用户名: 密码: 验证码:
基于移动源数据的城市快速交通事件检测W-CUSUM算法与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通事件是引发城市路网中各种偶发性拥挤的关键因素,在造成交通延误、交通设施服务效率下降、交通使用者利益损失的同时,也对交通安全、交通环境等产生重要的影响。城市快速路是城市快速交通发展的趋向和城市路网主骨架,对城市快速路的交通事件进行快速、有效的检测和响应,既是快速路交通管理与控制的重要组成部分,同时也是降低事件损失、减少路网交通拥堵的有效方法。同时,移动检测技术的日益发展和成熟也为交通事件自动检测(Automatic Incident Detection,简称AID)提供了新的实时、动态、准确的交通流信息。
     本文的研究目的在于提出基于移动源数据的城市快速路交通事件自动检测算法,同时对算法的性能进行评价与验证,并提出算法的实施方法,从而为交通管理者进行城市快速路网的事件检测、管理和响应以及事件检测算法的评价提供新的方法和思路。
     本文的主要研究成果及结论包括:
     1、现有AID算法主要基于固定源数据开发,存在误报率高、实际应用效果不佳等缺陷,鉴于此,本文提出了基于移动源数据的W-CUSUM交通事件自动检测算法。该算法充分考虑了移动源数据的采集特点及事件条件下快速路交通流的时空特性,并采用具有时频分析特性的小波分析方法与基于似然比的CUSUM算法相结合的思想,使得所开发的W-CUSUM算法在改善所用数据源质量的同时,也大大提高了事件检测的准确性和可靠度。
     2、现有的误报率指标未能直观、有效的反映事件检测算法的误报情况,同时传统的算法性能包络曲线只能定性、粗略的描述算法的检测性能,缺乏对事件检测算法的综合、量化评价。鉴于此,本文首先提出了基于时间和空间指数的误报率指标,使得该指标与传统的误报率指标相比更具有直观性和实用性;在此基础上,进一步引入期望成本的概念,将检测率和误报率指标相结合,建立了基于期望成本的事件检测综合评价指标。该综合指标不仅能够实现不同AID算法性能的综合、量化评价及比选,还可以用于确定不同AID算法的最优检测阈值及最优检测性能点,从而为交通管理者进行算法的比选以及算法参数的标定提供了有效的技术支持。
     3、分别利用仿真数据和实际数据对W-CUSUM算法进行了评价和比较。分析了不同影响因素下W-CUSUM算法性能的差异,并将所提出的W-CUSUM算法与现有的SND算法、CUSUM算法、UCB算法进行了性能对比。结果表明:(1)不同阻塞车道数条件下W-CUSUM算法性能的差异最为明显,影响最不明显的是事件的持续时间;(2)相对于SND算法、CUSUM算法和UCB算法而言,W-CUSUM算法的检测性能更优,优化程度分别提高了33.7%、19.5%和38.3%。
     4、基于实验交通工程法(ETEM),提出了面向事件检测的移动源数据样本量确定模型,弥补了现有方法难以针对事件检测进行移动源数据样本量研究的不足,并通过仿真实例研究得出了满足事件检测一定精度水平所需要的路网浮动车比例以及较优的事件检测间隔,从而为确定面向事件检测的浮动车合理发展规模和检测间隔提供了有效的建议。
     5、建立了基于分层结构的事件检测多源数据融合模型。在所建的融合模型中,充分考虑到了各种可用数据源所包含的事件信息特性,并将W-CUSUM算法与神经网络模型以及交通决策者的经验有效的结合起来,一方面既增强了W-CUSUM算法在实际应用中的灵活性和可拓展性,同时也为进一步提高事件检测算法的准确性和可靠性奠定了坚实的方法与理论基础。
     6、从系统的角度,提出了W-CUSUM事件检测算法的实施框架与流程,对事件检测系统开发、安装及运行的整个过程进行了具体的阐述和建议,从而对W-CUSUM事件检测算法从理论研究到实际应用建立了相应的方法和流程。
Traffic incidents are a primary contributor to various unexpected congestions, resulting in traffic delays, declining of traffic infrastructure service efficiency, and loss of traffic users' benefits, and having a considerable impact to the traffic safety and environment as well. A prompt and reliable detection of and a quick response to the traffic incident on urban expressways, which represent the trend of the rapid urban infrastrure development and the backbone of the urban transportation network, is not only an important component of traffic management and control of urban expressways, but an effective way to decrease the losses resulted from the incident and reduce the traffic congestion as well. Meanwhile, the continuing development and maturity of mobile traffic detection techniques are now able to provide new real-time, dynamic and accurate traffic information for incident detection.
     The purpose of this dissertation is to develop, evaluate, validate and implement an automatic incident detection (AID) algorithm for urban expressways based on mobile source traffic data, which provides a new approach for the detection and management of, and response to the traffic incidents on urban expressways as well as an evaluation method of AID algorithms. The research in this dissertation consists of the following accomplishments and contributions:
     1. Existing AID algorithms are mainly developed based on fixed detectors, which have such shortcomings as high false alarm rate, and poor application performance. In this context, this research proposes an AID algorithm, called W-CUSUM algorithm, for urban expressways based on mobile source data. In the proposed algorithm, the feature of the mobile source data and the temporal-spatial characteristics of the traffic flow on urban expressways under incidents are fully considered by combining the wavelet analysis method and CUSUM approach, which improve the quality of the data, thus greatly increase the accuracy and reliability of the incident detection.
     2. The existing false alarm rate index could hardly reflect the false alarm situation directly and effectively, and the traditional performance envelop curve can only give a qualitative and rough description of the performance, which result in a lack of comprehensive and quantitative evaluation of the AID algorithms. Therefore, this research first proposes a new false alarm rate based on temporal and spatial index, and then establishes a comprehensive index based on expected cost by integrating the indices of detection rate and false alarm rate. The proposed index based on expected cost can not only provide the comprehensive and quantitative evaluation and comparison for various AID algorithms, but be used for determinating the optimal detection threshold and performance point of an algorithm as well. Thus, it gives traffic managers an effective technical approach to compare, select and calibrate the AID algorithms.
     3. The proposed W-CUSUM algorithm is evaluated and compared by using both simulation data and real-world data. By analyzing the performance of W-CUSUM algorithm under different influential factors and comparing W-CUSUM algorithm with SND, CUSUM and UCB algorithms, it is found that:(1) the number of blocked lanes has the largest effect on the performance of W-CUSUM algorithm, while the incident duration has little effect on the performance of W-CUSUM algorithm; (2) W-CUSUM algorithm performs better than SND, CUSUM, and UCB algorithms with an improvement of 33.7%,19.5% and 38.3% respectively.
     4. A model for determining the mobile source data sample size for incident detection is developed based on the Experimental Traffic Engineering Methodology (ETEM), which overcomes the shortcomings of existing methods. According to the simulation case study, the reasonable percentage of floating cars in road networks and the optimal detection interval under certain accuracy of incident detection are obtained.
     5. A multi-source data fusion model for incident detection based on hierarchical structure is developed by fully considering the characteristics of the incident information contained in various available data sources and integrating W-CUSUM algorithm, neural network model and the experiences of traffic decision-makers. The proposed model not only enhances the flexibility and expandability of W-CUSUM algorithm for application, but also provides a pratical methodology for improving the accuracy and reliability of the W-CUSUM algorithm.
     6. A framework for implementing the W-CUSUM algorithm is established using a systematic and integrated approach, in which the development, installation, and operation of the AID system are presented in details in order to provide an overall methodological system for the W-CUSUM algorithm to transition from a theoretical study to practical applications.
引文
[1]Congestion Management Process Technical Report [R]. National Capital Region and Transportation Planning Board, March 2007.
    [2]Farradyne, P. B. Trafic Incident Management Handbook [R]. Federal Highway Administration Office of Travel Management, November 2000.
    [3]ATA Foundation for National Incident Management Coalition in Association with Cambridge Systematics. Incident Management:Challenges, Strategies and Solutions for Advancing Safety and Roadway Efficiency-Final Technical Report [R]. Report for FHWA, Published by Cambridge Systematics, February 1997.
    [4]1-35 Incident Management and the Impact of Incidents on Freeway Operation [R], Minnesota Department of Transportation, January 1982.
    [5]Intelligent Transportation Systems Impact Assessment Framework:Final Report [R] Volpe National Transportation Systems Center, September 1995.
    [6]杨兆升.智能运输系统概论[M].北京:人民交通出版社,2004.
    [7]公安部交通管理局.关于2008年全国道路交通事故情况[EB/OL].http://www.mps.gov.cn/n16/n85753/n85870/1970695.html,2009-01-02.
    [8]公安部交通管理局.中华人民共和国道路交通事故统计年报(2005年度)[Z].公安部交通管理局,2006.
    [9]公安部交通管理局.中华人民共和国道路交通事故统计年报(2006年度)[Z].公安部交通管理局,2007.
    [10]Roper, D. H. Freeway Incident Management, NCHRP Synthesis of Highway Practice 156 [R]. National Research Council, Washington D.C.,1990.
    [11]Simmons, N., G. Gates, and J. Burr. Commercial Applications Arising From a Floating Vehicle Data System in Europe [J]. The 9th World Congress on Intelligent Transport Systems, Chicago, USA,2002.
    [12]Piao, J., and M. McDonald. Analysis of Stop & Go Driving Behavior through a Floating Vehicle Approach [J]. Proceedings of the IEEE Intelligent Vehicles Symposium 2003:9-11.
    [13]Messelodi, S. Intelligent Extended Floating Car Data Collection [J]. Expert Systems with Applications,2009(3):4213-4227.
    [14]Vehicle Information and Communication System (VICS) [EB/OL]. http://www.vics.or.jp/english/index.html,1990.
    [15]朱丽云,温慧敏,孙建平.北京市浮动车交通状况信息实时计算系统[J].城市交通,2008,6(1):77-80.
    [16]温慧敏,扈中伟,郭继孚,等.奥运期间北京市道路网运行分析[J].交通运输系统工程与信息,2008,8(6):39-44.
    [17]郭继孚,温慧敏,陈峰.浮动车系统功能分析与应用设计研究[J].交通运输系统工程与信息,2007,7(3):39-44.
    [18]Koppelman, F. S., and W. Lin. Development of an Expressway Incident Detection Algorithm for the ADVANCE Area Based on the California Algorithm Set [R]. Path Project Report TRF-ID-311/312, The Transportation Center, Northwestern University, Evanston, Illinois. August 1996.
    [19]Payne, H. J., and S. C. Tignor. Freeway Incident-Detection Algorithms Based on Decision Trees with States [J].Transportation Research Record, No.682, TRB, National Research Council,1978:30-37.
    [20]Balke, K. N. An Evaluation of Existing Incident Detection Algorithms [R]. Research Report, FHWA/TX-93/1232-20, Texas Transportation Institute, the Texas A&M University System, College Station, TX, November 1993.
    [21]Dudek, C. L., C. J. Messer, and N. B. Nuckles. Incident Detection on Urban Freeway [J]. Transportation Research Record, No.495, TRB, National Research Council,1974:12-24.
    [22]代磊磊,姜桂艳,韩国华.高速公路事件自动检测算法综述[J].ITS通讯,2004,6(3):1-5.
    [23]Cook, A. R. and D. E. Cleveland. Detection of Freeway Capacity-Reducing Incidents by Traffic Stream Measurements [J]. Transportation Research Record, No.495, TRB, National Research Council,1974:1-11.
    [24]Ahmed, M. S., and A. R. Cook. Analysis of Freeway Traffic Time-Series Data Using Box-Jenkins Techniques [J]. Transportation Research Record, No.722, TRB, National Research Council,1977:1-9.
    [25]Ahmed, M. S. and A. R. Cook. Time Series Models for Freeway Incident Detection [J]. Journal of Transportation Engineering, Vol.106, No.6, ASCE,1980:731-745.
    [26]Ahmed, M. S. and A. R. Cook. Application of Time-Series Analysis Techniques to Freeway Incident Detection [J]. Transportation Research Board, No.841, TRB, National Research Council,1982:19-21.
    [27]Chassiakos, A. P., and Y. J. Stephanedes. Smoothing Algorithms for Incident Detection [J]. Transportation Research Record 1394,1993:8-16.
    [28]Levin, M., and G. M. Krause. Incident Detection:a Bayesian Approach [J]. Transportation Research Record, No.682, TRB, National Research Council,1978:52-58.
    [29]Collins, J. F., C. M. Hopkins, and J. A. Martin. Automatic Incident Detection—TRRL Algorithms HIOCC and PATREG [R]. TRRL Supplementary Report, No.526, Crowthorne, Berkshire, U.K.,1979.
    [30]Martin, P. T., J. Perrin, and B. Hansen. Incident Detection Algorithm Evaluation [R]. Utah Department of Transportation, Salt Lake City,2001.
    [31]陈斌,金炜东.四类交通事故检测算法的分析[J].交通科技与经济,2005(3):50-52.
    [32]Fambro, D. B., and G. P. Ritch. Automatic detection of Freeway Incidents During Low Volume Conditions [R]. FHWA/TX-79/23-210-1, Texas Transportation Institute, Texas A&M University System, College Station, TX, September 1979.
    [33]Willsky, A. S., E. Y. Chow, S. B. Gershwin, C. S. Greene, P. Houpt, and A. L. Kurkjian. Dynamic Model-Based Techniques for the Detection of Incidents on Freeways [J]. IEEE Transactions on Automatic Control, Vol.25, No.3,1980:347-360.
    [34]Gall, A. I. and F. L. Hall. Distinguishing between Incident Congestion and Recurrent Congestion:a Proposed Logic [J]. Transportation Research Record, No.1232, TRB, National Research Council,1989:1-8.
    [35]Masters, P. H., J. K. Lam, and K. Wong, Incident Detection Algorithms of COMPASS—An Advanced Traffic Management System [A]. Proceedings of Vehicle Navigation and Information Systems Conference [C], Part 1, SAE, Warrendale, PA,1991:295-310.
    [36]Stephanedes, Y. J., A. P. Chassiakos, and P. G. Michalopoulos. Comparative Performance Evaluation of Incident Detection Algorithms [J]. Transportation Research Record, No.1360, TRB, National Research Council,1992:50-57.
    [37]Teng, H., and Y. Qi. Application of Wavelet Technique to Freeway Incident Detection [J]. Transportation Research, Part C, Volume 11, Issues 3-4,2003:289-308.
    [38]Ritchie, S. G. and R. L. Cheu. Simulation of Freeway Incident Detection Using Artificial Neural Networks [J]. Transportation Research Part C, Vol.1, No.3,1993:203-217.
    [39]Abdulhai, B., and S. G. Ritchie. Enhancing the Universality and Transferability of Freeway Incident Detection Using a Bayesian-based Neural Network [J]. Transportation Research Part C, Vol.7, No.5,1999:261-280.
    [40]Adeli, H., and A. Samant, An Adaptive Conjugate Gradient Neural Network-Wavelet Model for Traffic Incident Detection [J]. Computer-Aided Civil and Infrastructure Engineering, Vol. 15, No.4,2000:251-260.
    [41]Parkany, E., and C. Xie. A Complete Review of Incident Detection Algorithms & Their Deployment:What Works and What Doesn't [J]. Prepared for The New England Transportation Consortium, NETCR37 Project No.00-7, February 7,2005.
    [42]Chang, E. C. P., and S. H. Wang. Improved Freeway Incident Detection Using Fuzzy Set Theory [J]. Transportation Research Record, No.1453, TRB, National Research Council, 1994:75-82.
    [43]Lin, C. K., and G. L. Chang. Development of a Fuzzy-Expert System for Incident Detection and Classification [J]. Mathematical and Computer Modeling, Vol.27, No.9-11,1998:9-25.
    [44]Hsiao, C. H., C. T. Lin, and M. Cassidy. Application of Fuzzy Logic and Neural Networks to Automatically Detect Freeway Traffic Incidents [J]. Journal of Transportation Engineering, Vol.120, No.5, ASCE,1994:753-772.
    [45]Ishak, S. S., and H. M. Al-Deek. Fuzzy ART Neural Network Model for Automated Detection of Freeway Incidents. Transportation Research Record, No.1634, TRB, National Research Council,1998:56-63.
    [46]Michalopoulos, P. G. Vehicle Detection Video Through Image Processing:the Autoscope System [J]. IEEE Transactions on Vehicular Technology, Vol.40, No.1, IEEE,1991:21-29.
    [47]IKEDA, H., T. MATSUO, Y. KANEDO, and K. TSUJI. Abnormal Incident Detection System Employing Image Processing Technology [C]. The Proceedings of the IEEE International Conference on Intelligent Transportation Systems,1999:748-752.
    [48]KIMACHI, M., K. KANYAMA, and K. TERAMOTO. Incident Prediction by Fuzzy Image Sequence Analysis [C]. The Proceedings of IEEE Conference on Vehicle Navigation and Information System,1994:51-56.
    [49]Qi, Y., Y. Tang, and B. Smith. Video-Based Automated Identification of Freeway Shoulder Events [J]. Transportation Research Record, Volume 1972,2006:46-53.
    [50]Parkany, E., and D. Bernstein, Design of Incident Detection Algorithms Using Vehicle-to-roadside Communication Sensors [J]. Transportation Research Record, No.1494, TRB, National Research Council,1995:67-74.
    [51]Sethi, V., N. Bhandari, F. S. Koppelman, and J. L. Schofer. Arterial Incident Detection Using Fixed Detector and Probe Vehicle Data [J]. Transportation Research Part C, Vol.3, No.2, 1995:99-112.
    [52]Sermons, M. W., and F. S. Koppelman. Use of Vehicle Positioning Data for Arterial Incident Detection [J]. Transportation Research Part C, Vol.4, No.2,1996:87-96.
    [53]Balke, K., C. L. Dudek, and C. E. Mountain. Using Probe-measured Travel Time to Detect Major Freeway Incidents in Houston, Texas [J]. Transportation Research Record, No.1554, TRB, National Research Council,1996:213-220.
    [54]Mouskos, K. C., E. Niver, S. Lee, T. Batz, and P. Dwyer. Transportation Operations Coordinating Committee System for Managing Incidents and Traffic:Evaluation of the Incident Detection 101 system [J]. Transportation Research Record, No.1679, TRB, National Research Council,1999:50-57.
    [55]Niver, E., K. C. Mouskos, T. Batz, and P. Dwyer. Evaluation of the TRANSCOM's System for Managing Incidents and Traffic (TRANSMIT) [J]. IEEE Transactions on Intelligent Transportation Systems, Institute of Electrical and Electronics Engineers, Vol.1, No.1,2000: 15-31.
    [56]Petty, K. F., A. Skabardonis, and P. P. Varaiya. Incident Detection with Probe Vehicles: Performance, Infrastructure Requirements and feasibility [J]. Transportation Systems 1997:A Proceedings Volume from the 8th IFAC/IFIP/IFORS Symposium, Chania, Greece, June 16-18, 1997, Vol.1,1997:125-130.
    [57]Hellinga, B., and G. Knapp. Automatic Vehicle Identification Technology-based Freeway Incident Detection [J]. Transportation Research Record, No.1727, TRB, National Research Council,2000:142-153.
    [58]Westman, M., R. Litjens, and J. P. Linnartz. Integration of Probe Vehicle and Induction Loop Data—Estimation of Travel Times and Automatic Incident Detection [R]. PATH Research Report UCB-ITS-PRR-96-13, Institute of Transportation Studies, University of California, Berkeley, CA,1996.
    [59]Ivan, J. N., J. L. Schofer, F. S. Koppelman, and L. L. E. Massone. Real-time Datta Fusion for Arterial Street Incident Detection Using Neural Networks [J]. Transportation Research Record, No.1497, TRB, National Research Council,1995:27-35.
    [60]Ivan, J. N., and S. R. Chen. Incident Detection Using Vehicle-based and Fixed-location Surveillance [J]. Journal of Transportation Engineering, Vol.123, No.3, ASCE,1997: 209-215.
    [61]Ivan, J. N. Neural Network Representations for Arterial Street Incident Detection Data Fusion [J]. Transportation Research Part C, Vol.5, No.3,1997:245-254.
    [62]Ivan, J. N., and V. Sethi. Data Fusion of Fixed Detector and Probe Vehicle Data for Incident Detection [J]. Computer-Aided Civil and Infrastructure Engineering, Vol.13, No.5,1998: 329-337.
    [63]Teng, H., Y. Qi, and D. R. Martinelli. Developed Incident Detection Algorithm in Comparison with Neural Network Algorithms [J]. Transportation Research Record,1836,2003:83-92.
    [64]李文江.高速公路监控系统与基于小波分析的事件检测算法研究[D].西安:西安公路交
    参考文献通大学,1999.
    [65]周雪铭.基于小波分析和神经网络的交通事件自动检测[J].公路与汽运,2002(4):17-19.
    [66]张云伟,刘跃明.交通事件检测的一种滤波算法[J].云南工业大学学报,1998,14(4):17-18,23.
    [67]姜桂艳,温慧敏,杨兆升.高速公路交通事件自动检测系统与算法设计[J].交通运输工程学报,2001,1(1):77-81.
    [68]温慧敏.高速公路交通事件管理系统关键理论与技术研究[D].吉林:吉林大学,2002.
    [69]樊小红.基于遗传算法的交通事件检测研究[D].西安:长安大学,2002.
    [70]李海峰,王炜,姜桂艳.基于SNN软件系统的神经网络交通事件自动检测算法[J].公路交通科技,2004,21(11):89-92.
    [71]张存保,杨晓光,严新平.基于浮动车的高速公路交通事件自动判别方法研究[J].武汉理工大学学报(交通科学与工程版),2006,30(6):973-975,983.
    [72](美)伯罗斯等著,程正当译.小波与小波变换导论[M].北京:机械工业出版社,2007.
    [73]濮晓龙.关于累积和(CUSUM)检验的改进[J],应用数学学报,2003,26(2):225-241.
    [74]Morgenstern, V. M., B. R. Upadhyaya, and M. Benedetti. Signal Anomaly Detection Using Modified CUSUM Method[C]. Proceedings of the 27th IEEE Conference on Decision and Control,1988:2340-2341.
    [75]Moustakides, G. V. Performance of CUSUM Tests for Detecting Changes in Continuous Time Processes [C]. Proceedings of 2002 IEEE International Symposium on Digital Object Identifier,2002:186-187.
    [76]姜桂艳.道路交通状态识别技术与应用[M].北京:人民交通出版社,2004.
    [77]Turner, S., W. L. Eisele, R. J. Benz, and D. J. Holdener. Travel Time Data Collection Handbook[R]. FHWA-PL-98-035, Federal Highway Administration, Texas Transportation Institute, The Texas A&M University System,1998.
    [78]Linton, B. Vehicle Positioning on London Transport Buses [C]. Paper at the IEE Colloquium on "Where Are We Going? (And How Fast!), Seminar Exploring Speed And Positioning Systems For The Transport Sector 6th November,1997.
    [79]Evaluation of Automatic Vehicle Location Systems in Public Transit [R]. Research Report SWUTC/93/30060-1 Southwest Region University Tranportation Center, Texas Transportation Insitute, College Station, Texas,1993.
    [80]Turner, S. M. Advanced Techniques for Travel Time Data Collection [J]. Transportation Research Record, No.1551,1996:51-58.
    [81]U.S. ETC Systems in Production/Development [EB/OL]. ETTM on the Web, http://www.ettm.com/syssumm.html, April 1997.
    [82]Quirogaa, C. A., and D. Bullock. Travel Time Studies with Global Positioning and Geographic Information System and Integrated Methodology [J]. Transportation Research Part C: Emerging Technologies,1998,6 (1-2):101-127.
    [83]李昊.中心城市公众出行交通动态信息采集、处理及共享技术研究[D].博士论文,西南交通大学,2006.
    [84]Lee, D. H., S. T. Jeng, and P. Chandrasekar. Appling Data Mining Techniques for Traffic Incident Analysis [J]. Journal of the Institution of Engineers, Vol.44, Issue 2,2004:90-102.
    [85]王大凯等.小小、波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006.
    [86]高成.Matlab小波分析与应用(第2版)[M].北京:国防工业出版社,2006.
    [87]Mallet, S. A. Theory for Multiresolution Signal Decomposition:The Wavelet Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,11(7):674-693.
    [88]张振宇,黄崇林,谭恒松.基于小波变换的图像识别算法[J].计算机应用,2007,27(12):97-99.
    [89]李媛媛,陈广杰.小波分析在GPS数据压缩中的应用研究[J].中国市场,2008(9):81-82.
    [90]Debnath, L. Wavelet Transforms and Their Applications[M]. Birkhauser, Boston,2002.
    [91]王声享,刘经南.GPS变形监测系统中消除噪声的一种有效方法[J].测绘学报,2002,31(2):104-107.
    [92]谭善文,,秦树人,汤宝平.小波基时频特性及其在分析突变信号中的应用[J].重庆大学学报(自然科学版),2001,24(2):12-17.
    [93]徐佩霞,孙功宪.小波分析与应用实例[M].安徽:中国科学技术大学出版社,2001.
    [94]Page, E. S. Continuous Inspection Schemes[J], Biometrika 41,1954:100-115.
    [95]韩舒,林航飞,辛飞飞.浮动车采集系统中城市道路分段方法研究[J].交通与计算机,2007,25(5):105-109.
    [96]Donoho, D. L. De-noising by Soft-thresholding. IEEE Transactions on Information Theory, 1995,41(3):613-627.
    [97]Mahmassani, H. S., C. Haas, S. Zhou, and J. Peterman. Evaluation of Incident Detection Methodologies [R]. FHWA/TX-00/1795-1, Texas Department of Transportation,1998.
    [98]史新宏,蔡伯根.高速公路自动事件检测算法[J].交通运输系统工程与信息,2001,1(4):306-310.
    [99]Dia, H., and G. Rose. Development and evaluation of neural network freeway incident detection models using field data [J]. Transportation Research Part C:Emerging Technologies, Vol.5, No.5,1997:313-331.
    [100]Dia, H., and G. Rose. Development and evaluation of neural network freeway incident detection models using field data [J]. Transportation Research Part C:Emerging Technologies,Vol.5, No.5,1997:313-331.
    [101]May, A. D. Traffic Flow Fundamentals [M]. New Jersey:Prentice Hall Inc.,1990.
    [102]Transporation Research Board. Highway Capacity Manual [M]. Washington D. C., National Research Council,2000.
    [103]于雷,陈旭梅等.城市路网动态评估与分析预报模型研究报告[R].北京:北京交通大学交通运输规划与管理长江学者研究中心,2008.
    [104]Giuliano, G. Incident Characteristics, Frequency, and Duration on a High Volume Urban Freeway [J]. Transportation Research 23A(5):387-396.
    [105]姬杨蓓蓓,张小宁,孙立军.基于贝叶斯决策树的交通事件持续时间预测[J].同济大学学报(自然科学版),2008,36(3):319-324.
    [106]林晓言.基础设施投资效果定量评价[M].北京:清华大学出版社,2006.
    [107]Hensher, D. A. The Value of Business Travel Time [M]. Oxford:Pergamon Press,1997.
    [108]周伟.旅客时间价值[J].交通运输工程学报,2003,3(3):110-116.
    [109]毛保华,曾会欣.交通规划模型及其应用[M].北京:中国铁道出版社,1999.
    [110]北京市统计局.2008年北京市职工平均工资[EB/OL].http://www.bloglegal.com/blog/cac/2350026196.htm,2009-03-25.
    [111]Van Aerde, M., and Associates. Integration Release 2.30 for Windows:User's Guides [Z]. Kingston, Canada, M. Van Aerde and Assoicates,2005.
    [112]Robertson, H. D., J. E. Hummer, and D. C. Nelson. Manual of Transportation Engineering Studies [M]. Prentice Hall, Englewood Cliffs, NJ:1994.
    [113]Quiroga, C. A., and D. Bullock. Determination of Sample Sizes for Travel Time Studies [J]. Institute of Transportation Engineers Journal,1998,68(8):92-98.
    [114]Turner S. M, and D. J. Holdener. Probe Vehicle Sample Sizes for Real-time Information:The Houston Experience [C]. Proceedings of the Vehicle Navigation and Information Systems Conference,1995:3-10.
    [115]Ruey, L. X. Chi, and D. H. Lee. Probe Vehicle Population and Sample Size for Arterial Speed Estimation [J]. Computer-aided Civil and Infrastructure Engineering,2002,17(1):53-60.
    [116]Wang L., C. Wang, Y. Fan, et al. Probe Vehicle Sampling for Real-time Traffic Data Collection [C]. Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems,2005:886-888.
    [117]张存保,杨晓光,严新平.移动交通检测系统中探测车的样本数量[J].中国公路学报,2007,20(1):96-100.
    [118]Jiang G., L. Gang, and Z. Cai. Impact of Probe Vehicles Sample Size on Link Travel Time Estimation [C]. Proceedings of IEEE Intelligent System Conference,2006:505-509.
    [119]饭田恭敬.交通工程学[M].北京:人民交通出版社,1994.
    [120]杨晓光,孙剑,徐建闽,等.实验交通工程基础理论(方法)与信息技术[C]∥土木工程学科发展战略研究.北京:科学出版社,2006:301-319.
    [121]高永,于雷,陈旭梅.实验交通工程法的应用实践和理论探索——应用微观模拟技术辅助交通流组织方案设计[J].交通运输系统工程与信息,2005,5(4):46-52.
    [122]刘金广,于泉,荣建,等.实验交通工程学理论框架及应用[J].北京工业大学学报,2008,34(4):403-407.
    [123]杨晓光,孙剑.面向ITS的交通仿真实验系统[J].长沙理工大学大学(自然科学版),2006,3(3):43-48.
    [124]杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社,2004.
    [125]康耀红.数据融合理论与应用(第二版)[M].西安:西安电子科技大学出版社,2006.
    [126]汪海渊,朱彦东,杨东援.数据融合技术及其在交通领域中的应用[J].交通与计算机,2001,19(101):42-45.
    [127]杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2002.
    [128]郭丽华.人工神经网络基础[M].哈尔滨:哈尔滨工程大学出版社,2008.
    [129]飞思科技产品研发中心.神经网络与MATLAB7实现[M].北京:电子工业出版社,2005.
    [130]孟娜,周以齐.基于Matlab的时序数据两种建模和预测方法比较[J].山东农业大学学报(自然科学版),2006,37(3):471-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700