯酚的降解研究[J].水处理技术,1999,25(3):151-154.
    [17]安立超,余宗学,严学亿,等.利用芬顿试剂处理硝基苯类生产废水的研究[J].环境科学与技术, 2001, (S1): 3-4.
    [18] Zazo J A, Casas J A.Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent [J]. Environ. Sci.Technol, 2005,39:9295-9302.
    [19] Tekin Huseyin, Bilkay Okan. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater[J]. Journal of Hazardous Materials,2006,136(2):258- 265.
    [20]赵启文,刘岩.芬顿( Fenton)试剂的历史与应用[J].化学世界, 2005, (5): 319- 320.
    [21]Fenton,H.J.H,Oxidation of tartaric acid in the presence of iron[J].ChemSoc.1894(65):899-910.
    [22] Teel A L,Watts R J.Degradation of carbon tetrachloride by modified Fenton’s reagent[J].Journal of Hazardous Materials,2002,B94:179-189.
    [23] Oliveira R,Almeida M F,Santos L,et al. Experimental design of 2, 4-dichlorophenol oxidation by Fenton’s reaction[J]. Ind Eng Chem Res,2006,45: 1266-1276.
    [24] Bernd E,Francesco B,Evert J B. Fenton-like Chemistry in Water: Oxidation catalysis by Fe (Ⅲ) and H2O2 [J]. J PhysChem,2003, A107: 5722-5731.
    [25] Kammeyer,Teunis A. Eggelte, Henk Overmars and etc. Oxidative breakdown and conversion of urocanic acid isomers by hydroxyl radical generating systems[J].Biochimica et biophysica acta,2001,1526: 277-285.
    [26] Wenming Zeng,Frank Martinuzzi,Alexander MacGregor. Development and application of a novel UV method for the analysis of ascorbic acid [J]. Journal of Pharmaceutical and Biomedical Analysis 2005 (36):1107-1111.
    [27] Plgnatello JJ.Dark and photoassisted Fe3+-calalyzed degration ofchlorophenoxy herbicides by hydrogen peroxide[J].Enriron Sci Technol,1992,26(5):944-951.
    [28] Dugulet J P,Brodard E.Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide[J].Ozone Sci Eng,1995,7(2):241-258.
    [29] Miller S.Disinfection products in water treatment[J].Environ Sci Technol,1993,27(12):2292-2294.
    [30]韦朝海,贺明和,任源,等.焦化废水污染特征及其控制过程与策略分析[J].环境科学学报.2007,27(7):1084-1093.
    [31]李亚峰,王春敏,周红星,等.Fenton氧化与吸附法联合处理焦化废水的研究[J].沈阳建筑大学学报(自然科学版),2005,21(4):354-357.
    [32]王春敏,步启军,王维军.Fenton法处理焦化废水的实验研究[J].辽宁化工,2006,35(3):147-183.
    [33]杨健,吴云涛,邢美燕.微电解-Fenton氧化处理难降解蒽醌染整废水试验.同济大学学报(自然科学版).2005,33(12):1635-1640.
    [34]程丽华,黄君礼,王丽,等.Fenton试剂的特性及其在废水处理中的应用.化学工程师Chemical Engineer.2001(3):24-25.
    [35]高艳娇,黄继国,聂广正.Fenton氧化法深度处理垃圾渗滤液[J].工业用水与废水,2006,36(6):39-41.
    [36]陈经涛,李克斌,王建军.利用Fenton氧化法对垃圾渗滤液的预处理试验研究[J].陕西师范大学学报(自然科学版),2007,35(4):58-61.
    [37]王磊,王海霞,吕效平. Fenton法处理水中4, 4’-二溴联苯及动力学研究.环境科学与技术.2007,30(12):69-72.
    [38]胡成生,王刚,吴超飞,等.含甲醛毒性废水电-Fenton试剂氧化技术研究.环境科学.2003,24(6):106-111.
    [39]陈传好,谢波,任源等. Fenton试剂处理废水中各影响因子的作用机制.环境科学, 2000, 21(3): 93-96.
    [40] Kang S F,Liao C H,Chen M C. Pre-oxidation and coagulation of texitile wastewater by the Fenton process [J]. Chemosphere,2002,46 (6):923-928.
    [41] Modirshahla N,Behajady M A,Ghanbary F. Decolorization and mineralizationof C. I. Acid Yellow 23 by Fenton and photo-Fenton processes [J]. Dyes and Pigments,2007, 73(1):305-310.
    [42] Carlos A,Teixeiraa S C,Guardani R.Degradation of an aminosilicone polymer in a water emulsion by the Fenton and the photochemically enhanced Fenton reactions. Chemical Engineering and Processing,2005,44:923-931.
    [43] Lidia Szpyrkowicz, Claudia Juzzolino,Santosh N Kaul.A comparativestudy on oxidation of disperse dyes by electrochemical process,ozone,hypochlorite and Fenton reagent. Water Research,2001,35(9): 2129-2136.
    [44] Claudia Telles Benatti,Celia Regina Granhen Tavares,Terezinha Apare-cida Guedes. Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Management,2006,80 (1):66-74.
    [45]刘建伟,诸葛斌,张一波.等. Fenton试剂法预处理发酵甘油生产提取废水.环境污染治理技术与设备.2004,5(9):82-85.
    [46]范金石,赵剑雄,陈国华.芬顿试剂降解壳聚糖水.化学工程师.2007(5):3-6.
    [47]曹扬,华兆哲,陈坚.Fenton预处理提高聚乙烯醇可生化性.食品与生物技术学报.2005,24(5):33-37.
    [48] Lecheng L, Xueyou S, and Feng H.Mechanism of photo-Fenton degradation of ethanol and PVA*.Chinese J.Chem.Eng.,2003,11(5):577-582.
    [49]金龙,王罗春,赵由才.Fenton试剂-生物法联合处理有机废水研究进展[J].环境污染治理技术与设备,2002,3( 8):52-57.
    [50] Buitron G,Quezada M, Moreno G.Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter [J].Bioresource Technology,2004,92(2):143-149.
    [51] Hu H, Fujie K,Nozawa M,et al. Effects of biodegradable substrates and microbial concentration on the acclimation of microbes to acrylonitrile in aerobic submerged biofilter [J].Water Science and Technology,1998,38(7):81-89.
    [52] Xu X,Li H,Wang W, et al. Degradation of dyes in aqueous solutions by the Fenton process[J].Chemosphere,2004,57(7):595-600.
    [53]田玉萍,曾抗美,吕杨,等.Fenton试剂-浸没式生物滤池处理模拟染料生产废水试验研究.工业水处理.2006,26(11):44-47.
    [54]张铁锴,吴红军,王宝辉,等.Fenton试剂氧化降解聚丙烯酰胺的机理研究.2004,9:6-9.
    [55] Basu Somnsth,Wei Irvine W.Mechanism and kinetics of oxidation of 2,4,6-trichlorophenol by Fenton’s reagent.Environmental Engineering Science,2000,17(5):279-290.
    [56]Yao-Hui Huang,Shu-Ting Tsai,Yi-Fong Huang,Chuh-Yung chen.Degradation of commercial azo dye reactive black B in photo/ferrioxalate system[J].Journal of hazardous materials,2006(HAZMAT-6208):7.
    [57]杨文忠,陈弋,王海峻.Fenton试剂和紫外光-Fenton试剂联合作用处理硝基苯废水.南京化工大学学报,1998,20(1):24-26.
    [58] Fares Al Momani.Impact of photo-oxidation technology on the aqueous solutions of nitrobenzene:Degradation efficiency and biodegradability enhancement.Chemistry,2006,179:184-192.
    [59] Zhao C, Zhao D. Degradation of nitrobenzene in wastewater by ultrasound /Fenton’s reagent[J] .ACS Div. Environ. Chem.,2001,41(2): 485-569.
    [60]周珊,闫伟伟.UV/Fenton法处理间-甲酚废水.环境污染治理技术与设备.2006,7(6):113-116.
    [61]陈琳,雷乐成,杜瑛.UV-Fenton光催化氧化降解对氯苯酚废水反应动力学.环境科学学报.2004,24(2):225-230.
    [62]徐新华,鲁奕良,汪大翚.邻氯苯酚废水的光助-Fen ton氧化反应机理研究.浙江大学学报(工学版).2003,37(4):492-495.
    [63] Modirshahla N,Behajady M A,Ghanbary F.Decolorization and mineralization of C.I.Acid Yellow 23 by Fenton and photo-Fenton processes[J].Dyes and Pigments,2007,73(1):305-310.
    [64]张翼,张晖,吴峰,等.超声-Fenton法处理偶氮染料橙黄Ⅱ的研究[J].环境污染治理技术与设备,2003,4(11):48-51.
    [65]肖新荣,杨江柳,黄增勇,等.微波辐射Fenton试剂-活性炭催化氧化体系降解水中苯酚.南华大学学报(自然科学版).2004,18(4):22-25.
    [66]赵景联,任国勇.微波辐射Fenton试剂氧化催化降解水中三氯乙烯.微波学报.2003,19(1):85-90.
    [67]徐科峰,李忠,夏启斌,等.微波强化非均相类Fenton反应氧化降解苯酚.四川大学学报(工程科学版).2006,38(6):83-87.
    [68]于怀东,项念,杨扬,等.锰离子对Fenton反应的影响.武汉大学学报(理学版).2006,52(4):453-456.
    [69]赵金伟,程薇.Fe /Mn /H2O2体系对含茜素红染料废水的脱色与降解处理[J].水处理技术,2004,30(2):99-102.
    [70] Lu M C,Chen J N,Chang C P.Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton reagent[J].Chemosphere,1997,35(10):2285-2293.
    [71] William H G,Yiishyan L,Kang J W.A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydogen peroxide and UV radiation[J].Ind.Eng.Chem. Res.,1995,(34):2314-2323.
    [72] Lu M C,Chang Y F,Chen I M et al.,Effect of chloride ions on the oxidation of aniline by Fenton’s reagent.Journal of Environment Managemeng,2005,75:177-182.
    [73] Lu M C,Chen J N,Chang C P,Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton’s reagent. Chemosphere,1997,35(10):2285-2293.
    [74] Wang Z P,Zhang Z, Lin Y J et al.,Landfill leachate treatment by a coagulation-photo oxidation process.Journal of Hazardous Materials B,2002,95:153-159.
    [75]周珊,陈传文.电-Fenton法处4-氯酚废水.环境污染治理技术与设备.2004,5(10):56-59.
    [76]周珊,邓代举.电-Fenton法处理苯酚废水的实验研究.化学与生物工程.2004(4):34-35.
    [77] Malato Rodriguez S,Blanco Galvez J, Malaonado Rubio M I et al.,Engineering of solar photocatalytic collectors.Solar Energy,2004,77(5):513-524.
    [78] Gernjak W,Maldonado M I, Malato S et al.,Pilot-plant treatment of olive mill wastewater(OMW) by solar TiO2 photocatalysis and solar Photo-Fenton.,Solar Energ,2004,77(5):567-572.
    [79]Enric Brillas,Juan Casado.Aniline degradation by electro-Fenton and peroxi-coagulation process using a flow reactor for wastewater treatment[J]. Chemosphere,2002,47:241-248.
    [80] Gallard H, Delaat J. Kinetic modelling of Fe(Ⅲ)/H2O2 oxidation reaction in dilute aqueous solution using atrazine as a modle organic compound[J]. Water Research, 2000, 34(12): 3107-3116.
    [81] Delaat J,Gallard H. Catalytic decomposition of hydrogen peroxide by Fe (Ⅲ) in homogeneous aqueous solution:mechanism and kinetic modeling[J]. Environmental Science Technology,1999,33: 2726-2732.
    [82]姜成春,庞素艳,马军,等.钛盐光度法测定Fenton氧化中的过氧化氢.中国给水排水.2006,22(4):88-91.
    [83] Weeks K R,Brue C J,Mohanty N R. Use of Fenton's reagent for the degradation of TCE in aqueous systems and soil slurries. Soil Sediment Contain,2000,9(4):331-345.
    [84]何宁,李寅,陈坚.一种新型蛋白聚糖类生物絮凝剂的分离纯化及组成分析[J].化工学报,2002,53(10):1022-1027.
    [85]李明玉,田依林,唐启红,等.氨-氧化-混凝吸附联合工艺处理染化废水.给水排水, 2003,29(1):52-56.
    [86]孙先锋,张志杰.微生物絮凝剂的特性研究及其进展[J].环境导报, 2001(2):22 -25.
    [87]李蒙英,孟祥勋,余莉.真菌和细菌对染料吸附脱色的高效共培养体系研究[J].环境污染治理技术与设备,2002,3(11):15-19.
    [88]何宁,李寅,陈坚.生物絮凝剂的最新研究进展及其应用[J].微生物学通报,2005,32(2):104-108.
    [89] Levy N. Physcial-chemical aspects in flocculation of Bentonite suspensions by a cyanobacterial biofloccuant importance [J]. Water Research,1992,26(2): 239-254.
    [90]国家环保局.水和废水监测分析方法(第4版).北京:中国环境科学出版社, 2002:102 -103;216-219;236-239.
    [91]杨春维,王栋.可见分光光度法检测环境模拟水相中Fenton反应产生的羟基自由基.环境技术.2005,1(29):29-30.
    [92]程丽华,黄军礼,高会旺.Fenton试剂对水中酚类物质的去除效果研究.环境科学与技术.2004,27(4):3-4.
    [93]程丽华,黄君礼.Fenton试剂的特性及其在废水处理中的应用[J].化学工程师,2001,(3):24-25.
    [94] Masami Fukushima,Kenji Tatsumi,Kengo Morimoto.The fate of aniline after a photo-Fenton reaction in an aqueous system containing iron(Ⅲ), Humic Acid and Hydrogen PeroxiedJ.Environ Sci Technol,2000,34(10):2006-2013.
    [95]乌锡康,金青萍.有机水污染治理M.上海:华东化工学院出版社,1989:344-362.
    [96] Anber M.Reactivity of aromatic compounds towards hydroxyl radicals J.Journal of Physical Chemistry,1966,70 (8):2660-2662.
    [97] Anber M,Meyerstein D,Neta P. Reactivity of aliphatic compounds towards hydroxyl radicals J.Journal of Chemistry Scoiety,1966,13(8):742-747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700