用户名: 密码: 验证码:
轮对空心轴架悬机车驱动系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路机车的驱动系统将电能转换成机械能并驱动机车运行,是机车结构中的核心和关键部件之一。机车驱动系统的设计及其动力学分析是机车转向架设计及机车动力学研究的重要组成部分;同时,由于机车驱动系统的驱动电机等主要部件都布置在机车底部,工作条件恶劣,在输出动力的同时,将承受轮轨的强大冲击。随着铁路机车运行速度的不断提高,驱动系统的工作条件不断恶化,振动不断加剧,对驱动系统性能及机车运行性能的不利影响也愈加明显。为了保证列车高速运行时的高可靠性和绝对安全,必须对机车驱动系统动力学进行更全面和深入的分析研究。
     本论文将机车的驱动系统定义为一个包括了牵引电机、轮对和驱动系统悬挂、动力传动等机械结构以及电机电气系统在内,考虑轮轨相互作用的复杂机电耦合动力学系统。论文主要针对采用轮对空心轴传动方式的架悬机车,在简要概述国内外驱动系统的结构发展以及驱动系统动力学研究现状的基础上,提出机车驱动系统中存在自激振动;并从驱动系统内在速度反馈引起的自激振动(驱动系统扭转自激振动)以及机电耦合导致的驱动系统自激振动(牵引电机谐波转矩)两个方面证明了机车驱动系统自激振动的确实存在,并在此基础上进一步展开研究。
     在轮轨交通运输中,机车动轮和钢轨间的粘着力是驱动机车运行的最终动力。但同时,轮轨间的粘着系数在轮轨蠕滑速度较大时的衰减特性将会导致机车驱动系统产生扭转自激振动。本论文通过建立单轮对简单模型,对驱动系统扭转自激振动的发生条件、产生机理和影响因素等进行了分析研究。研究表明,当机车稳定蠕滑速度处于粘着系数曲线的下降段时,机车驱动系统将会发生扭转自激振动,其外在表现为轮轨间的粘滑振动。
     为了研究驱动系统扭转自激振动与机车振动的关系及影响规律,论文基于车辆一轨道耦合动力学理论,利用弹性系统动力学总势能不变值原理建立了包括驱动系统在内的机车一板式轨道垂向耦合动力学模型、方程及仿真程序,并对影响自激振动的系统参数及自激振动对机车动力学性能的影响进行分析研究。研究表明,驱动系统的扭转自激振动将对机车动力学性能,尤其是垂向动力学性能产生影响,在对机车动力学进行分析研究时,有必要考虑驱动系统自激振动的影响。
     机车牵引异步电机的输出转矩包含有振动谐波转矩,这将使电机转矩产生脉动,从而对驱动系统以及机车系统的动力学性能产生影响。论文通过对异步电机谐波转矩的简要分析,给出了谐波转矩的计算公式;对牵引异步电机谐波转矩频率及驱动系统振动频率进行了分析;建立了机车驱动状态下的动力学仿真模型,并对谐波转矩对机车及牵引电机的动力学影响进行了计算分析。
     当前,我国有大量机车转向架都采用了驱动系统刚性架悬方式,但为了更好地满足200km/h的运行要求,需要进一步将刚性架悬改进成为弹性架悬。为了研究弹性架悬对机车动力学性能的改善,论文对架悬机车驱动系统的悬挂特性进行了动力学研究;并对弹性架悬的关键参数进行了分析;探讨了驱动系统3点全弹性架悬的可行性。
The driving system is an essential component in a locomotive. The driving systems can convert mechanical energy into electrical energy and drive the locomotive. The structural design and dynamics of the driving system have become an important part of the bogie design and locomotive dynamics. Further more, the main parts of the driving system are installed at the bottom of the locomotive, they will sustain the powerful strike of the rail/wheel force while they export power. So the operating conditions of the driving system are very servere, and the conditions will get worse and the vibration of the driving system will deteriorate with the increase of the railway vehicle speed. All these will have a negative impact on the dynamic performance of the driving system and the locomotive. In order to ensure the reliability and safety of the locomotive, it is necessary and important to make an intensive study on the dynamics of the driving system.
     In this dissertation, the driving system of the locomotive is defined as an electromechanical coupling system including the traction motor, the wheelset, the suspension of driving equipment and the constructs of a drive system, which consider the interaction between the wheel and the rail. The work in this dissertation focuses on the driving system of locomotive with wheelset quill shaft and bogie-mounted motor. This thesis briefly reviews the history and the current situation of the structure and dynamics of the driving system. Based on these studies, this document proposes that there are self-excited vibrations in the driving system, and proves the existence of the self-excited vibrations through two aspects: one is caused by the speed feedback in the driving system (self-excited torsional vibration of locomotive drive system); another is caused by electro-mechanical coupling effects (harmonic torques of asynchronous traction motor).
     In railways, the adhesion force between the wheel and the track is the ultimate motivation force which drives the train forward. But because of the attenuation characteristics of the adhesion coefficient, the self-excited torsional vibration will occur when the slip velocity reaches a greater value. In order to investigate the self-excited torsional vibration of locomotive driving system, a single wheelset model is built and the mechanism of the vibration is analyzed. The investigation results indicate that the self-excited torsional vibration will occur when the initial slip velocity is located at the descending slope of the adhesion coefficient curve, and it appears in the form of stick-slip vibration.
     For the purpose of investigating the interrelation and interference between the locomotive dynamics and the driving system self-excited torsional vibration, a locomotive and slab track vertical coupled dynamics model is established in this dissertation based on the vehicle-track coupled dynamics and the principle of total potential energy with stationary value in elastic system dynamics. Dynamics equations are set up, a MATLAB program is applied to simulate the parameters and dynamics of the self-excited torsional vibration. The simulation results indicate that the self-excited torsional vibration has effect on dynamic performances of locomotive, especially on vertical dynamics. So it is essential to consider these effects when investigate locomotive dynamics.
     The driving system of the locomotive is an electromechanical coupling system. The traction torque of asynchronous traction motor includes harmonic torques. Due to the harmonic torques, rotational speed pulsation will be presented in the traction asynchronous motor, which will affect the locomotive dynamics. Firstly, this dissertation analyzs the harmonic torque of traction asynchronous motor and proposes the calculation expressions for harmonic torques. Secondly, this paper studies the frequencies of the harmonic torques and establishes a complete dynamics model of locomotive. Lastly, a simulation program is provided and the tangent dynamics and curve negotiating dynamics of locomotive are simulated.
     Considering that the bogie-mounted motor is massively applied in China, it is essential to use the elastic bogie-mounted suspensions instead of the rigid suspensions to meet the requirements of the new 200km/h locomotive. In order to investigate the dynamics of the locomotive with elastic bogie-mounted motor, a complete dynamics model of locomotive is established. The dynamics of elastic bogie-mounted suspension locomotive are simulated and compared with the tradition locomotive with rigid bogie-mounted motor. The key parameters of the elastic suspension and the feasibility of using the 3-points full elastic bogie-mounted driving equipment are also analyzed in this dissertation.
引文
[1]Giorgio Diana, Federico Cheli, Andrea Collina, et al. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements [J]. Vehicle System Dynamics,2002,38(3):165-183.
    [2]Rudolf Wagner, Erlangen. Technologische Perspektiven Fuor Fahrzeuge im spurgefuohrten Hochgeschwindigkeitsverkehr [J]. ZEV+DET Glas.Ann.,1997,121(2/3): 64-80.
    [3]A.Striberskya, F.Mosera, W.Rulkab. Structural dynamics and ride comfort of a rail vehicle system [J]. Advances in Engineering Software,2002,33:541-552.
    [4]赵建伟.浅谈高速机车的几个技术问题[J].内燃机车,2000,35(5):7-13.
    [5]卡尔·萨克斯.电传动机车转向架结构与原理(下册)[M].孙翔译.北京:中国铁道出版社,1988.
    [6]金鼎昌,罗赞,黄志辉.牵引电动机悬挂方式对机车或动车动力学性能的影响[J].铁道学报,1994,16(增刊):43-47.
    [7]王伯铭,陈康,鲍维千.对于Vmax=140km/h的电传动机车采用轴悬式驱动机构的可行性研究[J].铁道机车车辆,1996,6(4):5-9.
    [8]景维钟.几种体悬式高速动力车转向架驱动装置述评[J].内燃机车,1995,30(12):31-35.
    [9]孙竹生,鲍维千.内燃机车总体及走行部[M].第3版.北京:中国铁道出版社,1995.
    [10]葛来薰.准高速机车架悬式转向架设计制造和试验(上)[J].内燃机车,1998,33(3):2-13.
    [11]赵熙雍.轮对空心轴全悬挂传动装置的研制[J].机车电传动,1985,26(6):3-13.
    [12]李国顺,孙琼.高速动力车万向轴结构设计与运动学分析[J].铁道机车车辆,1998,8(2):1-5.
    [13]李景贤,肖绯雄.万向轴式动力车转向架驱动系统分析[J].西南交通大学学报,1997,32(2):218-222.
    [14]Josef Kolerus.避免机车驱动装置粘-滑振动的稳定性条件[J].国外内燃机车,1982,39(5):42-49.
    [15]G. Stempina. Ueber das Dynamische Verhalten von Lokomotivetreibachsen bei Antrieb durch Drehstrom-Asynchron-Fahrmotoren [D]. Muenchen Deutschland,1978.
    [16]Rudolf Wagner.用于北美货运机车的三相交流驱动系统[J].国外内燃机车,1994,31(5):11-15.
    [17]Curt, A. Swenson. AC Traction Locomotives for Heavy Haul [C]. The Fifth International Heavy Haul Railway conference, Beijing, China.1993.
    [18]R.Rizzo, D.Iannuzzi. Indirect friction force identification for application in traction electric drives [J]. Mathematics and Computers in Simulation,2002,60(3-5):379-387.
    [19]Steven Senini, Frank Flinders, Wardina Oghanna. Dynamic Simulation of Wheel-Rail Interaction for Locomotive Traction Studies [A]. Railroad Conference, Proceedings of the IEEE/ASME Joint, Pittsburgh, USA.1993:27-34.
    [20]Frank Flinders, Steven Senini, Wardina Oghanna. Mixed electrical and mechanical simulations using dynamic systems analysis packages [A]. Railroad Conference, Proceedings of the IEEE/ASME Joint, Pittsburgh, USA.1993:87-93.
    [21]M.W.Winterling, E.Tuinman, W.Deleroi. Fault analysis of electromechanical traction drives [A]. Eighth International Conference on Electrical Machines and Drives, Cambridge, UK.1997:248-252.
    [22]M.W.Winterling, E.Tuinman, W.Deleroi. Attenuation of Ripple Torques in Inverter Supplied Traction Drives [A].17th International Conference on Power Electronics and Variable Speed Drives, London, UK.1998:364-369.
    [23]M.W.Winterling, E.Tuinman, W.Deleroi. Simulation of Drive Line Dynamics of Light-Rail Vehicles [A]. International Conference on Simulation, York, UK.1998: 79-84.
    [24]孙翔.高粘着利用机车的系统设计[J].西南交通大学学报,1994,29(3):235-248.
    [25]孙翔.机车万向轴驱动系统动力学分析[J].铁道学报,1989,11(1):1-10.
    [26]孙翔.万向轴驱动机车的粘着机理探讨[J].内燃机车,1985,20(7):46-51.
    [27]吴永芳,龚志强,孙翔.客运内燃机车轮对驱动方式的动力学初步计算分析[J].内燃机车,1987,22(12):3-13.
    [28]吴永芳.机车动轮驱动系统的机电耦合分析[J].内燃机车,1992,27(3):1-7.
    [29]吴永芳.架悬式驱动系统振动稳定性分析[J].铁道学报,1992,14(2):1-7.
    [30]吴永芳.电传动机车驱动系统动力学初步分析[D].成都:西南交通大学硕士论文,1988.
    [31]张立民.车辆轮对的粘滑振动分析[J].西南交通大学学报,1999,34(3):274-278.
    [32]李治,盛小军.机车空转问题的理论及仿真研究[J].机车电传动,1998,39(5-6):73-77.
    [33]黄伟.高速动力车粘滑振动稳定性分析[J].铁道学报,1994,16(增刊):36-42.
    [34]Kiyoshi Ohishi, Yasuaki Ogawa, Ichiro Miyashita, et al. Adhesion Control of Electric Motor Coach Based on Force Control Using Disturbance Observer [A]. Proceedings of 6th International Workshop on Advanced Motion Control (AMC), Nogoya, Japan.2000: 323-328.
    [35]Kiyoshi Ohishi, Yasuaki Ogawa, Ichiro Miyashita, et al. Anti-slip Re-adhesion Control of Electric Motor Coach Based on Force Control using Disturbance Observer [A]. Industry Applications Conference, Rome, Italy.2000, Vol.2:8-12.
    [36]T.Watanabe, M.Ogasa. Realization of Anti-Slip/Slide Control in Railway Motor Vehicle by Slip Velocity Feedback Torque Control [A]. Fifth European Conference on Power Electronics and Applications, Brighton, UK.1993, Vol.6:156-161.
    [37]Takeo Furuya, Yasushi Toyoda, YoichiHori. Implementation of Advanced Adhesion Control for Electric Vehicle [A]. Proceedings of 4th International Workshop on Advanced Motion Control (AMC), Mie, Japan.1996, Vol.2:430-435.
    [38]Tomoki WATANAEIE, Akihiro YAMANAKA, Toshio HIROSE, et al. Shigeru NAKAMURA. Optimization of Readhesion Control of Shinkansen Trains with Wheel-Rail Adhesion Prediction [A]. Proceedings of the Power Conversion Conference (PCC), Nagaoka, Japan.1997, Vol.1:47-50.
    [39]Woo-Seok Kim, Yong-Seok Kim, Jun-Koo Kang, et al. Electro-Mechanical Re-adhesion Control Simulator for Inverter-Driven Railway Electric Vehicle [A]. Industry Applications Conference (IAS), Phoenix, USA.1999, Vol.2:1026-1032.
    [40]Don-Ha Hwang, Moon-Sup Kim, Doh-Young Park, et al. Re-Adhesion Control for High-Speed Electric Railway with parallel Motor Control System [A]. International Symposium on Industrial Electronics (ISIE), Pusan, Korea.2001, Vol.2:1124-1129.
    [41]Yasushi Matsumoto, Naoya Eguchi, Atsuo Kawamura. Novel Re-adhesion Control for Train Traction System of the "Shinkansen" with the Estimation of Wheel-to-Rail Adhesive Force [A]. The 27th Annual Conference of Industrial Electronics Society (IECON), Denver, USA.2001, Vol.2:1207-1212.
    [42]Doh-Young Park, Moon-Sup Kim, Don-Ha Hwang, et al. Hybrid Re-Adhesion Control Method for Traction System of High-Speed Railway [A]. Proceedings of the Fifth International Conference on Electrical Machines and Systems (ICEMS), Shenyang, China.2001, Vol.2:18-20.
    [43]Tomoki Watanabe, Michihiro Yamashita. A Novel Anti-slip Control without Speed Sensor for Electric Railway Vehicles [A]. The 27th Annual Conference of Industrial Electronics Society (IECON), Denver, USA.2001, Vol.2:1382-1387.
    [44]Meifen Cao, Keiichi Takeuchi, Takemasa Furuya, et al. Adhesion Control in Low-Speed Region and Experiment Verification with Considering Low-Resolution Pulse Generator [A]. Proceedings of the Power Conversion Conference (PCC), Osaka, Japan.2002, Vol.2:873-878.
    [45]Satoshi Kadowaki, Kiyoshi Ohishi, Ichiro Miyashita, et al. Re-adhesion Control of Electric Motor Coach Based on Disturbance Observer and Sensor-less Vector Control [A]. Proceedings of the Power Conversion Conference (PCC), Osaka, Japan.2002, Vol.2:1020-1025.
    [46]Atsuo Kawamura, Takemasa Fruya, Keiichi Takeuchi, et al. Maximum Adhesion Control for Shinkansen using the Tractive Force Tester [A].28th Annual Conference of the Industrial Electronics Society (IECON).2002, Vol.1:567-572.
    [47]Atsuo Kawamura, Keiichi Takeuchi, Takemasa Furuya, et al. Measurement of the Tractive Force and the New Adhesion Control by the Newly Developed Tractive Force Measurement Equipment [A]. Proceedings of the Power Conversion Conference (PCC), Osaka, Japan.2002, Vol.2:879-884.
    [48]Tomoki Watanabe, Michihiro Yamashita. Basic Study of Anti-slip Control without Speed Sensor for Multiple Motor Drive of Electric Railway Vehicles [A]. Proceedings of the Power Conversion Conference (PCC), Osaka, Japan.2002, Vol.2:1026-1032.
    [49]Michihiro Yamashita, Tomoki Watanabe. A Readhesion Control Method without Speed Sensor for Electric Railway Vehicles [A]. Electric Machines and Drives Conference (IEMDC).2003, Vol.1:291-296.
    [50]Satoshi Kadowaki, Kiyoshi Ohishi, Shinobu Yasukawa, et al. Anti-skid Re-adhesion Control Based on Disturbance Observer Considering Air Brake for Electric Commuter Train [A]. The 8th International Workshop on Advanced Motion Control (AMC), Kawasaki, Japan.2004:607-61-2.
    [51]Satoshi Kadowaki, Kiyoshi Ohishi, Shinobu Yasukawa, et al. Anti-skid Re-adhesion Control Using Tangential Force Estimator Based on Disturbance Observer for Electric Commuter Train [A]. Proceedings of the International Conference on Control Applications, Taipei, ROC.2004, Vol.2:1124-1129.
    [52]Sun-Ku Kwon, Uk-Youl Huh, Hak-Ⅱ Kim, et al. Re-adhesion Control with Estimated Adhesion Force Coefficient for Wheeled Robot using Fuzzy Logic [A]. The 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea.2004, Vol.3:2530-2535.
    [53]Dan Bonta, Rodica Festila, Vasile Tulbure. The Problem of Speed Measurements in the Slip-Slide Control for Electric Railway Traction [A]. International Conference on Automation Quality and Testing Robotics, Cluj-Napoca, Romania.2006, Vol.1: 321-324.
    [54]Kiyoshi Ohishi, Satoshi Kadowaki, Yosuke Smizu, et al. Anti-slip Readhesion Control of Electric Commuter Train Based on Disturbance Observer Considering Bogie Dynamics [A].32nd Annual Conference on Industrial Electronics (IECON), Paris, France.2006:5270-5275.
    [55]Yeun-Sub Byun, Min-Sao Kim, Jai-Kyun Mok, et al. Slip and Slide Simulator using Induction Motors [A]. International Conference on Control Automation and Systems (ICCAS), Seoul, Korea.2007:1605-1608.
    [56]Satoshi Kadowaki, Masashi Takagi, Takashi Sano, et al. Antislip Readhesion Control Based on Speed-Sensorless Vector Control and Disturbance Observer for Electric Commuter Train-Series 205-5000 of the East Japan Railway Company [J]. Transactions on Industrial Electronics,2007,54(4):2001-2008.
    [57]Wenli Lin, Zhigang Liu, Lijun Diao, et al. Maximum Adhesion Force Control Simulated Model of Electric Locomotive [A]. Proceedings of the International Conference on Automation and Logistics, Jinan, China.2007:1704-1708.
    [58]Yosuke Shimizu, Kiyoshi Ohishi, Takashi Sano, et al. Anti-slip/skid Re-adhesion
    Control Based on Disturbance Observer Considering Bogie Vibration [A]. Proceedings of the Power Conversion Conference (PCC), Nagoya, Japan.2007:1376-1381.
    [59]Yosuke Shimizu, Kiyoshi Ohishi, Takashi Sano, et al. Anti-slip Re-adhesion Control Based on Disturbance Observer Considering Bogie Vibration [A]. European Conference on Power Electronics and Applications, Aalborg, Denmark.2007:1-10.
    [60]万广.机车粘着控制技术现状与发展[J].机车电传动,1996,37(3):1-4.
    [61]赵红卫.机车粘着自适应控制系统的研究[J].中国铁道科学,1998,19(4):3-40.
    [62]李江红,马健,彭辉水.机车粘着控制的基本原理和方法[J].机车电传动,2002,43(6):4-8.
    [63]王辉,肖建.机车模糊粘着控制及其仿真研究[J].机车电传动,2002,43(3):19-23.
    [64]王辉,肖建.小波分析在机车优化粘着控制中的应用[J].铁道学报,2003,25(5):33-38.
    [65]杨颖.交流传动机车粘着控制技术探讨[J].机车电传动,2003,44(4):8-11.
    [66]黄景春,肖建.基于二维云模型的机车粘着控制及其仿真研究[J].机车电传动,2007,48(1):11-14.
    [67]H.Hodei, A.Haigermoser.高速机车现代化转向架设计的发展[J].电力牵引快报,1995,18(8/9):69-77.
    [68]Von Hans Hodl, Andreas Haigermoser. Entwicklung eines modernen Triebdrehgestellkonzepts fur Hochleistungslokomotiven [J]. ZEV+DET Glas.Ann.,1992, 116(8/9):344-351.
    [69]E. Middendorf.德国铁路公司新一代电力机车—101、145和152型机车[J].电力牵引快报,1997,20(2):1-8.
    [70]E. Middendorf.德国铁路公司新一代电力机车—目的、设计、部件试验及方案[J].电力牵引快报,1997,20(3):1-11.
    [71]Christian Segieth. The 12X high power locomotive [J]. Rail International,1996, (7): 24-30.
    [72]翟婉明.电传动机车轮轨动力学性能研究[J].机车电传动,1996,37(6):8-11.
    [73]朱胜明,封全保.轴悬式牵引电动机吊挂刚度对其振动的影响[J].机车电传动,2000,41(1):28-29.
    [74]葛来薰.电动机架悬新型驱动装置的基本结构与分析比较[J].机车电传动,2005,46(2):1-6.
    [75]杨永林,封全保.高速动力车转向架研制的技术对策[J].机车电传动,2003,44(5):51-53.
    [76]赵熙雍,吴永芳.全悬挂牵引驱动装置的研制和动力学分析[J].铁道学报,1989,11(4):1-9.
    [77]戴焕云,严隽耄,王开文,等.250km/h高速客车转向架选型及动力学性能预测[J].铁道学报,1994,16(增刊):68-74.
    [78]罗湘萍.动力转向架驱动装置选型研究[J].机车电传动,2002,43(3):35-39.
    [79]封全保,王汉民,孟宏.高速动力车转向架的思索[J].铁道机车车辆,2004,24(1):9-11.
    [80]钟文生,张红军.高速轮对空心轴式转向架驱动制动单元系统分析[J].西南交通大学学报,1999,34(1):93-98.
    [81]黄志辉.270km/h等级高速动力车转向架关键部件—驱动制动单元设计[J].机车电传动,2001,42(1):28-29.
    [82]金鼎昌,罗赟,黄志辉.牵引电动机悬挂方式对机车或动车动力学性能的影响[J].内燃机车,1987,22(12):3-13.
    [83]罗赟,罗世辉,金鼎昌.架悬机车驱动装置悬挂参数及结构的研究[J].中国铁道科学,2005,26(5):57-60.
    [84]陈康,罗赟,金鼎昌.2B0架悬式动力车运行平稳性和蛇行稳定性[J].西南交通大学学报,2003,38(1):28-33.
    [85]罗赟,陈康,金鼎昌.270 km·h-1动力车驱动制动单元悬挂参数的优化[J].中国铁道科学,2004,25(2):61-65.
    [86]罗赟.机车驱动装置悬挂结构及参数的研究[D].成都:西南交通大学博士论文,2005.
    [87]罗赟,陈康,罗世辉,等.200km/h动力车驱动制动单元悬挂参数的研究[J].铁道学报,2003,25(6):27-31.
    [88]罗赟,孙永鹏,张红军,等.架悬C0-C0轴式机车电机布置及悬挂的研究[J].铁道学报,2006,28(6):41-45.
    [89]罗赟,金鼎昌.架悬机车驱动装置悬挂参数规律的研究[J].中国铁道科学,2007,28(4):78-82.
    [90]Martin B.Sebald.轴悬式驱动装置和空心万向轴架悬式驱动装置的比较[J].国外内燃机车,2006,43(6):20-25.
    [91]马卫华,罗世辉,宋荣荣.提速架悬机车动力学性能的改进[J].西南交通大学学报,2007,42(1):84-88.
    [92]谷口修.振动工程大全(上册)[M].尹传家译.北京:机械工业出版社,1983.
    [93]师汉民.机械振动系统--分析·测试·建模·对策(下册)[M].第2版.武汉:华中科技大学出版社,2004.
    [94]#12
    [95]丁文镜.工程中的自激振动[M].长春:吉林教育出版社,1988.
    [96]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2003.
    [97]陈予恕.非线性振动[M].北京:高等教育出版社,2002.
    [98]舒仲周,张继业,曹登庆.运动稳定性[M].北京:中国铁道出版社,2001.
    [99]中川宪治.工程振动学[M].夏生荣译.上海:上海科学技术出版社,1981.
    [100]小林明.汽车工程手册[M].《汽车工程手册》编译委员会译.北京:机械工业出版社,1984.
    [101]J.J.Bruwer, G.W. Steinbruegge. Effect of tractive-force variation on rhythmic chassis movements of a wheel-type tractor [J]. Trans of ASAE,1962, (2):114-115.
    [102]P.H.Bailey, A.R.Reece, B.M.D.Wills. A comparison between the performance of wheels when fitted to two wheel-testing machines and to a normal tractor [J]. Journal of Agricultural Engineering Research,1962, (1):61-63.
    [103]O.Onafeko, A.R.Reece. Soil stresses and deformations beneath rigid wheels [J]. Journal of Terramechanics,1967, (1):59-80.
    [104]邬惠乐,邵成,冯振东.汽车动力传动系统扭转振动的研究[J].汽车工程,1983,5(4):21-29.
    [105]方传流,冯振东,吕振华.汽车动力传动系扭振的固有特性和结构修改控制措施分析[J].吉林工业大学学报,1993,15(1):9-18.
    [106]马国新.车辆悬挂系统参数对传动系统扭振的影响规律[J].兵工学报坦克装甲车与发动机分册,1995,(3):17-24.
    [107]刘圣田.汽车动力传动系扭振固有特性研究[J].济南交通高等专科学校学报,1997,5(4):1-9.
    [108]彭彦宏,张建文,王占岐.汽车动力传动系扭振与整车振动耦合的研究[J].技术经济,1997,20(3):43-45.
    [109]蒋国平,王国林,周孔亢.汽车整车振动特性研究综述[J].广西大学学报(自然科学版),2001,26(3):194-197.
    [110]巫世晶,潜波,路红山,等.车辆传动系扭转振动分析系统研究与开发[J].系统仿真学报,2006,18(11):3100-3103.
    [111]赵海波,项昌乐,刘辉.车辆动力传动系统扭转振动研究的理论与方法[J].新技术新工艺,2007,19(4):37-40.
    [112]方传流,庄继德,王庆年.轮式车辆在高滑转时跳跃现象的研究[J].汽车工程,1988,10(3):39-52.
    [113]郑联珠,贾建章,程悦荪.轮式车辆动力传动系自激振动研究(Ⅰ)—自激振动的机理分析[J].农业工程学报,1996,12(4):37-42.
    [114]郑联珠,贾建章,程悦荪.轮式车辆动力传动系自激振动研究(Ⅱ)—自激振动系统的能量反馈与控制系统分析[J].农业工程学报,1996,12(4):43-47.
    [115]贾建章,罗锡文,邵明亮.车辆跳跃现象与传动系自激振动[J].中山大学学报论丛,1997,(5):174-178.
    [116]郑联珠,贾建章,程悦荪.轮式车辆动力传动系自激振动研究(Ⅲ)—自激振动系统的稳定性分析[J].农业工程学报,1997,13(1):39-44.
    [117]郑联珠,贾建章,程悦荪.轮式车辆动力传动系自激振动研究(Ⅳ)—影响自激振动稳定性的因素和抑制自振的措施探讨[J].农业工程学报,1997,13(1):45-50.
    [118]贾建章,罗锡文,邵明亮.轮式车辆传动系自激振动强度及其影响因素分析[J].农业工程学报,1998,14(3):43-47.
    [119]葛剑敏,张友坤,刘明树,等.轮式车辆传动系自激扭转振动稳定性分析[J].农业机械学报,2000,31(6):17-21.
    [120]邵明亮,王辉,王进才,等.工程车辆传动系统自激振动研究[J].同济大学学报,2001,29(12):1404-1406.
    [121]郑联珠,刘明树,张友冲,等.汽车传动系自激扭振机理研究[J].汽车工程,2001,23(6):407-410.
    [122]葛剑敏,王佐民,郑联珠.轮式车辆传动系自激扭转振动仿真计算研究[J].农业机械学报,2003,34(3):1-4.
    [123]任少云,包继华,张建武,等.牵引车在大负荷拖载工况下传动系自激振动建模与仿真研究[J].振动与冲击,2005,24(6):95-97.
    [124]任少云,张云侠,张建武,等.牵引车牵引运动的稳定性研究[J].上海交通大学学报,2005,39(9):1470-1475.
    [125]喻进军,杨明忠.车辆发生跳跃现象的传动系自激振动研究[J].机械研究与应用,2006,19(2):46-47.
    [126]李向华,管西强,鲁统利,等.轮式牵引车传动系扭转自激振动的分析[J].机械强度,2007,29(2):185-191.
    [127]贾建章,邵明亮,程悦荪,等.高滑转率下车辆动力传动系的失稳与稳定性判据[J].农业机械学报,1999,30(1):1-4.
    [128]龚积球,张定贤.轮轨间的粘着与滑动(上)[J].机车电传动,1986,27(5):16-21.
    [129]龚积球,张定贤.轮轨间的粘着与滑动(下)[J].机车电传动,1987,28(1):30-34.
    [130]鲍维千,罗成宝.内燃机车的粘着、轴重及轮径[J].内燃机车,1992,27(5):1-4.
    [131]Victor Sergeant.影响粘着利用的因素[J].国外内燃机车,1998,55(11):34-39.
    [132]鲍维千.关于机车粘着的一些概念及提高机车粘着性能的措施[J].内燃机车,1999,34(3):8-14.
    [133]H.Chen, T.Ban, M.Ishida, et al. Adhesion between rail/wheel under water lubricated contact [J]. Wear,2002,253(1-2):75-81.
    [134]H.Chen, M.Ishida, T.Nakahara. Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness [J]. Wear,2005,258(7-8): 1209-1216.
    [135]Yoshiki Ishikawa, Atsuo Kawamura. Maximum adhesive force control in super high speed train [A]. Proceedings of the Power Conversion Conference (PCC), Nagaoka, Japan.1997:951-954.
    [136]Yosuke Takaoka, Atsuo Kawamura. Disturbance Observer Based Adhesion Control for Shinkansen [A]. Proceedings of 6th International Workshop on Advanced Motion Control (AMC), Nogoya, Japan.2000:169-174.
    [137]北京汽车厂设计科汽车教研室.BJ212汽车动力传动系统扭转振动的研究[J].吉林工业大学学报,1983,27(2):50-60.
    [138]翟婉明.车辆—轨道耦合动力学[M].第2版.北京:中国铁道出版社,2002.
    [139]翟婉明.车辆—轨道耦合动力学[M].第3版.北京:科学出版社,2007.
    [140]翟婉明.车辆—轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,
    14(3):10-21.
    [141]曾庆元.弹性系统动力学总势能不变值原理[J].华中理工大学学报,2000,28(1):1-3.
    [142]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社,1999.
    [143]向俊,曾庆元.关于机车车辆-轨道系统运动方程的建立[J].长沙铁道学院学报,2000,18(4):1-5.
    (144]翟婉明.机车—轨道耦合动力学理论及其应用[J].中国铁道科学,1996,17(2):58-73.
    [145]娄平,曾庆元.移动荷载作用下板式轨道的有限元分析[J].交通运输工程学报,2004,4(1):29-33.
    [146]娄平,郑祖勇,曾庆元.利用形函数性质产生直梁单元形函数的方法[J].吉首大学学报(自然科学版),2004,25(1):22-25.
    [147]翟婉明,韩卫军,蔡成标,等.高速铁路板式轨道动力特性研究[J].铁道学报,1999,21(6):65-69.
    [148]史文华,王祥珩,黎道成.交流励磁电机系统的谐波分析[J].清华大学学报(自然科学版),,1999,39(3):61-64.
    [149]方瑞明,王榕.基于谐波分析法的高速变频电机稳态仿真研究[J].中小型电机,2004,31(1):1-4.
    [150]陈其工.变频运行感应电动机谐波电流计算与转矩、损耗分析[J].微特电机,1999,27(3):33-35.
    [151]张明玉.复合转子异步电机中谐波转矩及附加损耗的分析和计算[J].山东纺织工学院学报,1994,9(41-7).
    [152]Heller B.(海勒尔),HamataV.(哈马塔).异步电机中谐波磁场的作用[M].章名涛,俞鑫昌译.北京:机械工业出版社,1980.
    [153]童春辉.牵引电机[M].北京:中国铁道出版社,1995.
    [154]刘锦波,张承慧,等.电机与拖动[M].北京:清华大学出版社,2006.
    [155]阎治安,崔新艺,苏少平.电机学[M].第2版.西安:西安交通大学出版社,2006.
    [156]陈其工,曹文田.变频调速谐波电流与谐波转矩初步分析[J].山东师大学报(自然科学版),1996,11(3):30-33.
    [157]Xiaodong Lian, Yilmaz Luy. Harmonic Analysis for Induction Motors [A]. Canadian Conference on Electrical and Computer Engineering (CCECE), Ottawa, Canada.2006: 172-177.
    [158]余渝,杨顺昌.电压型逆变器供电的交流励磁电动机的谐波分析[J].四川兵工学报,2001,22(2):16-19.
    [159]李辉,杨顺昌.考虑转子谐波电流影响后双馈电机电磁功率的分析与计算[J].中国电机工程学报,2003,23(7):123-128.(英文).
    [160]杨顺昌,廖勇,余渝.考虑谐波影响后交流励磁电动机电磁转矩的分析与计算[J]. 电工技术学报,2003,18(1):5-9.
    [161]陈世坤.电机设计(修订本)[M].北京:机械工业出版社,1990.
    [162]吴志敢,贺益康.交—交变频交流励磁电机谐波的解析分析[J].电工技术学报,1999,14(6):9-14.
    [163]陈其工.计算与抑制变频调速异步电动机稳态谐波电流与转矩的方法[J].电子科技大学学报,1999,28(2):148-151.
    [164]张明玉.复合转子异步电机中谐波电磁场的三维分析[J].山东纺织工学院学报,1994,9(3):10-15.
    [165]李伟,韩力.逆变器供电的感应电动机谐波转矩分析与计算[J].微特电机,2005,33(4):7-9.
    [166]封全保.六连杆传动系统刚度研究[J].铁道机车车辆,1997,7(2):18-19.
    [167]罗世辉,封全保.体悬式双空心轴驱动机构运动学分析[J].铁道学报,1994,16(增刊):31-35.
    [168]钟文生.六连杆橡胶关节的运动关系分析与设计参数确定[J].机车电传动,2004,45(4):14-16.
    [169]王秋允.200km/h等级机车整体驱动系统方案研究[D].成都:西南交通大学硕士论文,2007.
    [170]马卫华,罗世辉,王自力.基于多刚体动力学的机车横向稳定性分析方法研究[J].机车电传动,2005,46(5):33-36.
    [171]臧其吉.200km/h等级机车驱动、制动装置述评[J].电力机车与城轨车辆,2005,28(5):1-4.
    [172]葛来薰.自主创新开发我国第二代轮对空心轴式电机架悬驱动装置[J].电力机车与城轨车辆,2006,29(2):1-4.
    [173]魏春阳,张建.东风Ⅱ型机车在准高速速度区段横向性能的改进[J].内燃机车,2002,37(10):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700