用户名: 密码: 验证码:
不同氮肥比例对水稻强弱势籽粒灌浆影响的差异蛋白组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的粮食作物之一,提供给世界人口近60%的粮食需要,水稻籽粒灌浆特性对其最终产量与品质的形成至关重要,因此,水稻籽粒灌浆问题便理所当然地成为当今世界农业科学研究的重要课题。
     本文以大穗型水稻“金恢”品系为实验材料,设3种不同的氮肥比例,基蘖蘖肥和穗粒肥比例分别为7∶3,6∶4,55。选取不同的灌浆时期,运用差异蛋白组学从动态上研究这三种氮肥比例对强弱势籽粒灌浆的影响,旨在揭示水稻的强弱势籽粒灌浆差异的分子机理及其与源库流的关系,为有效地挖掘水稻高产潜力、促进粮食增产、提供重要的理论依据。
     结果认为大穗型水稻存在着明显的异步灌浆的现象,不同氮肥比例主要影响弱势粒的灌浆,最终影响水稻籽粒的结实率和千粒重,并以生育前后期氮肥比例6∶4,产量最高,氮肥比7∶3,产量最低。进一步采用差异蛋白组学研究强弱势粒对不同氮肥比例的分子响应机制,结果发现在不同的氮肥比例下弱势粒中蛋白出现差异表达的较多,共有26个,强势粒较少,共有9个。经MALDI-TOF/MS分析和数据库检索,弱势粒的有17个差异蛋白质点得到鉴定,强势粒有4个得到鉴定。对这些蛋白质功能的分析发现,后期氮肥的增加对弱势粒灌浆过程中的一些重要的生理活动产生影响,加强了蔗糖的转运能力,促进了淀粉的合成,增加了弱势粒中用于物质代谢的能量,提高了内源激素的含量等。研究还发现后期氮肥的增加对强势粒蛋白质的合成及抗逆能力的加强也有利。此外,有7个在弱势粒中发生差异表达,对籽粒灌浆起重要作用的关键蛋白,发现在强势粒灌浆过程中虽有表达,但表达丰度没有差异,解释了强势粒灌浆的环境稳定性的分子机理。
     本研究同时考察了三种不同氮肥比例下大穗型水稻籽粒灌浆期叶片的叶绿素SPAD值的变化,结果可知在总施氮量不变的情况下,适当的加大后期的氮肥比例能够延长叶片叶绿素含量缓降期。进一步采用差异蛋白组学研究了氮肥比例7:3与6:4处理下的叶片蛋白的差异表达情况。结果在这2个氮肥比例处理下的叶片中分别鉴定到24个出现差异表达的蛋白,共有12个蛋白得到鉴定。按照其功能可以分为6类:第一类,参与光合反应:叶绿素a/b结合蛋白,PHY3蛋白,1,5-二磷酸核酮糖羧化酶/加氧酶,核酮糖1,5-二磷酸羧化酶大亚基,第二类:参与抗逆反应:超氧化物歧化酶,依赖谷胱甘肽的脱氢抗坏血酸还原酶I,WRKY转录因子,黄烷酮3-羟化酶,第三类:参与能量与物质代谢:烟酰胺核苷酸腺苷酰转移酶,转氨酶y4uB,第四类:参与物质运输及信号转导:钙调蛋白,v-SNARE家族膜泡运输蛋白。对这些蛋白的功能分析可以发现,籽粒灌浆期叶片受不同氮肥处理的影响主要体现在,加大后期的氮肥施用比例能够延长光合作用的时间,延缓叶片的衰老,增强叶片灌浆后期的能量代谢,促进物质的运输和信号的转导。
     在籽粒灌浆的不同时期,叶鞘在不同氮肥比例下共鉴定到20个差异蛋白质点,其中9个得到鉴定。按照其功能可以分为5类:第一类,参与光合作用:核酮糖1,5-二磷酸羧化酶大亚基。第二类,参与物质的运输与合成:DREPP植物质膜多肽家族蛋白,ATP-柠檬酸裂解酶a亚基,推测的内质网膜氧化还原酶5'端。第三类:参与抗逆反应:过氧化物酶,ABC型磷酸盐转运蛋白,肉桂醇脱氢酶,:细胞色素P450家族蛋白。第四类,参与信号转导:磷脂酶D。第五类,参与能量代谢:ATP-柠檬酸裂解酶a亚基。对这些蛋白的功能分析可以发现,在生育后期加大氮肥的比例有利于叶鞘在灌浆的后期光合作用能力的保持,促进物质的转运与信号的转导,加强能量代谢,提高抗逆能力。
     本研究表明,水稻强弱势籽粒在灌浆过程中,存在着复杂的蛋白质组调控网络,这为我们进一步揭示水稻灌浆的分子遗传机理奠定了基础。
Rice (Oryza sativa L.), is one of the most important staple food crops for more than 60% of the human population in the world. The grain- filling characteristics of rice plays a crucial role in the yield and quality, so it is the key to study physiological and biochemical characteristics and genetic mechanism during grain filling for high yielding in rice.
     A large-spike rice cultivar Jinhui (indica) was used in this study. The experiment was set in 3 different proportions of nitrogen fertilizer (ratio of tiller fertilizer to panicle-grain fertilizer.7:3,6:4,5:5).The investigation was conducted to address the influence of different proportions of nitrogen fertilizer on superior and inferior grain filling of large-panicle type rice cultivars by the method of differential proteomics. The aim is to reveal the metabolic mechanism of source-sink-stream in large panicles rice during grain filling period and provide important theoretical references to dig the rice high yield potential, and to accelerate grain production increase.
     The results showed that there exists obvious asynchronous filling phenomenon in large -panicle type rice, and the change in the N application proportion mainly influenced the inferior grain filling, in turn altered seed setting rate and 1000-grain weight of yield components, indicating the highest grain yield at 6:4 ratio of N supply and the lowest grain yield at 7:3 ratio. Differential proteomic analysis showed much more differentially expressed proteins (26 proteins vs 9 ones in total) detected in the inferior grain than in the superior grains during grain-filling of rice under different N application proportions and 17 differential protein spots from the inferior grains and 4 ones from superior grains have been identified and assigned in functions by using MALDI-TOF/MS analysis and database searching. The result suggested that increasing N application proportion in post growth stage of rice favored in the upregulation of the genes involved in physiological activities of inferior grain filling, including the proteins associated with transport capacity of sucrose, starch biosynthesis , energy accumulation for the material metabolism, and hormone production etc in inferior grains of rice. It was also found that the increases of N application proportion in post growth stage were good for the biosynthesis of proteins and the improvement of stress-resistant ability in superior grains. The 7 key proteins to grain-filling, differentially expressed in the inferior grains mediated by different N application proportions were also detected, but no differences in expression abundance of them were found in the superior grains, which explained the molecular mechanism of environmental stability for the superior grain-filling.
     SPAD (Soil and Plant Analyzer Development) values of leaf of large-panicle type rice at 3 different proportions of nitrogen fertilizer applied in pre and post growth stages were investigated. The results showed that the increases of N application proportion in post growth stage were good for delaying the degradation of chlorophyll content. The method of differential proteomics were used to identify the function of differential expression proteins in leaves under 2 different proportions of nitrogen fertilizer(ratio 7:3,6:4),24 proteins were detected, and 12 proteins were identified to be the functional proteins. These proteins were classified into 4 categories according to their function. The fist group, which included chlorophyll a-b binding protein, PHY3 protein, RuBisCO activase small isoform precursor, rubisco large subunit, participated in the photosynthetic reaction. The second group was involved in the defense reactions, such as GSH-dependent dehydroascorbate reductase 1, superoxide dismutase [Mn], WRKY DNA binding domain containing protein, flavanone-3-hydroxylase.The third group was involved in the metabolism of material and energy, which include nicotinate-nucleotide adenylyltransferase family protein, aminotransferase y4uB. The fourth group participated in the material transport and signal transduction. This group included Calmodulin and Vesicle transport v-SNARE family protein. The result suggested that the effect of the increases of N application proportion in post growth stage on the leaves during the grain filling period were as follows: elongate photosynthetic time,delay senescence of leaves, strengthen the energy metabolism of leaves in post growth stage of rice, accelerate matter transportation and signal transduction.
     Twenty proteins with obviously different abundances were detected in leaf sheath during grain filling period under 2 different proportions of nitrogen fertilizer(ratio 7:3,6:4), and nine of them were identified in function. These proteins were classified into 5 categories according to their function. The first group involved in the photosynthetic reaction, which include ribulose bisphosphate carboxylase large subunit. The second group, which include DREPP plasma membrane polypeptide family protein, putative ATP citrate lyase a-subunit, putative endoplasmic reticulum oxidoreductin , participated in the transportation and synthesis of material. The third group involved in the signal transduction, which include Phospholipase D. The fourth group participated in the defense reactions. This group included Peroxidase , ABC-type phosphate transport system , Putative cinnamyl-alcohol dehydrogenase, Cytochrome P450 family protein. The fifth group is the Putative ATP citrate lyase a-subunit, which participated in the energy metabolism.These results suggested that increasing N application proportion in post growth stage of rice favored in physiological activities of leaf sheaf, including the photosynthesis, the transportation of material and signal, energy metabolism and resistance.
     The present work suggested that there existed a regulative network of complex proteome during grain filling periods and it paved the way for us to further study the molecular genetic mechanism of rice.
引文
1 Alscher R C, Donahue J L, Cramer C L. Reactive oxygen species and antioxidant relationships in green cells[J]. Physiol Plant, 1997, 100: 224-233.
    2 Antonius Koller, Michael P, Washburn B. Proteomic survey of metabolic pathways in rice[J]. PNAS, 2002, 99(18): 11969–11974.
    3 Andrews TJ, Lorimer GH. RubisCO:Structurs, mechanism and prospects for improvement[M].In Hatch MD(ed),The Biochemistry of Plants. Academic Press.1987.
    4 Evance L T. Storage capacity as a limitation on grain yield[J]. Rice Breeding. IRRI, 1972: 499-543.
    6 Gorg A, Weiss W, Dunn MJ.Current two-dimensional electrophoresis technology for proteomics[J].Proteom ics, 2004, 4(12): 3665-3685.
    7 Gusti R S, Toshinmi A, Takeo S. Genetic analysis of high molecular weight proteins in rice endosperm [J]. Crop Science, 1997, 37: 1177-1180.
    8 Guo H, Ecker J R. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)一dependent proteolysis of EIN3 transcription factor. Cell, 2003, 115(6): 667-677.
    9 Imin N, Kerim T, Weiman J, et al. Characterisation of rice anther proteins expressed at the young microspore stage [J]. Proteomics, 2001, 1(9): 1149-1161.
    10 Kapp LD , Lorsch J R. The molecular mechanics of eukaryotic translation[ C] . Annu Rev Biochem 2004, 73: 657-704.
    11 Kerim T, Imin N, Weinman J J, et al. Proteome analysis of male gametophytes development rice anthers [J]. Proteomics, 2003, 3(5): 738-751.
    12 Lafitte H R, Travis R L. Photosynthesis and assimilate partitioning and closely related lines of rice exhibiting different source-sink relationships [J]. Crop Science, 1984, (24): 447-452.
    13 Logan DC, Domergue O, Teyssendier de la Serve B, Rossignol M . A new family of plasma membrane polypeptides differentially regulated during plant development[J]. Biochem. Mol. Biol. Int.1997, 43(5):1051-62.
    14 Makino A, Mac T, Chira K.Enzymis properties of ribulose 1,5-bisphosphate carboxylase-oxygeruse purified from rice leaves[J].Plant physiol,1985,79:57-61.
    15 Makino A, Mac T, Chira K.Variations in the contents and kinetic properties of ribulose 1.5-bisphosphate carboxylases among rice species[J].Plant cell physiol,1987,28:199-804.
    16 Murata Y, Matsushima S. Rice, In: Evans L T (ed.), Crop Physiology[M]. London: Cambridge UniversityPress, 1977: 73-99.
    17 Naoki Hirotsu, Amane Makino, Satoshi Yokota,et a1.The photosynthetic properties of rice leaves treated withlow temperature and high irradiance[J].Plant Cell Physiology,1995,46(8):1377-383.
    18 Noctor G, Foyer C H. Ascorbate and glutathione: Keeping active oxygen under control[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.
    19 Osafune R G, Gibbs S P. Immunogold localization of ribulose-1, 5-bisphosphate carbo xylase/oxygenase with reference to pyrenoid morphology in chroloplasts of synchronized Euglena gracilis cells[J]. Plant Physiol, 1987, 92: 803-808.
    20 Pingfang Yang, Yu Liang, Shihua Shen et al. Proteome analysis of rice uppermost internodes at the milky stage. Proteomics, 2006, (6): 3330–3338.
    21 Rossignol M, Peltier JB, Mock HP, et al. Plant proteome analysis: A 2004-2006 update[J]. Proteomics, 2006, 6(20): 5529-5548.
    22 Sadimantara G R, Abe T, Suzuki J, et al. Characterization and partial amino acid sequence of a high molecular weight protein from rice seed endosperm: homologous to pyruvate orthophosphate dikinase [J]. Plant Physiology, 1996, 149: 285-289.
    23 Sano Y. Differential regulation of waxy gene expression in rice endosperm [J]. Theoretical and Applied Genetics, 1984, 68: 467-473.
    24 Saka B. Variotions in the activities of several photosynthetic enzymes during the growth stages in several genotynes and species of genes Oryza[J].Bull Nati Inst Agri Sci Janpan,1985,D36:247-282.
    25 Silvia Garavaglia, Igor D'Angelo, Monica Emanuelli eds. Structure of Human NMN Adenylyltransferase[J]. Journal of Biological Chemistry, 2002, 277(10): 8524-8530.
    26 Song S Q, Fu J R. Desiccation sensitivity and peroxidation of membrane lipids in lychee[J].Trop Sci, 1999, 39: 102-106.
    27 Strader L C, Ritchie S, Soule J D, McGinnis K M, Steber C M. Recessive—interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY. Proc Natl Acad Sci USA. 2004. 101(34): 12771-12776.
    28 Wallace W, Secor J, Schrader LE Rapid accumulation of r—aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature,darkness,or mechanical manipulation.Plant Physiology,1984,75:170-175.
    29 Sheng Bao Xu, Tang Li, Zhu Yun Deng, Kang Chong, Yongbiao Xue and Tai Wang.Dynamic Proteomic Analysis Reveals a Switch Between Central Carbon Metabolism and Alcoholic Fermentation in Oryza sativa Filling Grains[J]. Plant Physiology Preview,2008,DOI:10.1104/pp.108.125633.
    30 Takatoshi Kagawa.The phototropin family as photoreceptors for blue light-induced chloroplast relocation[J]. Journal of Plant Research. 2003, 226: 77-82.
    31 Toshinori A, Gusti R S, Mayumi O, et al. Variation in glutelin and high molecular weight endosperm proteins among subspecies of rice detected by two-dimensional gel electrophoresis [J]. Genes & Genetic Systems, 1996, 71: 63-68.
    32 Toshiyuki Takai, Yoshimichi Fukuta, Tatsuhiko Shiraiwa et al. Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L)[J]. Journal of Experimental Botany, 2005, 56: 2107-2118.
    33 Tatsuro H, Alexander E, Ryu O. Gene expression of enzymes for starch and sucrose metabolism and transport in leaf sheaths of rice(Oryza sativa L.)during the heading period in relation to the sink to source transition[J]. Plant Prod Sci, 1999, 2: 178-183.
    34 Triboi E,Triboi-Blondel A M .Productivity and grain or seed composition:a new approach to an old problem-invited paper.European Journal of Agronomy.2002.16:l63-l86.
    35 Wallace W, Secor J, Schrader LE Rapid accumulation of r—aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature,darkness,or mechanical manipulation.Plant Physiology,1984,75:170-175.
    36 Walker-Simmons M K, Goldmark P J. Characterization of genes expressed when dormant seeds of cereals and wild grasses are hydrated and remains growth-arrested. In: Lang G A. Plant Dormancy: Physiology, Biochemistry, and Molecular Biology. Oxford: CAB International, UK, Wallingford, CABI Press, 1996: 283-290.
    37 Wang Z M, Wei A L. Photosynthetic characteristics of non-1eaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear[J]. Photosynthetica, 2001, 39(2): 239-244.
    38 Wallace W, Secor J, Schrader LE Rapid accumulation of r-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature,darkness,or mechanical manipulation[J]. Plant Physiology, 1984, 75:170-175.
    39 Yoshida S. Fundamentals of rice crop science[M]. IRRI, 1981.
    40 Wilkins M R, Williams K L, Appel R D, et a1. ProteomeResearch:New Frontiers in Functional Genomics[M]. Germany: Springer, 1997.
    41 Venkateswarlu B, Visperas R M. Source-sink relationships in crop plants: a review IRPS, 1987: 125.
    42包劲松,夏英武.水稻淀粉合成的分子生物学研究进展[J].植物学通报, 1999, 16(4): 352—358.
    43卞利萍,张洪杰.线性离子阱-傅立叶变换离子回旋共振质谱的结构原理及在蛋白质组学研究中的应用[ J ].质谱学报,2005,26(4):243-249.
    44段瑞君,熊辉岩.植物细胞钙靶蛋白的研究进展[J].青海大学学报, 2004, 22(6): 27-30.
    45陈冬梅,林文雄,梁义元等.早晚季不同耐光氧化特性水稻品种籽粒灌浆关键酶活性变化[J].应用生态学报, 2005b, 16(12): 2373-2378.
    46崔鑫福,马莲菊,吕文彦等.北方粳稻籽粒灌浆特性及其蔗糖代谢酶的活性研究[J].吉林农业大学学报, 2006, 27(1): 15-18.
    47程彦伟,祖恩普,赵江,李欢庆.蛋白质组学研究进展[J].河南工业大学学报,2008,29(4):76-82
    48郭玉春,林文雄,梁义元等.Ⅰ.新株型水稻物质生产与灌浆特性[J].福建农业大学学报(自然科学版), 2001, 30(1): 16-21.
    49顾自奋,朱庆森.水稻结实率的研究-南优3号单位面积颖花数与结实率的关系[J ]·中国农业科学, 1981 (6) :38244.
    50霍中洋,叶全宝,李华等.水稻源库关系研究进展[J].中国农学通报, 2002, 18(6): 72-77.
    51黄琪玉.稻穗ATP酶与籽粒灌浆关系的研究[J].福建农学院学报, 1989, 18(4): 481-486.
    52黄锦文,梁义元,林文雄等.不同类型水稻籽粒灌浆过程内源激素含量变化的研究[J].中国生态农业学报, 2003, 11(1): 10-13.
    53黄锦文,梁义元,林文雄等.超级稻籽粒灌浆特性及其生理生化基础[J].福建农业学报, 2002, 17(3): 143-147.
    54黄升谋,邹应斌.赤霉素和脱落酸对水稻籽粒灌浆及结实的影响[J].安徽农业大学学报, 2006, 33(3):
    293-296.
    55胡廷章,周大,罗凯.植物谷胱甘肽转移酶的结构与功能及其基因表达[J].植物生理学通讯, 2007, 43(1):
    195-200.
    56胡延章,植物细胞壁中富含甘氨酸的蛋白质[J].四川师范大学学报(自然科学版). 2000, 23(4): 416-420.
    57金宏滨,刘东辉,左开井.植物ABC转运蛋白与次生代谢产物的跨膜转运[J].中国农业科技导报, 2007, 9(3): 32-37.
    58林文雄,吴志强,梁义元.气候条件对杂交水稻籽粒灌浆的影响[J].中国农业气象, 1992, 13(2): 4-8.
    59林文雄,陈逸鹏.不同氮素条件下杂交水稻生育后期保护酶活性的初步研究.生态学杂志[J],1997,16(1):14-16
    60芦义.作物的光合作用与物质生产[M].北京:科学出版社, 1971. 365-373.
    61凌启鸿,杨建昌.水稻群体粒叶比与高产栽培途径的研究[M ].见:凌启鸿主编.稻麦研究新进展.南京:东南大学出版社, 1991. 84- 89.
    62李木英,石庆华,潘晓华等.两系杂交稻籽粒灌浆的物质积累与生理活性的研究[J].江西农业大学学报, 2000, 22(2): 152-156.
    63粱建生,曹显祖.杂交水稻叶片的若干生理指标与根系伤流强度关系[J].江苏农学院学报,l993,14(4):25-30.
    64梁建生,曹显祖,张海燕等.水稻籽粒灌浆期间茎鞘贮藏物质含量变化及其影响因素的研究[J].中国水稻科学,1994,8(3):151-156.
    65刘奇华,蔡建,李天.水稻籽粒中淀粉合成关键酶及其与籽粒灌浆和稻米品质的关系[J].植物生理学通讯, 2006, 42(6): 1211-1216.
    66李鹏,李祺福,黄汝多.抗UV-B辐射植物黄酮类化合物研究进展[J].生物学杂志, 2001, 20(6): 36-40.
    67李木英.潘晓华.石庆华.等.两系杂交稻结实期茎鞘物质运转特性及其对籽粒灌浆影响的初步研究[J].江西农业大学学报,1998,10(3)296-302.
    68李兆伟,熊君,李振方,齐晓辉,陈鸿飞,林文雄等.水稻灌浆期叶鞘蛋白质差异表达分析[J].作物学报, 2008, 34(4): 619-62.
    69李兆伟,熊君,齐晓辉,王经源,林文雄等.水稻灌浆期叶片蛋白质差异表达及其作用机理分析[J].作物学报, 2009, 35(1): 132?139.
    70刘卫平,韩玉珍,赵德刚.杜仲肉桂醇脱氢酶基因克隆及序列分析[J].中国农业大学学报. 2003, 8(1): 27-30.
    71李伟,熊谨,陈晓阳.木质素代谢的生理意义及其遗传控制研究进展[J].西北植物学报. 2003, 23(4): 675-681.
    72梁秋霞,曹刚强,苏明杰,秦广雍.植物叶片衰老研究进展[J].植物生理科学, 2006, 22(8): 282-285.
    73李义珍,黄育民,庄占龙等.杂交水稻高产群体干物质积累转运.碳水化合物的积累运转[J].福建农学院学报,1996,11(2):1-6.
    74李志刚,叶正钱,杨肖娥,V.V.Virmani.不同养分管理对杂交稻生育后期功能叶生理活性和籽粒灌浆的影响[J].浙江大学学报, 2003, 29(3): 265-270.
    75马均,明东风,马文波,许凤英.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究[J].中国农业科学, 2005, 38(2): 290-296.
    76马红辉,方存磊,曾平耀.植物同源结构域(PHD结构域)——组蛋白密码的解读器[J].生物化学与生物物理进展, 2008, 35(6): 625-628.
    77马媛媛,甘睿,王宁宁.植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能[J].植物生理与分子生物学学报, 2005, 31(4): 331-339.
    78聂军,郑圣先,戴平安,肖剑,易国英.控释氮肥调控水稻光合功能和叶片衰老的生理基础[J].中国水稻科学, 2005, 19(3): 255-261.
    79潘云娣,杨文鸽,侯温甫.分子伴侣结构与功能的研究进展[J].生物学通报, 2006, 41(3): 7-8.
    80鲍永美,王州飞,张红生.植物SNARE蛋白的结构与功能[J].植物学通报, 2005, 22(6): 715-722.
    81钱小红,贺福初主编.蛋白质组学:理论与方法[M].科学出版社(北京), 2003: 24-39.
    82苏琦,尚宇航,杜密英.植物WRKY转录因子研究进展[J].农业生物技术科学. 2007, 23(5): 94-98.
    83沈桂芳,丁仁瑞.走向后基因组时代的分子生物学[M].浙江教育出版社,杭州, 2005. 12.
    84田永超,曹卫星,王绍华等.不同水、氮条件下水稻不同叶位水、氮含量及光合速率的变化特征[J].作物学报, 2004, 30(11): 1129-1134.
    85翁晓燕,毛伟华.水稻叶片生育过程中Rubisco活化酶及其与Rubisco和光合速率的关系[J].浙江农业学报,2000,12(3):121-125.
    86王天铎.水稻籽粒灌浆过程中粒重分布的动态研究[J].植物学报,1962 ,10 (2) :113-119.
    87汪家政,范明主编.蛋白质技术手册[M].科学出版社(北京), 2000: 42-46.
    88王国忠,刘秀丽.不同类型水稻品种的籽粒灌浆生理[J].江苏农学院学报, 1997, 18(4): 19-22.
    89王熹,陶龙兴,黄效林等.赤霉酸和多效唑对水稻粒间顶端优势的调节及对产量的影响[J].中国水稻科学, 1999, 12(4): 217-222.
    90吴志强,林文雄,梁义元.杂交水稻研究[M].厦门大学出版社, 2006.
    91王志琴,杨建昌,朱庆森,张祖建,郎有忠,王学明.亚种间杂交稻籽粒充实不良的原因探讨[J].作物学报, 1998, 24(6): 782-787.
    92王彦荣,华泽田,陈温福,代贵金,郝宪彬等.粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响[J].作物学报, 2003, 29(6): 892-898.
    93王妮妍,蒋德安,张峰,洪健,费万辛.水稻Rubisco及其活化酶的免疫金标定位[J].浙江大学学报, 2003, 29(4): 387-391.
    94魏丹,韩光,赵海滨等.根外追肥在水稻灌浆过程中对子实养分和水分动态变化的影响[J].黑龙江农业科学, 1996(2): 1-4.
    95王绍华,吉志军,刘胜环等.水稻氮素供需差与不同叶位叶片氮转运和衰老的关系[J].中国农业科学, 2003, 36(11): 1261-1265.
    96王韶唐.小麦的源库关系[J].国外农学-麦类作物, 1984, (3) : 15-18.
    97薛艳风,陆江锋,吕川根等.两系亚种间杂交稻两优培九籽粒灌浆动态研究[J],江苏农业研究, 2001, 2(2): 9-13.
    98徐克章,黑田荣喜,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系[J].作物学报,1995,生理活性和籽粒灌浆的影响[J].浙江大学学报:农业与生命科学版, 2003, 29(3): 265-270.
    99肖辉海.植物热休克蛋白研究进展[J].生物学教学, 1999, 24(10): 3-5.
    100肖凯,张荣铣,钱维朴.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制[J].植物营养与肥料学报, 1998, 4(4): 371-378.
    101杨建昌,王志琴,朱庆森.水稻产量源库关系的研究[J].江苏农学院学报, 1993, 14(3): 47-53.
    102杨建昌,苏宝琳,王志琴,朱庆森.亚种间杂交稻籽粒灌浆特性及其生理的研究[J].中国农业科学, 1998, 31(1): 7-14.
    103杨建昌,张文虎,王志琴,刘立军,朱庆森.水稻新株型与粳/籼杂种源库特征与物质运转的研究[J].中国农业科学, 2001, 34(5): 511-5l8.
    104杨建昌,彭少兵,顾世梁等.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化[J].作物学报, 2001, 27(2): 157-164.
    105杨建昌,王志琴,朱庆森等. ABA与GA对水稻籽粒灌浆的调控[J].作物学报, 1999, 25(3): 341-348.
    106杨建昌,朱庆森,王志琴.水稻籽粒中内源多胺及其与籽粒充实和粒重的关系.作物学报, 1997, 23(4): 385-392.
    107杨从党,周能,袁平荣,等.水稻结实率和若干生理因素的品种间差异及其相关研究[J].中国水稻科学,1998,12(3):144-148.
    108闫旭宇,李玉中,李玲,赵鹏.植物中的磷脂酶D信号转导[J].植物生理学通讯. 2006, 42(6):1183-118
    109张国林,王三英.采用比较蛋白质组学方法研究p38激酶对239T细胞蛋白质表达的影响[J].厦门大学学报(自然科学版), 2005, 44: 123-127.
    110张宪政主编.作物生理研究法[M].北京:农业出版社.1992,208-210.
    111赵全志,丁艳锋,王强盛,黄丕生,凌启鸿.水稻叶色变化与氮素吸收的关系[J].中国农业科,2006,39(5):916-920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700