用户名: 密码: 验证码:
烟草遗传多样性分析及其氮代谢的遗传操作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草(Nicotiana tabacum L.)是重要的经济作物,是国民经济的重要支柱之一。目前国内用于烟草育种的亲本比较集中,种质遗传基础比较狭窄,很难培育出新型烟草品种,因此有必要研究烟草种质资源之间的遗传多样性,为今后合理选择烟草育种的亲本以及最大限度地利用烟草种质资源提供理论依据。
     氮是烟草生长所需的三大营养元素之一,同时也是烟草生长的主要限制因子。氮肥施用成本占烟草生产成本的40%。在烟草氮素代谢途径中,谷氨酰胺合成酶(GS)催化铵转化成谷氨酰胺是无机氮同化成有机氮的重要步骤,同时也是氮同化作用过程的一个关键的限速步骤。植物对氮素的利用还需要大量的碳骨架即a-酮戊二酸参与,碳的水平对GS基因的表达有积极作用。而转录因子Dof1与碳代谢相关基因的表达有紧密联系。现有的研究表明利用传统育种方法选育氮素利用率增强的烟草品种很难成功,期望利用植物基因工程技术,在烟草中过量表达谷胺酰胺合成酶及与碳代谢途径相关的Dof1转录因子来提高烟草氮素利用率及其对低氮胁迫的耐受力。本论文主要获得了以下结果:
     1、利用ISSR分子标记对25个烟草种质资源进行了遗传多样性分析。从50条ISSR引物中共筛选出5条引物能对烟草基因组DNA进行有效扩增。这5条引物在25份材料中共扩增出100个位点,其中有76个多态性位点,多态性比率为76%。用NTSYSpc-2.10e软件计算烟草种质间的Jaccard遗传相似系数,25种烟草种质之间的遗传相似性系数界于0.313-0.938之间,平均遗传相似性系数为0.737。野生烟与栽培烟草相似系数较低,说明它们之间存在较高的遗传多样性;利用UPGMA进行系统聚类分析,25个烟草种质资源划分成2组,3个野生烟聚成一类,22个栽培烟草种质聚成另一个大类。
     2、通过PCR方法,从拟南芥中分离出细胞质型谷氨酰胺合成酶GS1基因和叶绿体型谷氨酰胺合成酶GS2基因,并成功构建了在组成型启动子CaMV35S以及光诱导型启动子1,5二磷酸核酮糖羧化酶加氧酶小亚基RbcS控制下的组成/诱导型植物表达载体pH2-35S-PRbcS-GS1和pK2-35S-PRbcS-~*T-GS2。
     3、以野生型烟草WT以及转pPZP221-PRbcS-Dof1表达载体的烟草WT-Dof1为出发材料,通过叶盘转化法,分别转入GS1和GS2组成/诱导型植物表达载体pH2-35S-PRbcS-GS1和pK2-35S-PRbcS-~*T-GS2,获得了6种转基因烟草:WT-GS1,WT-GS2,WT-Dof1.GS1,WT-Dof1-GS2,WT-GS1-GS2,WT-Dof1-GS1-GS2。进行相应的抗生素筛选,基因组PCR检测以及RNA转录水平检测,实验结果表明GS1,GS2基因已转入相应的烟草中。
     4、测定7种转基因烟草的谷氨酰胺合成酶酶活,转基因烟草的酶活约为野生型对照烟草酶活的1.44—2.75倍。测定在低氮胁迫条件下生长的5种转基因烟草WT-GS2,WT-Dof1,WT-Dof1-GS1,WT-GS1-GS2,WT-Dof1-GS1-GS2与野生型烟草的苗期株高,5种转基因烟草与野生型烟草的株高比分别为:1.14,1.23,1.71,1.43,2.27,说明过量表达GS1、GS2基因和Dof1转录因子能够提高转基因烟草的GS酶活,促进其在低氮条件下的生长。
Tobacco (Nicotiana tabacum L.) is an important economic crop and also one of the important pillars of the national economy. At present, the parents for tobacco breeding are relatively concentrated and germplasm genetic base is relatively narrow. It is difficult to produce new varieties of tobacco. Therefore, it is necessary to examine germplasm resources' genetic diversity among the tobaccos for providing a theoretical basis for parents choice of the tobacco breeding and the maximum utilization of tobacco germplasm resources.
     Nitrogen is one of three major nutrition elements and also one of the rate-limiting factors in tabacoo growth. Cost of nitrogen fertilization accounts for 40% of the total cost in tobacco production. Transforming ammonium into the glutamine catalyzed by Glutamine synthetase (GS) is an important step in tabacoo nitrogen metabolisim pathway. It is also a key limited-rate procedure in nitrogen assimilation. The nitrogen utilization for plant needs the participation of a large amounts of carbon skeleton (a-ketoglutarate). The level of carbon plays a positive role in GS expression. The transcription factor Dof1 is closely relation to expression of relative carbon metabolism gene. Present research shows that traditional breeding method is difficult to breed crop varieties with enhancing nitrogen utilization. So it is expected to over-express GS and Dof1 which related to carbon metabolic pathway in tobacco by using plant genetic engineering technology to improve nitrogen utilization and the tolerance to low-nitrogen stress of tobacco. This paper obtained the following results:
     1. The genetic diversity was assessed among 25 tobacco accessions by ISSR marker, and five effective primers were screened out of the 50 ISSR primers. Those five primers finally amplified 100 allels, of which 76 allels were polymorphic, and the ratio of polymorphic allels was 76%. The Jaccard's genetic similarity (GS) coefficients were calculated by NTSYSpc-2.10e software. The result indicated that the GS coefficients among the 25 tobacco accessions were ranged from 0.313 to 0.938 with an average of 0.737. The GS coefficients between three wild tobacco accessions and the cultivated tobacco accessions were smaller than those among the cultivated tobacco accessions, and this suggested that the genetic variation was high between the wild and the cultivated tobacco accessions. The 25 tobacco accessions were divided into two groups on the UPGMA dendrogram constructed from GS coefficients. The three wild tobacco accessions were clustered into one group, while the 22 cultivated tobacco accessions fell into the other group.
     2. GS1 and GS2 were separated from Arabidopisis cDNA by Polymerase Chain Reaction (PCR). The constitutive/inducible plant expression vectors pH2-35S-PRbcS-GS1 and pK2-35S-PRbcS-*T-GS2 which controled by CaMV35S and RbcS had been constructed.
     3. These constitutive/inducible plant expression vectors pH2-35S-PRbcS-GS1 and pK2-35S-PRbcS-*T-GS2 were respectively transformed into wild type tobacco (WT) and the transgenic tobacco which had been transformed plant expression vector pPZP221-PRbcS-Dof by Agrobacterium-mediated method, we got six kinds of transgenic tobaccos: WT-GS1 , WT-GS2 , WT-Dof1-GS1 , WT-Dof1-GS2 , WT-GS1-GS2 , WT-Dof1-GS1-GS2. These transgenic tobaccos were confirmed through antibiotics selection and test of genomic PCR and RT-PCR.
     4. The datas of GS activities in 7 kinds transgenic tobaccos showed that the transgenic tobaccos' GS activities were 1.44-2.75 folds compared with control plants (WT). Determine the seedling height of transgenic tobaccos WT-GS2, WT-Dof1, WT-Dof1-GS1, WT-GS1-GS2, WT-Dof1-GS1-GS2 and wild-type tobacco cultivated under the condition of low nitrogen stress, the ratios were: 1.14, 1.23, 1.71, 1.43, 2.27, respectively. These showed that overexpression of GS1, GS2 and Dof1 can improve the GS activities and promote transgenic tobaccos' growth under the condition of low-nitrogen.
引文
[1]Zietkiewicz E,Rafalske A,Labuda D;Genome finger printing by simple sequence repeat (SSR)anchored polymerase chain reaction amplification;enomics,1994,20:76-183;
    [2]周延清,DNA分子标记技术在植物研究中的应用.北京:化学工业出版社,2005,4.143-148
    [3]高翔,庞红喜,裴阿卫,分子标记技术在植物遗传多样性研究中的应用,南农业大学学报,2002,12:356-359
    [4]邹喻苹,葛颂,王晓东,系统与进化植物学中的分子标记.北京:科学出版社,2001
    [5]杨本超,肖炳光,陈学军,等,基于ISSR标记的烤烟种质遗传多样性研究,遗传,2005,27(5):753-758
    [6]王涛.烟草遗传多样性的RAPD和ISSR分析:[硕士学位论文].福建,福建农林学院,2005
    [7]邱英雄,傅承新,孔航辉,杨梅不同品种的ISSR分析,农业生物技术学报,2002,10(4):343-346
    [8]杨华,宋绪忠,尹光天,等,黄藤ISSR反应体系的条件优化,福建林学院学报,2006年02期:152-155
    [9]Joshi S P,Gupta V S,Aggarwal P K,etal.Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat(ISSR)polymorphism in the genus Oryza.Theor Appl Genet,2000,100:1311-1320
    [10]何川生,何兴金,葛颂,等,烤烟品种资源的聚类分析,植物学报·英文,2001,43(6):610-614
    [11]许明辉,郑民慧,刘广田,烟草品种RAPD分子标记遗传差异研究,农业生物技术学报,1998,6(3):282-284
    [12]Igor C,Oliveira and Gloria M.Coruzzi,Carbon and Amino Acids Reciprocally Moduclate the Expression of Glutamine Synthetase in Arabidopsis.Plant Physiology,1999,9,Val.121,pp.301-309
    [13]Shuichi Yanagisawa,Ai Akiyama,Hiroaki Kisaka,Hirofumi Uchimiya,and Tetuya Miwa,Metabolic engineering with Dof1 transcription factor in plants Improved nitrogen assimilation and growth under low-nitrogen conditions.Plant Biology,2004,5,18,Val.101.no.20,p.7833-7838;
    [14]Clark R B,Duncan R R.Improvement of plant mineral nutrition through breeding.Field Crop Res,1991,27:219-24
    [15]莫良玉,吴良欢,陶勤南,高等植物GS/GOGAT循环研究进展,植物营养与肥料学报,2001,7(2):223-231
    [16]Jeuffroy,B.,Ney,B.,and Ourry,A.Integrated physiological and agronomic modeling of N capture and use within the plant.J.Exp.Bot,2002,53,809-823
    [17]Lawlor,D,W,Carbon and nitrogen assimilation in relation to yield:Mechanisms are the key to understanding production systems,J.Exp.Bot,2002,53,773-787
    [18]Hirel,B.,Bertin,P.Quillere,I.Bourdoncle,W.,Attagnant,C.,Dellay,C.etal,Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize.Plant Physiol,125,1258-1270
    [19]Hirel,B.,and Lea,P.J.,Ammonia assimilation,In Plant Nitrogen,P.J.Lea and J.F.Morot-Gaudry,eds,pp.79-99
    [20]黄国存,孟颂东,等,小球藻NADP-谷氨酸脱氢酶的cDNA克隆及转基因烟草分析,Acta Botanica Sinica,2002年44卷3期,318-324
    [21]许宏涛,计怀春,李传军,黄西林,转GDH基因棉花研究简报,中国棉花,2005年32卷2期,22-23
    [22]Svetlana Chichkova,etal,Transgenic tobacco plants that overexpress alfalfa NADH-glutamate sythase have higher carbon and nitrogen content.Journal of Experimental Botany,2001,11,Val.52,No.364,992079-2087
    [23]刘永华,朱祝军,魏国强,不同光强下氮素形态对番茄谷氨酰胺合成酶和光呼吸的影响,植物生理学通讯,2004年12月,第40卷第6期,680-682
    [24]管闪青,张屹东,杨冬冬,黄丹枫,甜瓜谷氨酰胺合成酶在不同氮素条件下的表达分析,上海交通大学学报(农业科学版),2007年2月,第25卷,第2期
    [25]陈煌,朱保葛,张敬,梁宗锁,不同氮源对大豆硝酸还原酶和谷氨酰胺合成酶活性及蛋白质含量的影响,大豆科学,2004年5月,第23卷,第2期
    [26]陆彬彬,周卫,张吉,潘磊,林清华,张楚富,温度对水稻谷氨酰胺合成酶和NADH -谷氨酸合成酶表达的影响,武汉大学学报(理学版),2002,4,第48卷,第2期
    [27]李常健,林清华,张楚富,等,NaCl对水稻谷酰胺合成酶及同工酶的影响,武汉大学学报(自然科学版),1999,45(4):497-500
    [28]HISASHI Hoshi,YOSHITO Tanaka,TAKASHI Hibino,etal,Enhanced tolerance to salt stress in transgenic rice that over express chloroplast glutamine synthetase.Plant Molecular Biology,2000,43:103-111
    [29]汪沛洪,植物生物化学.北京,中国农业出版社,1993,218
    [30]Akiko K,Atsushi S,Kunisuke TG,The promoter of the gene for glutamine synthetase from rice shows organspecific and substrate-introduced expression transgenic tobacco plants.Plant Cell Physiol,1996,32(3):353-358
    [31]Andrea M,Elisa C,Bertrand H,Thomas WB,Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seeding.Planta,2000,210:252-260
    [32]Downs CG,Christey MC,Davies KM,King GA,Seelye JF,Sinclair BK,Stevenson DG,Hairy roots of Brassica napus:Ⅱ.Glutamine sythetase overexpression alters ammonia assimilation and the response to phosphinothricin.Plant Cell Rep,1994,14:41-46
    [33]薛利红,杨林章,范小晖,基于碳氮代谢的水稻氮含量及碳氮比光谱估测,作物学报,2006,年3月,第32卷第3期
    [34]Shuichi Yanagisawa,Dof1 and Dof2 transcription factors are assoccitaed with expression of multiple genes involved in carbon metabolism in maize.The Plant Journal,2000 21(3),281-288
    [35]杨铁钢,戴延波,曹卫星,不同施氮水平下GS抑制剂对小麦灌浆期碳氮代谢的影响,麦类作物学报,2007,727(4)
    [36]Igor C.Oliveira,Timothey Brears,Thomas J.Knight,Alexandra Clark,and Gloria M.Coruzzi,Overexpression of Cytosolis Dlutamine Synthetase.Relation to Nitrogen,Light,and Photorespiration.Plant Physiology,2002,1,vol.129,pp.1170-1180
    [37]Fuentes S I,Hernandez G,Allen D,Ortiz-Lopez A,Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations.Plant Physiologists,2000,pp:165
    [38]Gallardo F,Fu J,Canton F R,Garcia-Gutierrez A,Canovas F M,Kirby E G,expression of a conifer glutamine sythetase gene in transgenic poplar.Planta,1999,210:19-26
    [39]Migge A,Carrayol E,Hirel B,Becker TW,Leaf-specific overexpt\ression of plastidic glutamine synthetase stimulates growth of transgenic tobacco seeding.Plant,2000,210:252-260
    [40]Kozaki A,Takeba G,Photorespiration protects C3 plants from photooxidation.Nature,1996,384:557-560;
    [41]孙辉,黄其满,苏金,谷氨酰胺合成酶基因GS1和GS2的高效表达增强转基因水稻对氮素缺乏的耐性,植物生理与生物学报,2005,31(5),492-498:
    [42]Man H,Boriel R,Rami E K,etal,Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability.New Phytologist,2005,167:31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700