用户名: 密码: 验证码:
小麦旗叶灌浆过程中光合作用及其籽粒灌浆之间的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究小麦旗叶在灌浆期间的光合作用有着重要意义。本文对小麦灌浆过程中旗叶的灌浆特征以及与光合作用的关系较为全面的研究:
     1.对五个小麦品种籽粒灌浆过程和灌浆速率的研究表明,千粒重符合Richards方程,呈S型曲线,都有一个快速灌浆时期(RGFP),从花后5 d进入快速灌浆时期,灌浆速率呈单峰曲线。
     2.灌浆期间叶绿素含量和chla/b存在着显著性相关。叶绿素含量变化随着灌浆的进行初期和中期变化不大,灌浆后期开始迅速下降,与光合速率的变化规律相似。Chl a/b也随着灌浆的进行呈下降趋势,但是它在灌浆初期有所上升.
     3.通过测定旗叶光系统II叶绿素荧光参数,结果说明衰老叶片中,光系统II与叶绿素含量和光合速率降低是同步的。衰老旗叶中叶绿素含量,饱和光合速率和叶绿素荧光的研究表明,灌浆初期和中期光系统II仍然有较完整的功能以继续有效的利用捕获的光能。
     4.在灌浆过程中,抗坏血酸含量以及其与脱氢抗坏血酸比值逐渐增加,谷胱甘肽含量逐渐降低,说明在衰老叶片中,抗坏血酸是主要的活性氧清除剂。
     5.对灌浆过程抗氧化代谢中各种酶活性进行测定,结果表明:每克鲜重中抗氧化酶活性随着灌浆的进程逐渐降低,而每毫克可溶性蛋白中抗氧化酶活性都随着衰老逐渐升高,表现趋势为衰老初期和中期小幅度变化,衰老晚期大幅度变化。测定结果表明小麦旗叶衰老过程中可溶性蛋白含量降低。这些说明在灌浆过程中抗氧化酶的降解速度可能慢于其它蛋白的降解速度,相对提高了消除活性氧的能力。
     6.对小麦旗叶蔗糖、淀粉、果糖和非结构性碳水化合物含量以及与碳水化合物合成的关键酶进行了测定。他们的变化基本一致,随灌浆的进程均呈“低-高-低”的变化特征。花后10-20 d峰值的出现,是因为此期叶片合成能力较强,籽粒正处于体积扩大和粒重快速增长阶段,利用、转化和储存同化物能力较低,使之在叶中有较多积累。花后20 d后碳水化合物含量下降迅速,可能是由于此时籽粒转化利用能力衰退的结果。SPS和SPP酶活与蔗糖合成是同步的,SSS和ADPGase酶活变化与淀粉的含量也是同步的。
     7.通过旗叶类囊体膜蛋白的Western杂交分析研究灌浆过程中旗叶类囊体膜PSII相关蛋白的变化的结果表明,在籽粒灌浆过程中,尤其是灌浆后期,植物体内的PSII活性会受到抑制,产生抑制的主要原因是由于类囊体膜蛋白的损失,主要与PSII反应中心CP43、CP47和OEC33蛋白含量的下降有关。
In this article, the characteristics of grain filling and light saturated photosynthesis of flag leaves during grain filling period of field-grown wheat plants were investigated. The results are following:
     1. The studies of grain filling processes and rates to five wheat species show the 1000-seed weight accords with Richards equation to be“S”curves. After 5 d after anthesis, all species enter the rapid grain filling period (RFGP), and they all have one peak during the grain filling period.
     2. The studies of chlorophyll and chl a/b show that: the chl and chl a/b significantly correlated. The chl remains constant in the early and mid period of grain filling process and begins to decrease significantly in the last period.
     3. The results chlorophyll fluorescence showe declines of PSII indicate that the chl content and Pn occur simultaneously. Before 20 d in the grain filling, the decrease of Fv’/Fm’is associated with the closure of PSII centers and an enhanced thermal dissipation in the PSII antennae. The results of photosynthesis, chlorophyll content and chlorophyll fluorescence suggest that PSII apparatus remained functional to use the light energy more efficiently in the early and mid period.
     4. The changes of contents of ASA, GSH in morning and noon of flag leaves were investigated. The content of ascorbate and the ratio of ASA/(ASA+DHA in flag leaves increased during grain filling period. But the contents of GSH+GSSG and GSH decreased. It is suggested that the ascorbate is the main antioxidants in senescence flag leaves.
     5. The activities DHAR, MDHAR, ASPX, GR, CAT and SOD during grain filling in flag leaves of field grown wheat were investigated. Their activities expressed on leaf fresh weight decreased during flag leaf senescence, but the activities expressed on the protein content increased. These data suggest that the antioxidative enzyme's degradation is slower than the rate of total soluble protein degradation, which may relatively improve the enzyme’s function of scavenging the active oxygen.
     6. The contents of carbohydrates of flag leaves show that the trends of carbohydrates are all“low-high-low”. The changes of the key enzymes activities in sucrose synthesis (SPS and SPP) and the key enzymes of starch synthesis (SSS and ADPGase) showed the same trends with the sucrose and starch respectively.
     7. Western-blotting of thylakoid membrane on flag leaf of wheat was studied, in order to investigate the changes of some PSII proteins with the consenescence of the flag leaf. The results show that the decrease in PS II activity may be due to dissociation of certain thylakoid peptides from thylakoid membrane, mainly as a result of decrease in D1,CP43 and CP 47 protein contents of PS II reaction centre and OEC33 protein of oxygen-evolving complex during the grain filling stage, especially the late stage.
引文
1. Beers E P. Programmed cell death during plant growth and development. Cell Death and Differentiation, 1997,4: 649-661
    2. Thomas H and Stoddart J L. Leaf Senescence. Annual Review of Plant Physiology. 1980, 31: 83 -111
    3. Thomas H. Defening senescence and death. Journal of Experimental Botany, 2003, 54: 1127-1132
    4. Smart C M. Tansley Review No. 64: gene expression during leaf senescence. New Phytologist. 1994, 126: 419-438
    5. Buchanan-Wollaston V. The molecular biology of leaf senescence. Journal of Experimental of Botany, 1997,48: 181-199
    6. Buchanan-Wollaston V, Harrison ES, Mathas E, Navabpour S, Page T and Pink D The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnology Journal, 2003(1): 3–22
    7. Lim P O, Woo R H and Nam H G. Molecular genetics of leaf senescence in Arabidopsis Trends in Plant Science, 2003,8: 272-278
    8. Yoshida S. Molecular regulation of leaf senescence. Current Opinion in Plant Biology, 2003,6: 79-84
    9. Guarente L, Ruvkun G And Amasino R. Aging, life span, and senescence. Proceedings of the National Academy of Sciences, 1998,5: 11034–11036
    10. Thompson JE, Froese CD, Madey E, Smith MD and Hong Y. Lipid metabolism during plant senescence. Progress of Lipid Research,2003,37: 119–141
    11. Yoshida S. Physiological analysis of rice yield. In: Fundamentals of rice crop science. Makita City (Philippines): International Rice Research Institute, 1981, 231-251
    12. Murchie E H, Chen Y, Hubbart S, Peng S and Horton P. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in Field-Grown Rice. Plant Physiology. 1999,119: 553-563
    13. Mae T. Physiological nitrogen efficiency in rice: nitrogen utilisation, photosynthesis and yield potential. Plant and Soil, 1997,196: 201-210
    14. Morita K and Kono M Changes in the nitrogen localized in the lamellae systems and stroma of rice chloroplast accompanying the stages of growth. Soil Science and Plant Nutrition,1974,20: 79-86
    15. Makino A and Osmond B. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiology, 1991,96: 355-362
    16. Hashimoto H, Kura-Hotta M and Katoh S. Changes in protein content and in the structure and number of chloroplasts during leaf senescence in rice seedings. Plant Cell Physiology, 1989,30: 707-705
    17. Ono K, Hashimoto H and Katoh S. Changes in the number and size of chloroplasts during senescence of primary leaves of wheat grown under different conditions. Plant Cell Physiology. 1995,36,(1): 9-17
    18. Becker W, Apel K. Differences in gene expression between natural and artificially induced leaf senescence. Planta, 1993,189: 74-79
    19. Matile P, H?rtensteiner S and Thomas H. Chlorophyll degradation. Annual Review of Plant Physiology and Plant Molecular Biology, 1999,50: 67-95
    20. Matile P. Chloroplast senescence. In: Crop photosynthesis: spatial and temporal determinants. Baker N, Thomas H (eds). Amsterdam, Elsevier publication,1992,413-440
    21. Humbeck K, Quast S and Krupinska K. Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant, Cell and Environment, 1996,19: 337-344
    22. Thomas H and Matil P. Photobleaching of chloroplast pigments in leaves of a non-yellowing mutant genotype of Festuca pratensis. Phytochemistry. 1988, 27: 345-48
    23. Grover A, Sabat SC and Mohanty P. Effect of temperature on photosynthetic activities of senescing detached wheat leaves. Plant Cell Physiology, 1986,27: 117-126
    24. Biswal B, Rogers LJ, Smith A J and Thomas H. Carotenoid composition and its relationship to chlorophyll and D1 protein during leaf development in a normally senescing cultivar and a stay-green mutant of Festuca Pratensis. Phytochemistry, 1994,37: 1257-1262
    25. Hall D O and Rao K K. Photosynthesis 6th ed. UK Cambridge University Press, 1999
    26. Jenkins G I and Woolhouse H W. Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L. II. The activity of photosystem I and II and a note on the site of reduction of ferricyanide. Journal of Experimental Botany, 1981,32: 989-997
    27. Grover A and Mohanty P. Leaf senescence-induced alterations in structure and function of higher plant chloroplasts. In: Photosynthesis: photoreactions to plant productivity, Abrol YP, Mohanty P, Govindjee(eds). Kluwer academic Publishers,1992
    28. Sabat S C, Grover A and Mohanty P. Senescence induced alternations in the electron transport chain in wheat (Triticum aestivum L.) leaf chloroplasts. Journal of Photochemistry and Photobiology. 1989, 3: 175-183
    29. Adams WW III, Winter K, Schreiber U and Schramel P. Photosynthesis and chlorophyll characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence. Plant Physiology, 1990, 93:1184-1190
    30. Lu C M, Lu Q T, Zhang J and Kuang T Y Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. Journal of Experimental Botany, 2001a,52: 1805-1810
    31. Huffaker R C. Tansley review No. 25: Proteolytic activity during senescence of plants. New Phytologist, 1990,116: 199-231
    32. Ben-David H, Nelson N, and Gepstein S. Differential changes in the Amount of protein complexes in the chloroplast membrane during senescence of oat and bean leaves. Plant Physiology, 1983,73: 507-510
    33. ?atsk? J and ?esták Z. Photosynthesis during Leaf Development. In: Handbookof Photosynthesis, 1997, 42: 633-660, Mohammad Pessarakli(eds). Published by Marcol Dekker Inc
    34. Jiang C Z, Rodermel S R and Shibles R M. Photosynthesis, Rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Plant Physiology, 1993,101: 105-112
    35. Valjakka M, Luomala EM, Kangasjarvi J and Vapaavuori E. Expression of photosynthesis- and senescence-related genes during leaf development and senescence in silver birch (Betula pendula) seedlings. Physiologia Plantarum. 1999, 106: 302-310
    36. Bate N J, Rothstein S J and Thompson J E. Expression of nuclear and chloroplast photosynthesis-specific genes during leaf senescence. Journal of Experimental Botany, 1991,42:801-811
    37. Crafts-Brandner SJ, Salvucci ME and Egli DB. Changes in ribulosebisphosphate carboxylase/oxygenase and ribulose 5-phosphate kinase abundances and photosynthetic capacity during leaf senescence. Photosynthesis Research, 1990 ,23: 223-230
    38. Andersson B and Barber J. Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. Photosynthesis and the Environment Baker, N R ed pp, 1996,101-121
    39. Frank H A, Cogdell R J. Carotenoids in photosynthesis. Photochemistry and Photobiology, 1996,63: 257-64
    40. Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science, 1998,3:147-151
    41. Niyogi K K. Photoprotection revisited: Genetic and Molecular Approaches. Annual Review of Plant Physiology and Plant Molecular Biology. 1999,50: 333-359
    42. Demmig-Adams B and Adams WW III. Antioxidants in Photosynthesis and Human Nutrition. Science, 2002,298: 2149-2153
    43. Demmig-Adams B and Adams WW III. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1996a 1: 21-26
    44. Horton P, Ruban A V and Walters R G. Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996,47: 655-684
    45. Lu C M, Lu Q T, Zhang J and Kuang T Y. Xanthophyll cycle, light energy dissipation and photosystem II down-regulation in senescent leaves of wheat plants grown in the field. Australian Journal of Plant Physiology, 2001b,28: 1023-1030
    46. Humbeck K and Krupinska K. The abundance of minor chlorophyll a/b-binding proteins CP29 and LHCI of barley (Hordeum vulgare L.) during leaf senescence is controlled by light. Journal of Experimental Botany, 2003,54: 375-383
    47. Foyer C H, Lelandais M and Kunert K J. Photooxidative stress in plants. Physiologia Plantarum, 1994b 92: 696-717
    48. Foyer C H and Fletcher J M. Plant antioxidants: Colour me healthy. Biologist, 2001,48: 115-120
    49. Foyer C H. Free Radical Processes in Plants: Oxygen processing in photosynthesis. Biochemical Society Transactions, 1996,24: 427-433
    50. Kanazawa S, Sano S, Koshiba T and Ushimaru T. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Physiologia Plantarum, 2000,109: 211-216
    51.王长发,张嵩午.冷型小麦旗叶衰老和活性氧代谢特性研究.西北植物学报, 2000,20:727-732
    52.岳寿松,于振文,余松烈.小麦旗叶衰老过程中氧自由基与激素含量的变化(简报).植物生理学通讯,1996,32:349-351
    53. Pastori G M and Trippi V S. Antioxidative protection in a drought-resistant maize strain during leaf senescence. Physiologia Plantarum. 1993,87: 227-231
    54. Pell WJ, Sinn JP, Brendley BE, Samuelson L, Vinten-Johansen C, Tien M and Skillman J. Differential response of four tree species to ozone-induced acceleration of foliar senescence. Plant, Cell and Environment. 1999,22: 779-790
    55. Munné-Bosch S, Jubany MaríT and Alegre L. Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell and Environment, 2001,24:1319-1327
    56. del Río L A, Sandalio L M, Altomare D A and Zilinskas B A. Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. Journal of Experimental Botany, 2003,54: 923-933
    57. Wiegand C L,Cuellar J A.Duration of grain filling and kernel weight of wheat as effected by temperatureI-J].Crop.Sci.,1981,21 (1):95-1O1
    58.张晓龙.小麦籽粒灌浆的研究.作物学报,1982,8(2):87-93
    59.陈集贤.青海高原春小麦生态[M].北京:科学出版社,1994
    60.金善宝.中国小麦学[M].北京:中国农业出版社,1996:58—151
    61.李秧秧.灌浆期持续干旱对不同产量潜势小麦品种灌浆特性的影响.西北农业学报,1997,6(4):47-50
    62.赵致,李家修,张成珍.贵州高原夏秋麦籽粒灌浆特性的研究.作物学报,1998,24(1):llO-117
    63.马应斌,罗洪溪,张安静.超大穗小麦籽粒灌浆特性研究[.西北植物学报,2001,21(1):128-135
    64.徐向阳,康明辉,张纪安.冬小麦灌浆程度和灌浆模型研究.华北农学报,1998,18(4):8-13
    65. Darroch B A.Grain filling in three spring wheat genotype:statistical analysis.Crop.Sci,1995,3:525-529
    66.高松洁,王文静,陈时良.不同源库型小麦品种的生理特点及其与穗粒重的关系.华北农学报,2002,17(1):46-50
    67.吴少辉,高海涛,王书子.干旱对冬小麦粒重形成的影响及灌浆特性分析.干旱地区农业研究,2002,20(2):49—51,64
    68.黑亮,冯佰利,王长发.干旱条件下冷型小麦籽粒灌浆特性及其成因的初步研究.干旱地区农业研究,2001,19(4):46-51
    69. Gebeyehou G.Rate and duration of grain filling durum wheat cultivars.Crop Sci,1982,22(2):337-340
    70.宋希云,夏美翠,李储学.不同类型小麦品种子粒灌浆特性研究.莱阳农学院学报,1996,13(4):241-245
    71.李储学,夏美翠,谭翠英.冬小麦在灌浆过程中籽粒重量和杂种优势特征分析.莱阳农学院学报,1996,13(4):246-250
    72.曾浙荣,庞家智,周贵英.我国北部冬麦区小麦品种籽粒灌溉特性的研究.作物学报,1996,3:72O-727
    73. Nass H G.Grain filling period and grain yield relationship in spring wheat.Plant Sci,1975,27:451-45
    74. Brocklehurst P A.Factors controlling grains weight in wheat.Nature,1997,266:348-349
    75.蔡庆生,吴兆苏.小麦籽粒生长各阶段干物质积累量与粒重的关系.南京农业大学学报,1993,16(1):27—32
    76.周竹青,朱旭彤.不同粒重小麦品种(系)子粒灌浆特性分析.华中农业大学学报,1999,18(2):1O7-110
    77.刘丰明,刘明灿,郭香风.高产小麦粒重形成的灌浆特性分析.麦类作物,1997,17(6):38-41
    78.李文雄,曾寒冰.春小麦穗分化的特点及其与高产栽培的关系.中国农业科学,1985,6:14—19
    79. Mcccaig T N,CLARKE J M.Seasonal changes in non-strultural carbohydrate levels of wheat and oats grown in semiard environment.Crop Sci,1982,22:963-970
    80. Koch K E. Carbohydrate-modulated gene expression in plants. Ann Rev Plant Physoil and Plant Mol Bio,1996, 47: 509-540
    81. Van den Ende W, Roover J D, Laere A V. Effect of nitrogen concentration on fructan metabolizing enzymes in young chicory plnats (Cichorium intybus). Physiol Plant, 1999,105:2-8
    82. Loewe A, Einig W, Shi L, Dizengremel P, Hampp R. Mycorrhiza formation and elevated CO2 both increase the capacity for sucros synthesis in source leaves of spruce and aspen. New Phytol, 2000, 145:565-574
    83. Gibson S I. Plant sugar-response pathway.Part of a complex regulatory web. Plant Physiol,2000,124: 1532-1539
    84. Koch K E, Ying Z, Wu Y, Avigne W T. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Journal of Experimental Botany,2005,1: 417-427
    85.夏叔芳,徐建,苏丽英,於新建.水稻叶片的蔗糖合成酶.植物生理学报, 1989,15(3):239-243
    86. Lunn J E, Furbank R T. Sucrose biosynthesis in C4 plants. New Phytol, 1999,143: 221-23
    87. Leloir L F, Cardini C E. The biosynthesis of sucrose phosphate. J Biol Chem,1955,214: 157-165
    88. Neuhaus H E, Quick W P, Siegl G, Stitt M. Control of photosynthate partitioning in spinach leaves: Analysis of the interaction between feedforward and feedback regulation of sucrose synthesis. Planta, 1990,181: 583-592
    89. Pollock C J, Housley T L. Light-induced increase in sucrose phosphate synthase activity in leaves of Lolium temulentum. Annu of Botany,1985, 55: 593-596
    90. Stitt M, Wilke I, Feil R, Heldt H W. Coarse control of sucrose-phosphate synthase in leaves: alterations of the kinetic properties in response to the rate ofphotosynthesis and the accumulation of sucrose. Planta, 1988,174: 217-230
    91. Huber S C, Nielsen T H, Huber J L A, Pharr D M. Variation among species in light activation of sucrose phosphate synthase. Plant Cell Physiol, 1989,30: 277-285
    92. Huber S C, Huber J L. Role and regulation of sucrose-phosphate synthase in higher plants. Ann Rev Plant Physiol Plant Mol Biol,1996,47: 431-444
    93. Echeverria E, Salvucci M E, Gonzalez P. Physical and kinetic evidence for an association between sucrose-phosphate synthase and sucrose-phosphate phosphatase. Plant Physiol,1997, 115: 223-227
    94. Douglas P, Pigaglio E, Ferrer A. Three spinach leaf nitrate reductase - 3-hydroxy-3-methylglutaryl- CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochemical Journal, 1997,325: 101-109
    95. Duff S M G, Giglioli-guivarch N, Pierre J N. In-situ evidence for the involvement of calcium and bundle-derived photosynthetic metabolites in the C4 phosphoenolpyruvate- carboxylase kinase signal-transduction chain. Planta 1996, 199: 467-474
    96. Monroy A F, Sangwen V, Dhindsa R S. Low temperature signal transduction during cold accumulation: protein phosphatase 2A as an early target for cold-inactivation. Plant Journal, 1998,13: 653-660
    97. Foyer C H, Valadier M H, Migge A, Becker T W. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol, 1998,117: 283-292
    98. Garcia A B, Engler J A, Iyer S, Gerats T, van Montague M. Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol,1997,115: 159-169
    99. Denyer K, Foster J, Smith A M. The contributions of adenosine 5’- diphospho-glucose pyrophosphorylase and starch branching enzyme to the control of starch synthesis in developing pea embryos. Planta, 1995, 97: 57-62
    100. Schaffer A A, Petreikov M. Sucrose-to-starch metabolism tomato fruit undergoing transient starch accumulation. Plant Physiol,1997,113: 739-746
    101. Evers A D, Lindley J. The particle size distribution in the wheat endosperm starch. J Sci Food Agric,1977, 28: 98-102
    102. Weegels P I, Pijpekamp A M, Van de Graveland A. Depolymerisation and repolymerisation of wheat glutenin during macropolymer content and quality parameters. J Cereal Sci,1996,23: 103-114
    103. Ball S, Guan H P, James M, From glycogen to amylopectin : a model explaining the biogenesis of the plant starch granule. Cell, 1996,86: 349-352
    104.许志信,白永飞,段淳清.草原牧草贮藏碳水化合物含量变化规律的研究.草业学报, 1994,3(4):27-31
    105. Jeong B R, Housley T L. Fructan metabolism in wheat in alternating warm and cold temperatures. Plant Physiol,1990,93: 902-906
    106. Volaire F, Gandoin J M. The effect of age of the sward on the relationship between water-soluble carbohydrate accumulation and drought survival in two contrasted populations of cocksfoot (Dactylis glomerata L). Grass and Forage science,1996,51: 190-198
    107. Schellenbaum L, Sprenger N, Schüepp H, Wiemken A, Boller T. Effects of drought, transgenic expression of a frnctan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants. New Phytol,1999,142: 6 7-77
    108. Quick W P, Chaves M M, wendler R, David M. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell and Environment,1992,15: 25-35
    109. Vassey T L, Sharkey T D. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiol,1989,89: 1066-1070
    110. Sheen J, Zhou L, Jang J-C. Sugar as signaling molecules. Curr Opin Plant Biol,1999,2: 1001-1008
    111. Koch K E. Carbohydrate-modulated gene expression in plants. Ann Rev Plant Physoil and Plant Mol Bio, 1996,47: 509-540
    112. Govindjee. 1995. Sixty–three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol ,22: 131-160
    113. Havaux M, Ernez M, Lannoye R . Correlation between heat tolerance and drought tolerance in cereals demonstraded by rapid chlorophyll fluorescence tests. J Plant Physiol,1988, 133: 555-560
    114. Hipkins MF, Baker (eds). Photosynthesis energy transduction: A practical approach, IRL press, Oxford rd, 1986
    115. Schreiber U , Bilger W. 3: Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog. Bot., 1993, 54: 151-173
    116. Hawkins CDB, Binder WD. State of the art seedling stock quality based on seedling physiology: 91~122. In: Rose, R.
    117. Inoue Y ,Shibata K. Thermoluminescence from photosynthetic apparatus. In: Govindjee(ed) Photosynthesis: Energy conversion by Plants and Bacteria..Academic Press.New York, 1982,pp: 507-533
    118. Sane P V , Rutherford A W. 1986. Thermoluminescence from photosynthetic membranes. In Light Emission by Plants and Bacteria, Govindjee, Amesz J, Fork DC (Eds). Academic Press: Orlando, FL, pp: 326–361
    119. Arnold W, Sherwood H K. 1957.Are chloroplasts semiconductors? Proc Natl Acad Sci USA ,43: 105-114
    120. Ichikawa T,Inoue Y, Shibata K. 1975. Characteristics of thermoluminescence bands in intact leaves and isolated chloroplasts in relation to the water-splitting activity in photosynthesis
    121. Demeter S, Govindjee. Thermoluminescence in plants. Physiol. Plant ,1989,75: 121–130
    122. Inoue Y. Photosynthetic thermoluminescence is a simple probe of photosystem II electron transport. In Biophysical Techniques in Photosynthesis, Amesz J, Hoff AJ (eds). Kluwer Academic: Dordrecht, The Netherlands, 1996,pp: 93–107
    123. Misra A N and Biswal U C, Differential changes in the electron transport properties of thylakoid membranes during aging of attached and detached leaves, and of isolated chloroplasts. Plant, Cell and Environment, 1982, 5:27-30
    124.张其德、蒋高明、朱新广、王强、卢从明、白克智、匡廷云. 12个不同基因型冬小麦的光合能力.植物生态学报, 2001,25 (5): 532-536
    125. Anderson J V, Chevone J V, and Hess J L. Seasonal variation in the antioxidant system of eastern white pine needles Evidence for thermal dependence. Plant Physiology, 1992,98:501-508
    126. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry 1976, 72,248-254
    127. Keller F. and Ludlow M. M. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cahanus cajan). Journal of Experimental Botany, 1993, 44:1351-1359
    128. Nakamura Y., Yuki K., Park S. Y. and Ohya T. Carbohydrate metabolism in the developing endosperm of rice grains. Plant and Cell Physiology, 1989, 30: 833-839
    129. Chifflet, S., Torriglis, A., Chisea, R. & Tolosa, S. 1988. A method for the determination of inorganic phosphate in presence of liable organic phosphate and high concentrations of protein: Application to lens ATPase.– Ann. Biochem. 168:1-4
    130. Vass I, Govindjee. Thermoluminescence from photosynthetic apparatus. Photosynth. Res, 1996, 48: 117–126.
    131. Vass I. The history of photosynthetic thermoluminescence. Photosynth Res , 2003, 76: 303–318
    132. Sane P V, Ivanov A G, Sveshnikov D, et al. A transient exchange of the photosystem Ⅱreaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the light lowers the redox potential of QB. J Biol Chem ,2002,277: 32739-32745
    133. Crofts A R, Wraight C A. The electrochemical domain of photosynthesis. Biochem.Biophys.Acta, 1983,726: 149-185 134. 155-162.
    135. Renger G. Mechanistic and structural aspects of photosynthetic water oxidation. Physiol Plant ,1997,100: 828-841
    136. Makino A, Mae T, Ohira K. Colorimetric measurement of protein stained with oomassie brilliant blue R on sodium dodecylsulfate-polyacrylamide gel electrophoresis by eluting with formamide. Agricultural Biology Chemistry 1986,50:1911-1912
    137. Erik H. M, Jianchang Yang, Stella Hubbart. Peter Horton and Shaobing Peng. Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? Journal of Experimental Botany, 2002,53(378): 2217-2224
    138.翟利剑.春小麦群体库的形成及其特性分析.麦类作物学报,2003,23(2):60-64
    139. Richards F J. A flexible growth functions for empirical use. J Exp Biol,1959,10:290-300
    140.刘贞琦.不同株型水稻光合特性的研究.中国农业科学,1980,3:6-10
    141. Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu RevPlant Physiol, 1982,33:317-345
    142.殷毓芬,张存良,姚凤霞.作物学报,1995,21(5):263-267
    143.郭程瑾,肖凯,李雁鸣.麦类作物学报,2002,22(3):42-46
    144.刘建福·汤青林.倪书邦.等.水分胁迫对澳洲坚果叶绿素a荧光参数的影响[J].华侨大学学报.2003,7(3):305-309
    145. Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87-92
    146. Rohácek K, Barták M. Technique of the modulated chlorophyll fluorescence: basis concepts, useful parameters and some applications. Photosynthetica, 1999, 37: 339-363
    147. Xiao-Yan WENG, Hong-Xia XU, De-An JIANG. Characteristics of Gas Exchange, Chlorophyll Fluorescence and Expression of Key Enzymes in Photosynthesis During Leaf Senescence in Rice Plants. 2005, 47 (5): 560?566
    148. Simpson R J, Lambers H , Dalling M J . Nitrogen redistribution duringgrain growth in wheat (Trititcum aestivam L.) IV. Development of aquantitative model of the translocation of nitrogen to the grain [J ] .Plant Physiol. 1983, 71(1): 7- 141
    149.张庆江,张立言,毕桓武.春小麦品种氮的吸收积累和转运特征及籽粒蛋白质含量关系.作物学报,1997,23(6):712-718
    150. Zhang R X, Dai X B, Xu X M, Lu W. Photosynthetic functions of leaf and the potential photosynthetic productivity of crops. J Nanjing Normal Univ (Nat Sci), 2003, 22, 376–386
    151. Dalling M J, Nettleton A M. Chloroplast senescence and proteolitic enzymes. In: Plant Proteolytic Enzymes (VolⅡ). New York: CRC Press, 1986,125-153
    152.熊福生,高煜珠,詹勇昌.作物学报, 1994, 20(1): 52-58
    153.姜东,李永庚,于振文,许玉敏,余松烈.高产冬小麦旗叶光合产物供应能力的研究,浙江大学学报·农业与生命科学版, 2000,26:51-55
    154.姜东,于振文,李永庚,余松烈.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响,中国农业科学,2002,35(2):157-162
    155. Kok B, Forbusch b, McGloin M. Cooperation of charges in photosynthetic O2 evolution. Photochem Photobiol, 1970,11: 457-475
    156. Rutherford A W, Crofts A R , Inoue Y. Thermoluminescence as a probe of photosystem II photochemistry: the origin of the flash induced glow peaks. Biochim Biophys Acta, 1982,682: 457–465
    157. Demeter S, Vass I. Charge accumulation and recombination in Photosystem II studied by thermoluminescence. I. Participation of the primary acceptor Q and secondary acceptor B in the generation of thermoluminescence of chloroplasts. Biochim. Biophys. Acta , 1984,764: 24–32
    158. Bertamini M, Muthuchelian K, Rubinigg M , et al.Low-night temperature (LNT) induced changes of photosynthesis in grapevine (Vitis vinifera L.) plants. Plant Physiol Biochem, 2005,43: 693–699
    159.刘贞琦.水稻某些光合生理特性的研究.中国农业科学,1982,(5):33—39
    160.刘贞琦.水稻叶绿素含量及其与光合速率关系研究.作物学报,1984,10(1):57-61 Walters RG, Rogers JJM, Shephard F, Horton P. Acclimation of Arabidopsisthaliana to the light environment: the role of photoreceptors. Planta, 1999. 209, 517-527
    161. Makino A, Mae T, Ohira K. Photosynthesis and ribulose- 1, 5-bisphosphate carboxylase oxygenase in rice leaves from emergence through senescenceDquantitative analysis by carboxylation oxygenation and regeneration of ribulose 1, 5- bisphosphate. Planta, 1985,166, 414-420
    162. Makino A, Shimada T, Takumi S, Kaneko K, Matsuoka M, Shimamoto K, Nakano H, MiyaoTokutomi M, Mae T, Yamamoto N. Does decrease in ribulose-1, 5- bisphosphate carboxylase by antisense RbcS lead to a higher Nuseefficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? Plant Physiology, 1997,114, 483-491
    163. Hidema J, Makino A, Mae T, Ojima K. Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence. Plant Physiology, 1991, 97, 1287-1293
    164. Sinclair T R, Sheehy J E. Erect leaves and photosynthesis in rice. Science, 1999,283, 1455-1456
    165. Borrell A, Hammer G, Van Oosterom E. Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling? Annals of Applied Biology, 2001,138, 91-95
    166. Gan S S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995,270,1986-1988
    167.高翔,董剑,庞红喜.小麦高产品种籽粒灌浆与粒重的关系.西北农业学报,2002,11(3):33—35
    168. Watanabe Y, Nakamura Y, Ishii R. Relationship between starch accumulation and activities of the related enzymes in the leaf sheath as a temporary sink organ in rice (Oryza sativa). Australian Journal of Plant Physiology, 1997, 24,563-569
    169. Grover A, Sabat SC and Mohanty P. Effect of temperature on photosynthetic activities of senescing detached wheat leaves. Plant Cell Physiology, 1986,27: 117-126
    170. Fryer M J. The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant, Cell and Environment, 1992,15:381-392
    171. Asada K. The water-water cycle. Annual Review of Plant Physiology and Plant Molecular Biology, 1999,50: 601-39
    172. Hausladen A and Alscher R G. Glutathione. In Antioxidants in Higher Plants (eds Alscher RG and Hess JL), pp. CRC Pres,Boca Raton, 1993,1-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700