用户名: 密码: 验证码:
深井和大位移井套管磨损规律试验及磨损程度预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大量的深井、超深井、大斜度井和大位移井的钻探过程中,每口井均不同程度存在着套管磨损问题。套管磨损后其承载能力降低,给后续的钻完井、采油及修井带来重大影响,有时可使一口几乎要完成的井报废。准确预测套管的磨损程度对深井和大位移井的设计及钻井施工具有重要意义。针对国内外套管磨损预测及相关技术存在的主要问题,拟以套管磨损规律的研究为基础,以套管磨损程度预测及剩余强度计算作为研究目标,具体内容如下:
     综合套管磨损井状况、井场监测和井下工况模拟试验的分析结果,初步探讨了套管的磨损机理。得出套管磨损是以静载荷为基础,切削磨损、黏着磨损、磨粒磨损和接触疲劳等形式共存的磨损机制。非加重钻井液介质中套管以切削磨损和疲劳磨损为主;加重介质中加重剂能减少钻杆对套管的直接犁削作用,但会增大磨粒磨损和疲劳磨损;高接触压力下,铁矿粉还会加大套管的黏着磨损。
     利用钻杆/套管摩擦磨损试验机试验分析了接触力、钻井液加重剂和套管材质等因素对套管磨损的影响规律。得出套管磨损率与接触力呈现近似线性关系,接触力增大,摩擦系数总体上有增大的趋势;含重晶石加重剂的钻井液介质对套管有明显的减磨作用,重晶石和铁矿粉以适当的比例混合可使套管磨损率减小至最低水平;套管具有较高硬度的前提下,提高其抗拉强度有利于降低套管磨损。在此基础上,统计得出了套管磨损效率的参数数据和经验公式。
     在考虑钻柱的刚度和屈曲的基础上,推导出深井和大位移井的钻柱拉力—扭矩方程;建立了基于能量原理的套管磨损程度预测模型并编制了预测软件。可以预测包括钻进、起下钻具等作业过程在内的,不同的套管柱层次、钻具组合、井眼轨迹、钻井液类型、钻井参数等情况下的全井段不同井深所对应的套管磨损量。示例计算的结果表明,软件减少了人为的估计误差,预测值准确可靠。
     以有限元分析为主导并结合试验验证,研究了磨损套管的剩余抗挤强度。得出套管磨损最严重部位首先发生屈服,逐步发展成“塑性铰”,最后造成整体结构失稳。抗挤强度随套管磨损壁厚、磨损半径和轴向载荷分别呈现指数、幂函数、线性趋势变化;以非磨损套管和偏心圆筒的抗挤强度计算为基础,建立了磨损套管抗挤强度的计算模型。“割缝环”解析法分析了磨损套管的抗内压强度。
     论文研究成果对套管柱强度优化设计、套管减磨设计、井下安全评估等都具有实际应用价值,并且为更深入地分析套管磨损机理提供了参考。
During drilling process of a great number of deep wells, super-deep wells, highlydeviated wells and extended reach wells, casing pipe wear problem exists in differentdegree. After casing pipes are worn, their bearing capacity gets reduced, causing asignificant impact on subsequently drilling wells, extracting oil and repairing wells.Sometimes it can make an almost finished well discarded. Accurately predicting weardegree of casing pipes is of important significance on design of deep wells and extendedreach wells as well as drilling construction. The subject planed to adopt the research inwear rule of casing pipes as foundation and adopt prediction of wear degree of casingpipes and calculation of residual intensity as research objectives as for the wear predictionof casing pipes home and abroad along with major problems that relevant technologiesmet. Details are as follow:
     By integrating analyzing results of simulation experiments of casing wear wellcondition, well site monitoring and working condition in the well, mechanism of casingpipe abrasion was preliminarily discussed and concluded that casing wear was based onstatic load and was a kind of abrasion mechanism coexisting with cutting wear, adhesionwear, abrasive wear and contact fatigue wear etc. In non-weighted drilling fluid medium,cutting wear was the main form of casing pipe’s wearing; In weighted drilling fluidmedium,abrasive wear and fatigue wear were main forms of casting pipe’s wearing;Heavy weight additive could reduce drill stem’s direct cutting effects on the casing pipe,while it would increase fatigue wear; Compared with barite heavy weight additive, highload of hematite powder would also increase casing pipe’s adhesion wear.
     Drill rod/casing pipe frictional wear testing machine was utilized to analyze the effectrule which made by contact force, drilling fluid heavy weight additive and casing pipequality on casing pipe wear. It was concluded that wear rate of casing pipe and contactforce took on approximate linear relation. When contact force strengthened, frictionalcoefficient tended to increase; drilling fluid medium containing barite aggravating agenthad evident wear decreasing effect on casing pipe, mixture of barite and hematite power at proper ratio of 2:1 could reduce casing pipe’s wear to its lowest level; at the premise ofhigh hardness, improving casing pipe’s tensile strength could benefit the reduction of itswear. Based on that, parameter data and empirical formula were reached through statistics.
     On the basis of taking stiffness and buckling of drill column into account,tension—torque equation of drill column in deep well and extended reach well wasobtained; prediction model of wear degree of casing pipe based on energy principle wasestablished and forecast software was prepared. Wearing capacity of casing pipecorresponding to different well depths in all well sections could be predicted under suchcircumstances as layer of different casing strings, combination of drilling tools, well boretrack, type of drilling fluid and drilling parameter etc, including such operation process asdrilling and pulling out drilling tools etc. The calculated result through examples denotedthat software reduces artificial error of estimation, and predicted value was accurate andreliable.
     The residual collapsing strength of worn casing pipe was researched by thefinite-element analysis and verification of tests. It concluded that the yielding occurredfirst at the gravest worn part of the casing pipe, developing into“plastic hinge”gradually,and causing the instable overall structure at last. The collapsing strength respectivelypresented changes of indexes, power function and linear trend with wear wall thickness,wear radius and axial load of the casing pipe. A computation model of collapsing strengthof worn casing pipe was established based on collapsing strength calculation of non-wearcasing pipe and eccentric cylinder. Internal pressure strength of worn casing pipe wasanalyzed in“slot cutting”analysis method.
     Research result of the thesis has practical application value in strength optimizationdesign of casing string, wear-reducing design of casing pipe and safety assessment underwells etc, and provides references for further analyzing wear mechanism of casing pipes.
引文
[1]林元华,付建红,施太和,等.套管磨损机理及其防磨措施研究[J].天然气工业, 2004,24(7): 58-61.
    [2]张红生,郭永斌.套管防磨保护措施[J].石油钻采工艺, 2007, 29(6): 116-118.
    [3]仵雪飞,林元华,巫才文,等.套管防磨措施研究进展[J].西南石油学院学报, 2004, 26(4):65-69.
    [4] W. L. Russel, T. R. Wright. Casing Wear: Some Causes, Effects and Control Measures[J]. WorldOil, 1974(4): 211-218.
    [5]苏建文,卢强.新型耐磨材料特性在塔里木油田的推广应用[J].天然气工业, 2003, 23(2):56-58.
    [6] G. M. John. Hardbanding and its role in deepwater drilling[C]. 1992: SPE 52882.
    [7]樊建春,张来斌,余磊.深井和超深井套管磨损性质探讨[J].石油机械, 2004, 32(增刊):111-113.
    [8]高亨.诗经今注[M].北京:清华大学出版社, 2010: 45-55.
    [9] B.布尚.摩擦学导论[M].北京:机械工业出版社, 2007: 1-5.
    [10] F. P.鲍登, D.泰博.固体的摩擦与润滑[M].袁汉昌译.北京:机械工业出版社, 1982:237-259.
    [11]М.М.Хрущов,Е.С.Беркович.Точноеопределениеизносадеталеймашин[M].Машгиз:1955: 161-182.
    [12] A. D.萨凯.金属磨损原理[M].北京:煤炭工业出版社, 1980: 51-54.
    [13]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社, 1993: 120-136.
    [14]温诗铸.世纪回顾与展望—摩擦学研究的发展趋势[J].机械工程学报, 2000, 36(6): 1-6.
    [15]克拉盖尔斯基.摩擦磨损计算原理[M].汪一麟译.北京:机械工业出版社, 1982: 210-326.
    [16]温诗铸.材料磨损研究的进展与思考[J].摩擦学学报, 2008, 28(1): 1-5.
    [17]温诗铸.纳米摩擦学研究进展[J].机械工程学报, 2007, 43(19): 1-8.
    [18] N. P. Suh. The delamination theory of wear[J]. Wear, 1973(25): 111-124.
    [19] W. B. Bradley, John E. Fontenot. The Prediction and Control of Casing Wear[J]. JPT, 1975(2):233-245.
    [20] J. S. Williamson. Casing wear: The Effect of Contact Pressure[C]. 1981: SPE 10236.
    [21] Arzhur Lubinski, J. S. Williamson. Usefullness of Steel or Rubber Drillpipe Protectors[C]. 1984:SPE 11381.
    [22] G. M. Bol. Effect of Mud Composition on Wear and Friction of Casing and Tool Joints[C]. 1986:SPE 13457.
    [23] Bruno Best. Casing Wear Caused by Tooljoint Hardfacing[C]. 1986: SPE 11992.
    [24] Jerry P. White, Rapier Dawson. Casing Wear: Laboratory Measurements and Field Predictions[C].1987: SPE 14325.
    [25] T. C. Kevin, R. Dawson. Rubber Drillpipe Protectors Reduce Rotary Torque[C]. 1988: SPE 15545.
    [26] W. H. Russell. Laboratory Casing Wear Test[C]. Energysources Technology Conterence &Exhibition, 1993: 1-8.
    [27]黄伟和. YK1井技术套管磨损分析[J].石油钻探技术, 1997, 25(4): 17-22.
    [28]韩勇.钻杆接头与套管摩擦磨损问题的理论与试验研究[D].南充:西南石油学院,油气井工程博士学位论文, 2001: 33-68.
    [29]姜伟.渤海地区套管磨损问题的研究[J].中国海上油气(工程), 2002, 14(1): 34-37.
    [30]余磊,张来斌,樊建春.重晶石和铁矿粉对套管/钻杆摩擦副摩擦磨损性能的影响[J].摩擦学学报, 2004, 24(5): 462-466.
    [31]韩勇,欧阳春,肖国章.深井套管磨损的全尺寸模拟试验[J].钢管, 2010, 39(7): 1-10.
    [32] R. W. Hall, Jr. Ali Garkasi, Greg Deskins. Recent Advances in Casing Technology[C]. 1994:IADC/SPE 27532.
    [33] C. A. Johancsik. Fricscn and rapier dawson:torque and drag in directional and measurement[C].1986: SPE 11380.
    [34]余磊,张来斌.钻杆涡动引起的套管磨损解析分析[J].钻采工艺, 2004, 27(4): 66-69.
    [35]韩勇,贾应林,余金海.套管磨损分析技术在油气井建井工程中的应用[J].钢管, 2010, 39(7):28-34.
    [36]肖国章,许文妍,韩勇,等.全尺寸套管磨损试验研究[J].石油矿场机械, 2007, 36(10):65-67.
    [37] J. S. Song. The Internal Pressure Capacity of Crescent Shaped Wear Casing[C]. 1984: SPE 23902.
    [38] Y. Kuriyama, Y. Tsukano, T. Mimaki, et al. Effect of Wear and Bending on Casing CollapseStrength[C]. 1992: SPE 24597.
    [39] E. J. Tsuru, M. Ogasawara, T. Yonezawa. Influence of loading on the Performance of TubularConnection Used in Horizontal Wells[C]. 1994: SPE 27485.
    [40] J. Wu, M. G. Zhang. Casing Burst Strength After Casing Wear[C]. 1992: SPE 94304.
    [41]覃成锦,高德利.套管磨损后剩余抗挤强度的数值分析[J].石油钻采工艺, 2000, 22(1): 6-8.
    [42]覃成锦,高德利,徐秉业.含磨损缺陷套管抗挤强度的数值分析[J].工程力学, 2001, 18(2):9-13.
    [43]高连新.套管内壁磨损对其抗挤毁性能影响的有限元分析[J].石油矿场机械, 2000, 29(3):39-41.
    [44]李军,柳贡慧.非均匀地应力条件下磨损位置对套管应力的影响研究[J].天然气工业, 2006,26(7): 77-79.
    [45]张效羽.套管有限元计算的若干问题分析[J].天然气工业, 2001, 21(1): 62-65.
    [46] Nobuo Morita. Oriented perforation to prevent casing collapse for highly inclined wells[C].Drilling & completion, 1995: SPE 28556.
    [47]廖华林,管志川,闫振来,等.基于可靠性理论的套管失效风险评估方法[J].石油学报, 2010,31(1): 161-164.
    [48]廖华林,管志川,冯光通,等.深井超深井套管损坏机理与强度设计考虑因素[J].石油钻采工艺, 2009, 31(2): 1-6.
    [49]杜春常.深井套管抗挤强度分析及计算[J].西南石油学院学报, 1999, 21(3): 37-41.
    [50]杜春常,袁琪骥.套管三轴应力设计原理与方法[J].西南石油学院学报, 1993, 15(3): 74-82.
    [51]黄根炉,陈忠帅,马庆涛.弯曲井眼中套管抗挤强度计算[J].石油机械, 2011, 41(4): 38-40.
    [52] E. I. Bailey, K. J. Petrella, J. E. Smith. Develoment of gas tight seal for tool joint[C]. 1998: SPE49202.
    [53] Han Jianzeng, Shi Taihe. Equations Calculate Collapse Pressures for Casing Strings[J]. Oil & GasJournal, 2001, 22(1): 44-47.
    [54]王长进.钻杆与套管摩擦磨损研究[D].秦皇岛:燕山大学,油气井工程硕士学位论文, 2007:11-60.
    [55]刘书杰,谢仁军,刘小龙.大位移井套管磨损预测模型研究及其应用[J].石油钻采工艺,2010, 32(6): 11-15.
    [56]蒋祖军,郭新江,王希勇.天然气深井超深井钻井技术[M].北京:中国石化出版社, 2011:300-320.
    [57] R. C. Mccann, R. L. Rudolf. Mathematical technique improves directional well-path planning[J].Oil and Gas Journal, 1998, 96(34): 64-68.
    [58]唐世忠,李娟,张晓峰.大位移井套管磨损量分析模型[J].钻采工艺, 2008, 31(6): 17-20
    [59]钻井手册(甲方)编写组.钻井手册(甲方)上册[M].北京:石油工业出版社, 1990: 3-28.
    [60]楼一珊,孙文化,李忠慧.套管磨损程度分析与套管剩余强度计算[J].江汉石油学院学报,2004, 26(3): 138-139.
    [61]覃成锦,高德利,唐海雄,等.南海流花超大位移井套管磨损预测方法[J].石油钻采工艺,2006, 28(3): 1-3.
    [62]周全兴.钻采工具手册[M].北京:科学出版社, 2000: 978-1163.
    [63] J. M. Schoenmakers. Casing Wear During Drilling-Simulation, Prediction, and Control[C]. 1987:SPE 14761.
    [64]陈浩,刘承杰.大位移井套管柱磨损的探讨[J].石油矿场机械, 2002, 31(1): 8-9.
    [65]韦忠良,孙金美.常规套管防磨器损坏原因分析研究[J].钻采工艺, 2009. 32(1): 68-71.
    [66]李子丰.油气井管杆柱力学[M].北京:石油工业出版社, 1996: 33-62.
    [67]李子丰.井眼轨道控制理论[M].北京:石油工业出版社, 1996: 9-11.
    [68] W. L. Scott. Measured Rodstring/Tubing Wear and Associated Side Loading[C]. 1997: SPE 37502.
    [69]蔡利山,赵素丽.钻井液润滑剂润滑能力影响因素分析与评价[J].石油钻探技术, 2003,31(1): 44-46.
    [70] API Bul 5C3. Bulletin on Formulas and Calculations for Casing,Tubing, Drill Pipe and Line PipeProperties[M]. Sixth Edition, 1983: 1-93.
    [71] API Bulletin 5C3. Formulas and Calculations for Casing.Tubing, Drillpipe and Line PipeProperties[M]. American Petroleum Institute, Production Department, 1983: 12-53.
    [72]李子丰,王长进,李天降,等.油井钻杆/套管摩擦磨损试验机的研制[J].石油机械, 2006,34(11): 11-13.
    [73]阳鑫军,李子丰,陈峰博,等.基于新型油井套管磨损实验机的钻井工况模拟[J].石油机械,2011, 41(1): 33-37.
    [74]吴雪平,金业权,徐泓.深井套管磨损原因及防护[J].西部探矿工程, 2004, 16(10): 57-58.
    [75]科涅谢夫,斯皮瓦克.钻井液的防磨损和润滑性能[M].朱定宇,译.北京:地质出版社,1983: 37-58.
    [76]王萍,林凯.几种泥浆加重剂的减磨性能研究[J].石油矿场机械, 2005, 34(2): 27-30.
    [77]赵金锋,刘雅政,李亚欣. P110石油套管缺陷分析材料热处理技术[J].材料热处理技术,2009, 28(3): 154-157.
    [78] M. C. Sheppard. Designing well paths to reduce drag and torque[C]. 1983: SPE 15463.
    [79] H-S. Ho. An Improved Modeling Program for Computing the Torque and Drag in Directional andDeep wells[C]. 1987: SPE 18047.
    [80]李子丰,刘希圣.水平井钻柱稳态拉力—扭矩模型及其应用[J].石油钻探技术, 1993, 20(4):1-6.
    [81] Li Zifeng, Liu Xisheng, Zhou Daqian, et al. Steady tension-torque model for drillstring inhorizontal wells[C]. 1991: SPE 26295.
    [82] Li Zifeng, Li Jingyuan. Fundamental Equations for Dynamic Analysis of Rod and Pipe String inOil-Gas Wells and Application in Static Buckling Analysis[J]. Journal of Canadian PetroleumTechnology, 2002, 41(5): 43-48.
    [83] Li Zifeng, Ma Xingrui, Huang Wenhu. 3D analysis of bottom hole assembly under largedeflection[J]. SPE Drilling & Completion, 1996, 11(2): 104-110.
    [84]张宝增,王瑞和,张春玲,等.钻柱拉力扭矩模型在侧钻水平井中的应用[J].天然气工业,2007, 27(1): 68-71.
    [85]李子丰,李敬媛,孔凡军.钻柱拉力—扭矩模型述评[J].石油机械, 1993, 21(8): 43-46.
    [86]李子丰,马兴瑞,黄文虎.钻柱力学基本方程及其应用[J].力学学报, 1995: 27(4): 406-414.
    [87] A. Lubinski. A study of the buckling of rotary drilling-strings[J]. Drilling and Production Practice.1950, 10(6): 178-214.
    [88] P. R. Paslay , D. B. Bogy. The stability of a circular rod laterally constrained to be in contact withan inclined circular cylinder[J]. Journal of Applied Mechanics, 1964, 17(12): 605-610.
    [89] Rapier Dawson, P. R. Paslay. Drillpipe buckling in inclined holes [J]. Journal of PetroleumTechnology, 1984, 29(10): 120-128.
    [90]高德利.油气井管柱力学与工程[M].东营:中国石油大学出版社, 2006: 316-342.
    [91]李子丰,马兴瑞,黄文虎.水平管中受压扭细长杆管柱的线性弯曲[J].哈尔滨工业大学学报,1994, 26(1): 96-100.
    [92]李子丰,马兴瑞,黄文虎.水平管中受压扭细长杆管柱的几何非线性屈曲[J].力学与实践,1994, 16(3): 16-18.
    [93]李子丰,马兴瑞,黄文虎.油气井杆管柱的静力稳定性[J].工程力学, 1997, 14(1): 17-25.
    [94] Li Zifeng. Static buckling of rod and pipe string in oil and gas wells[C]. 1997: SPE 57013.
    [95]王小增,杨久红,窦益华.套管磨损后剩余壁厚及剩余强度分析[J].石油钻探技术, 2008,36(2): 14-17.
    [96]曾德智,林元华,施太和,等.磨损套管抗挤强度的新算法研究[J].天然气工业, 2005, 25(2):78-80.
    [97]曾德智,龚龙祥,付建红,等.全井段套管磨损量预测与磨损后抗挤强度计算方法研究[J].钢管,2010,39(7): 11-16.
    [98]廖华林,管志川,马广军,等.深井超深井内壁磨损套管剩余强度计算[J].工程力学, 2010,27 (2): 250-254.
    [99] J. Wu, Chevron Texaco, M. G. Zhang. Casing Burst Strength After Casing Wear[C]. 2005: SPE94304.
    [100]万立夫.套管磨损对深井套管柱安全可靠性的影响[D].青岛:中国石油大学(华东),油气井工程硕士学位论文, 2008: 70-90.
    [101]龚曙光. ANSYS工程应用实例解析[M].北京:机械工业出版社, 2003: 301-376.
    [102]Liang Erguo, Li Zifeng. Computation Model for Collapse Strength of the Casing Wear[C].Advanced Materials Research (ISSN: 1022-6680), 2012: 496-501.
    [103]李廉锟.结构力学[M].北京:高等教育出版社, 1996: 56-63.
    [104]宋根才.复杂井况水平井套管损坏机理及预防技术研究[D].东营:中国石油大学(华东),机械设计及理论博士学位论文, 2010: 45-70.
    [105]T. Tamano, T. Mimake, S. A. Yanagimoto. New empirical formula for collapse resistance ofcommercial casing[J] . Journal of Energy Resources Technology, 1983, 43(5): 489-498.
    [106]Li Zifeng. Casing Cementing with Internal Pre-pressurization for Thermal Recovery Wells[J].Journal of Canadian Petroleum Technology, 2008, 47(12): 44-49.
    [107]ЛянЭрго,ЛиЦзыфэн,ЧэньХунбин.Влияниеползучестигорныхпороднанагрузкиобсаднойколонны[J].Газоваяпромышленность, 2010: 47(6): 647-652.
    [108]W. Flugge. Handbook of Engineering Mechanics [M]. McGraw-Hill Book Company, 1962: 1-11.
    [109]杨龙,练章华,高智海,等.套管内壁磨损对其抗内压性能的影响[J].天然气工业, 2003,23(6): 94-96.
    [110]N. B. Moore, P. S. Mock. Reduction of drillstring torque and casing wear in extended reach wellsusing nonrotating drillpipe protectors[C]. 1996: SPE 35666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700