用户名: 密码: 验证码:
过饱和交通状态下的信号控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市经济的发展,机动车保有量呈现快速增长的态势,而城市道路增长有限且缓慢,导致城市的交通出行严重受阻,交通拥堵频发,交通过饱和状态已经成为常态。如何从整个交通系统的战略角度出发,采取有效的交通措施缓解过饱和交通问题已经成为城市发展的新要求。本文从交通信号控制入手,针对现有过饱和信号控制理论方法的不足,结合过饱和交通状态的特征,在过饱和交通状态识别、过饱和单点控制模型建立、过饱和干道协调控制模型建立以及过饱和交叉口群的协调控制等方面进行了相关的研究与探讨,主要的研究成果可概括如下:
     1.通过分析各种不同对象的过饱和交通状态,给出了过饱和交通状态的定义,进一步说明了在过饱和状态下,交叉口存在绿灯时间使用率高、进口道排队积累以及车辆延误显著增加的交通特性,利用过饱和下的排队长度较长特性,提出了基于最大排队长度的过饱和状态判别方法,该方法简单易行但存在一定的局限性,为了更有效地识别过饱和交通状态,利用检测器的检测数据建立了滞留排队长度预测模型和上游交叉口溢流预测模型,基于这两个模型提出了两个描述过饱和现象的两个交通参数(排队消散系数和溢流阻滞系数)的计算公式,并通过算例分析验证了这两个系数可以有效识别过饱和交通状态。
     2.分别论述了在过饱和交通状态下单交叉口的动态信号控制、排队长度相等、主动排队控制和延误最小化控制等四种不同控制策略,以延误最小化为主要控制目标,兼顾其它三种策略建立了延误连续控制模型和延误离散控制模型,延误连续控制模型以连续车流为对象,从进口道的延误计算入手构建了交叉口整体的延误计算模型,说明通过优化求解可得到交叉口的最优控制方案,而延误离散控制模型以单位时间(周期)的车流为对象,从交叉口的整体延误计算入手建立了交叉口的控制模型,设计了遗传算法和极值转换算法分别求取离散控制模型,以离散控制模型求解算例说明了模型的合理性。
     3.以过饱和干道单方向的通行能力最大为目标,提出了单向协调控制模型的目标函数,分析了模型的约束条件,提出了过饱和下的四种不同排队控制策略,基于这四种排队控制策略建立了过饱和下的单向协调控制模型,以单向模型的协调主方向为前提,说明了干道次方向存在交通阻滞、交通补偿和绿灯空放三种交通状态,进一步建立了不同交通状态下进口道放行量的计算公式,综合两个方向的约束条件,建立了以主方向优先的过饱和双向协调控制模型,通过算例分析了不同排队控制策略下干道的控制效果,并对比分析了四种策略的优劣,验证说明了模型的正确性。
     4.分析了过饱和状态下交叉干道的协调控制方法,提出了采用不同的优先级别实现交叉干道的协调控制,并设计了不同优先级别的干道权重系数的计算过程,介绍了交叉干道协调控制子区的划分方法和子区间的路段集合,同时对这些协调控制基本单元进行了参数定义,重点说明了子区间路段集合的权重计算公式,设计了过饱和下的交叉干道协调控制的步聚,方法从权重最大的子区入手基于路段权重大小逐步将各个子区合并直至将整个区域合并,基于协调控制步骤建立了交叉干道协调控制模型,通过算例进一步说明了过饱和下交叉干道的协调控制实现过程。
     5.分析说明了群体动力学理论与方法,提出采用递阶协调的方式、动态调整和优化交叉口的周期和绿信比实现过饱和下的交叉口群协调控制方法,基于群体动力学原理,建立了交叉口绿信比优化调整的动力学算子,并对其稳定性做出了分析与说明,对过饱和下交叉口群的合并与分离条件进行了定义,并针对这两种情况设计了周期和绿信比等的调整算法,综合两种算法提出了过饱和下的整体动态协调控制算法,同时以过饱和排队延误最小建立了过饱和下的交叉口群协调控制模型,说明其优化求解流程,最后以广州市中山路为案例说明模型的优化求解结果,并与MAXBAND方法、TRANSYT-7F方法的协调效果对比验证说明模型的优越性。
     6.以广州市天河区天河北路为案例,运用过饱和交通识别方法判定天河北路的过饱和交通状态,利用延误控制模型优化各交叉口的绿信比,运用干道协调控制模型优化干道整体的配时方案,并通过交通仿真分析天河北路在改善前、绿波协调控制下及改善后的延误时间及停车次数指标的变化情况,验证说明了论文研究成果的正确性与实用性。
With the city 's economic development, the vehicle in the city is growing rapid,but the growth of urban roads is limited and slow. It causes the traffic jams and thetravel time is increasing. The traffice oversaturation has been normal in the city. Sohow to take effective measures to alleviate the traffic problem from a system point ofview has become a new requirement for development. Considering the defects inexisting theory and method of oversaturation signal control, combining with thecharacteristics of oversaturation traffic, this dissertation has researched and discussedin the following areas, including the indentification of oversaturation traffic, a singleintersection control model in oversaturation, arterial coordination control model inoversaturation, the intersection group coordination control and so on. The mainscientific research and research results in this dissertation include:
     1. By analyzing a variety of different oversaturated objects, the definition ofoversaturation is given, and the traffic characteristics, such as high green time usagerate, approach queue accumulation and the increasing vehicle delay, are illustrated inoversaturation. Using the characterist of the long queue length, the identificationmethod of oversaturation based on the the maximum queue length is proposed, whichis easy to take out but there are some limitations. In order to more effectively identifyoversaturation, a retention queue length predictive model and the upstreamintersection overflow prediction model are establish using the detection data of thedetector, and based on these two models two traffic parameters(queue dissipationfactor and the overflow block coefficient) is calculated which describe theoversaturation status. By the numerical example these two factors are verified thatthey can effectively identify the traffic state of oversaturation.
     2. Four different control strategies in oversaturation are respectively discussed,which including traffic signal control dynamically for single intersection, equal queuelengths, active queue control, delay minimization control. Based on the minimum ofdelay, and taking the other three kinds of strategy into account, the continuous controldelays model and the discrete control model are established. For the continuous delaycontrol model which is based on a continuous traffic flow,the overall intersectiondelay model is built by the approach deley calculation, and the method to obtain theintersection optimal control scheme is indicated. For the discrete delay control model which is based on the unit time traffic flow, the intersection control model isestablished by the the overall delay calculation, the genetic algorithm and theconversion algorithm are designed to strike the discrete model. Finally, thereasonabilty of the discrete control model is illustrated through the numercialexample.
     3. The objective function of the one-way coordination control model is proposed,whose objective is the the arterial maximum capacity. Four different queuing controlstrategies in oversaturation is pointed out, and based on those the one-waycoordination control model is built. Under the premise of the one-way model, theother direction of the arterial has thress status, such as roads blocked, trafficcompensation and wasted green time. In the different traffic status, the calculations ofthe approach volume are established. So combining with the constraints in bothdirections, the bidirectional coordination control model in oversaturation isestablished, which is priority to the main direction in arterial. By the numericalexample, the control effect in different queueing strategies are analyzed, and the prosand cons of four strategies are also Comparatively analyzed, and those can verify thecorrectness of the model.
     4. The oversaturation coordination control method of the crossing arterial isanalyzed, the way of using different priority levels to achieve coordination in crossingarterial is proposed, and the calculation process of weight coefficient of the differentpriority level arterial is designed. The crossing arterial can divide to sub-area andsection set, so the coordination control sub-area division method and the section setbetween sub-area are introducted, and the parameter definitions of those coordinatedcontrol basic unit are introducted. The coordination control procedures is designed,which start from the biggest weigh sub-area and gradually merger other sub-areasuntil the entire region merging based on the weigh of section. Then based thecoordination control steps, the crossing arterial coordination control model isestablished, and the implementation process of the model is further illustrated by thenumerical example.
     5. The population dynamics theory and methods is analyzed, and thecoordination control method of intersection group is proposed by using hierarchicalcoordinated approach, dynamically adjust, optimize the intersection cycle and greensplit. Based on population dynamics, the optimal adjustment dynamics operator ofintersection green split is established, and whose stability is analyzed and explanated. The conditions of the oversaturation intersection group merger and separation aredefinited, the adjustment algorithms of the cycle and green split for these two casesare designed. Integrating these two algorithms, the overall dynamic oversaturationcoordination control algorithm is established. The intersection group coordinationcontrol model is built based on the queuing delay minimum, and whose optimizationsolving process is indicated. Finally, take the Guangzhou Zhongshan Road for examle,the optimal solution result of the model is illustrated, and compared with thecoordination effect of the MAXBAND and TRANSYT-7F, the superiority of themodel is described.
     6. Taking the Tian-He-Bei Road in Guangzhou Tianhe District as a case, theoversaturated traffic status of the Tian-He-Bei Road is identificated using theoversaturated traffic identification method, the split of all the intersections isoptimized by the delay control model and the arterial signal program is optimized bythe arterial coordination control model. So, using the traffic simulation, thecorrectness and practicality of the research is verified by analyzing the delay andnumber of stop in defferent states, such as before improvement, on green wavecoordination control and improvement.
引文
[1] Downs A. An economic theory of democray[M]. NewYork: Harper&ROW,1957
    [2] Gazis D. C., Optimum Control of a System of OversaturatedIntersections[J], Operations Research,1964,12(6):815-831.
    [3] Gazis D.C., Potts R.B., The Oversaturated Intersection[C], Proceedingsof the2nd International Symposium on the Theory of Road Traffic Flow, Paris,1965,221-237.
    [4] Green D H.Control of Oversaturated Intersection[J].OperationalResearch Quarterly,1968,18(2):161-173.
    [5] Longley D., A Control Strategy for A Congested Computer ControlledTraffic Network[J], Transportation Research,1968,2:391-408.
    [6] Singh M.G., Tamura H., Modeling and Hierachical Optimization ofOversaturated Urban Road Traffic Networks[J], International Journal of Control,1974,20(6):913-934.
    [7] M. Tubaishat, Z. Peng, Q. Qi, S. Yi, et al. Wireless sensor networks inintelligent transportation systems[J],Wireless Communications and MobileComputing,2009,9(3):287–302.
    [8] D. Tacconi, D. Miorandi, I. Carreras, et al. Using wireless sensornetworks to support intelligent transportation systems[J], AdHoc Networks,2010,8(5):462–473.
    [9] J. C. Herrera, D. B. Work, R. Herring, et al. Evaluation of traffic dataobtained via GPS-enabled mobile phones: the Mobile Century fieldexperiment[J],Transportation Research Part C,2010,18(4):,568–583.
    [10]J. Bacon, A. Bejan, D. Evans et al. Using real-time road traffic data toevaluate congestion[J],Lecture Notes in Computer Science,2011,(6875):93–117.
    [11]张小琴.城市交通过饱和网络实时控制的一种新算法[J].控制理论与应用,1986,3(2):124-125.
    [12]戴香菊.饱和或过饱和城市道路网的优化设计模型[J].西南交通大学学报,1990,(1):73-79.
    [13]裴玉龙,郎益顺.基于动态交通分配的拥挤机理分析与对策研究[J].华中科技大学学报(城市科学版),2002,03:95-98.
    [14]裴玉龙,郎益顺.动态交通分配拥挤机理分析与对策的重要途径[J].哈尔滨建筑大学学报,2002,04:121-125.
    [15]关伟.交通拥堵发生时车道非同态性变化的仿真分析[J].系统仿真学报,2006,18(05):1339-1342.
    [16]姚荣涵,王殿海,曲昭伟.基于二流理论的拥挤交通流当量排队长度模型[J].东南大学学报(自然科学版),2007,03:521-526.
    [17]姚荣涵,王殿海.最大当量排队长度模型及其时空特性[J].大连理工大学学报,2010,05:699-705.
    [18]林瑜,杨晓光,马莹莹.城市道路间断交通流阻塞量化方法研究[J].同济大学学报(自然科学版),2007,35(03):336-340.
    [19]代磊磊,姜桂艳,裴玉龙.饱和信号交叉口排队长度预测[J].吉林大学学报(工学版),2008,06:1287-1290.
    [20]姜桂艳,郭海锋,吴超腾.基于感应线圈数据的城市道路交通状态判别方法[J].吉林大学学报(工学版),2008,38(S1):37-42.
    [21]过秀成.道路交通运行分析基础[M].南京:东南大学出版社,2010.
    [22]王殿海,陈松,魏强,王京.基于二流理论的路网宏观交通状态判断模型[J].东南大学学报(自然科学版),2011,05:1098-1103.
    [23]祁宏生,王殿海,徐程.基于合理路径的拥挤路网交通状态分析方法[J].西南交通大学学报,2011,01:175-181.
    [24]祁宏生,王殿海,宋现敏.交通拥堵形成的临界条件(英文)[J]. Journalof Southeast University(English Edition),2011,02:180-184.
    [25]徐涛,杨晓光,徐爱功,张明月.面向城市道路交通状态估计的数据融合研究[J].计算机工程与应用,2011,07:218-221.
    [26]马万经,谢涵洲,安琨.信号控制交叉口过饱和状态识别研究综述[J].交通信息与安全,2011,29(5):1-4.
    [27]王福建,韦薇,王殿海,祁宏生.基于宏观基本图的城市路网交通状态判别与监控[A].第七届中国智能交通年会优秀论文集,2012:6.
    [28]李岩,过秀成.过饱和状态下交叉口群交通运行分析与信号控制[M].南京:东南大学出版社,2012.
    [29]郑淑鉴.过饱和下的干道协调控制方法研究[D].广州:华南理工大学,2012.
    [30]任江涛,欧晓凌,张毅等.交通状态模式识别研究[J].公路交通科技,2003,20(2):63-67.
    [31]张和生,张毅,胡东成.一种区域交通状态定量分析方法[J].吉林大学学报:工学版,2009,39(2):336-342.
    [32]张和生,张毅,胡东成等.区域交通状态分析的时空分层模型[J].清华大学学报:自然科学版,2007,(1):157-160.
    [33]Gazis D C, Potts R B. The Oversaturated Intersection[C].in Proc2ndInternational Symposium on the Theory of Traffic Flow.1963. London:The RoadResearch Laboratory
    [34]Michalopoulos, P.G., Stephanopolos, G.. Oversaturated signal systemwith queue length constraints-I[J]. Transportation Research,1977,11(6):413-421.
    [35]Michalopoulos, P.G., Stephanopolos, G.. Optimal control of oversaturatedintersections: theoretical and practical considerations[J]. Traffic Engineering andControl,1978,19(5):216-221.
    [36]Chang T. H., Lin J. T.. Optimal Signal Timing for an OversaturatedIntersection[J]. Transportation Research Part B,2000,34(6):471-491
    [37]Chang T. H., Sun G. Y.. Modeling and Optimization of an OversaturatedSignalized Network[J]. Transportation Research Part B,2004,38(8):687-707
    [38]Liu, H., Balke, K.N., Lin, W., A Reverse Causal-Effect ModelingApproach for Signal Control of an Oversaturated Intersection[J], TransportationResearch Part C,2008,16(6):742-754.
    [39]顾怀中,王炜.交叉口交通信号配时模拟退火全局优化算法[J].东南大学学学报:自然科学版,1998,(2):68-72.
    [40]葛亮,王炜,陈学武等.信号控制交叉口配时优化研究[J].交通与计算机,2003,(5):7-10.
    [41]徐良杰,王炜,俞斌.信号交叉口混合交通流协调优化方法研究[J].公路交通科技,2006,23(6):127-131.
    [42]徐良杰,王炜.信号交叉口行人过街时间模型[J].交通运输工程学报,2005,5(1):111-115.
    [43]徐良杰,王炜.信号交叉口左转非机动车影响分析[J].中国公路学报,2006,19(1):89-92.
    [44]张存保,陈超,严新平.基于车路协同的单点信号控制优化方法和模型[J].武汉理工大学学报,2012,34(10):74-79.
    [45]张存保,陈超,严新平.车路协同下信号控制交叉口两难区问题改善方法[J].中国安全科学学报,2012,(6):87-92.
    [46]周申培,吴超仲,严新平.环境因素下交叉口信号控制的双层多目标优化模型研究[J].武汉理工大学学报(交通科学与工程版),2009,33(4):715-717.
    [47]姚新胜,罗霞,杜进有.基于多目标满意优化的交通信号控制[J].计算机工程与应用,2006,(35):9-10.
    [48]杨晓光,杨佩昆.信号灯控制交叉口停车线车辆延误模拟算法[J].同济大学学报(自然科学版),1993,01:67-73.
    [49]刘广萍,裴玉龙.信号交叉口饱和流量调查分析方法的改进[A].中国土木工程学会.土木工程与高新技术——中国土木工程学会第十届年会论文集[C].中国土木工程学会,2002:5.
    [50]刘广萍,裴玉龙.信号控制下交叉口延误计算方法研究[J].中国公路学报,2005,01:108-112.
    [51]裴玉龙,刘广萍.自适应信号控制下交叉口延误计算方法研究[J].公路交通科技,2005,07:110-114.
    [52]裴玉龙,蒋贤才.饱和交通状态下的绿信比优化及其应用研究[J].哈尔滨工业大学学报,2005,11:1499-1502.
    [53]庄斌,杨晓光,吴志周.主/支路条件下无信号交叉口车流的排队延误模型[A].第六届交通运输领域国际学术会议论文集(下卷),2006:6.
    [54]马万经,杨晓光.信号控制交叉口实时延误计算与仿真研究[J].交通与计算机,2006,03:1-4.
    [55]卢凯.交通信号协调控制基础理论与关键技术研究[D].广州:华南理工大学,2010.
    [56]李凤.过饱和状态下交叉口车辆延误和排队长度模型研究[D].长春:吉林大学,2006.
    [57]于泉,荣建.基于模糊逻辑的过饱和交叉口定周期配时方案优化[J].北京工业大学学报,2007,33(11):1173-1176.
    [58]宋现敏,孙锋,王殿海.两相位交叉口车辆冲突延误模型[J].吉林大学学报(工学版),2009,02:326-330.
    [59]唐德华,许伦辉,林泉.过饱和信号交叉口的多目标控制模型[J].科学技术与工程,2009,9(19):5726-5729
    [60]刘岩,王殿海,左忠义.基于短连线的过饱和信号交叉口最大延误模型[J].中国公路学报,2011,06:91-95.
    [61]祁宏生,王殿海,陈松.基于综合饱和度的单点信号控制方法[J].哈尔滨工业大学学报,2012,02:134-137.
    [62]Shibata J., Yamamoto T, Detection and Control of Congestion in UrbanRoad Networks[J], Traffic Engineering and Control,1984,2(9):438-444.
    [63]Rathi A.K., A Control Scheme for High Traffic Density Sectors[J],Transportation Research Part B,1988,22(2):81-101.
    [64]Gal-Tzur A., Mahalel D., Prashker J.N., Signal Design for CongestedNetworks Based on Metering[J], Transportation Research Record,1993,1398:111-118.
    [65]Abu-Lebdeh G.., Benekohal R.F., Development of Traffic Control andQueue Management Procedures for Oversaturated Arterials[J], TransportationResearch Record,1997,1603:119-127.
    [66]Abu-Lebdeh G.., Development of Dynamic Traffic Signal ControlProcedures for Oversaturated Arterials and Genetic Algorithms Solutions[D],Urbana: University of Illinois at Urbana-Champaign,1999.
    [67]Abu-Lebdeh G.., Benekohal R.F., Genetic Algorithms for Traffic SignalControl and Queue Management of Oversaturated Two-Way Arterials[J],Transportation Research Record,2000a,1727:61-67.
    [68]Abu-Lebdeh G.., Benekohal R.F., Signal Coordination and ArterialCapacity in Oversaturated Conditions[J], Transportation Research Record,2000b,1727:68-76.
    [69]Abu-Lebdeh G.., Benekohal R.F., Design and Evaluation of DynamicTraffic Management Strategies for Congested Conditions[J], TransportationResearch Part A,2003,37(2):109-127.
    [70]Girianna, M., Dynamic Signal Coordination Models for A Network withOversaturated Intersections[D], Urbana: University of Illinois atUrbana-Champaign,2002a.
    [71]Girianna, M., Benekohal, R.F., Dynamic Signal Coordination forNetworks with Oversaturated Intersections[J], Transportation Research Record,2002b,1811:122-130.
    [72]Girianna, M., Benekohal, R.F., Application of Genetic Algorithms toGenerate Optimum Signal Coordination for Congested Networks[J], Applicationsof Advanced Technology in Transportation,2002c,762-769.
    [73]Li, H., Prevedouros, P.D., Traffic Adaptive Control for OversaturatedIsolated Intersections: Model Development and Simulation Testing[J], Journal ofTransportation Engineering,2004,130(5):594-601.
    [74]Booz, Allen, Hamilton. Signal Timing under Saturated Conditions[M].Washington D.C., Federal Highway Administration,2008.
    [75]Aboudolas, K., Papageorgiou, M., Kosmatopoulos, E.,Store-and-Forward Based Methods for the Signal Control Problem in Large-ScaleCongested Urban Road Networks[J], Transportation Research Part C,2009,17(2):163-174.
    [76]Aboudolas, K., Papageorgiou, M., Kouvelas, A., Kosmatopoulos, E., ARolling-Horizon Quadratic-Programming Approach to the Signal ControlProblem in Large-Scale Congested Urban Road Networks[J], TransportationResearch Part C,2010,18(5):680-694.
    [77]刘广萍,裴玉龙,冯岩.城市干道交通信号优化控制方案研究[A].第七次城市道路与交通工程学术会议论文集.2002:6.
    [78]裴玉龙,刘博航.城市干道相位差优化模型[A].中2007年中国智能自动化会议论文集,2007:5.
    [79]高云峰,胡华,杨晓光.交叉口群协调控制相位差优化模型研究[A].第二届中国智能交通年会论文集,2006:4.
    [80]陈娟,徐立鸿,袁长亮.分层控制算法在过饱和交通干线控制中的应用[J].系统仿真学报,2008,20(15):4122-4131.
    [81]魏恒, PERUGU Harikishan C..城市路口过饱和机理与相应交通转移措施效应的仿真分析[J].交通运输系统工程与信息,2009,9(4):72-82.
    [82]马莹莹,杨晓光,曾滢.关于阻塞条件下交通管理方法的探讨[A].第五届中国智能交通年会暨第六届国际节能与新能源汽车创新发展论坛优秀论文集(上册)——智能交通.2009:5.
    [83]杨晓光,黄玮,马万经.过饱和状态下交通控制小区动态划分方法[J].同济大学学报(自然科学版),2010,10:1450-1457.
    [84]张勇,白玉,杨晓光.城市道路交通网络死锁控制策略[J].中国公路学报,2010,23(6):96-102.
    [85]卢凯,徐建闽,李林.过饱和交通状态下的停车延误协调控制模型[J].控制理论与应用,2010,27(12):1623-1630.
    [86]雷磊,吴洋,刘昱岗.过饱和交叉口群系统建模及优化模型[J].计算机工程及应用,2010,46(4):26-28
    [87]李岩,过秀成,杨洁,等.过饱和状态交叉口群信号控制机理及实施框架[J].交通运输系统工程与信息,2011,11(4):28-34.
    [88]王浩,吴翱翔,杨晓光.过饱和条件下信号交叉口协调控制可靠性优化[J].公路交通科技,2012,11:86-91.
    [89]徐建闽,郑淑鉴.过饱和下的干道单向动态协调控制模型研究[J].交通运输系统工程与信息,2012,12(S1):73-79.
    [90]李轶舜.过饱和城市区域管理与控制方法研究[D].广州:华南理工大学,2012.
    [91]Hunt P B,Robertson D L,Bretherton R D.The SCOOT on–line trafficsignal optimization technique[J].Traffic Eng Control,1982,23:190-192.
    [92]Luk J Y K.Two traffic-responsive area traffic control methods:SCATand SCOOT[J].Traffic Eng Control,1984,25:14-22.
    [93]Gartner N H.OPAC:A demand-responsive strategy for traffic signalcontrol[J].Transp Res Record,1983,906.
    [94]Farges J L,Henry J J,Tufal J.The PRODYN real-time traffic al-gorithm[C]//Proc4th IFAC Symp Transportation Systems,1983:307-312.
    [95]Sen S, Head L.Controlled optimization of phases at anintersection[J].Transp Sci,1997,31:5-17.
    [96]吴洋.干道过饱和交叉口群的实时交通控制策略研究[D].成都:西南交通大学,2009.
    [97]张彪.交叉口群拥堵扩散机理及控制与诱导协同模型研究[D].长春:吉林大学,2013.
    [98]Watanabe M S. Dynamics of group motions controlled by signalprocessing: A cellular-automaton model and its applications[J]. Communicationsin Nonlinear Science and Numerical Simulation,2006,11:624-634.
    [99]Grimshaw R, Pelinovsky D, Pelinovsky E, Talipova T. Wave groupdynamics in weakly nonlinear long-wave models[J]. Physica D: NonlinearPhenomena,2001,159(1):35-57.
    [100] Caginalp G, Merdan H. Asset price dynamics with heterogeneousgroups[J]. Physica D: Nonlinear Phenomena,2007,225(1):43-54.
    [101] Gasser I, Werner B. Dynamical phenomena induced by bottleneck[J].Philosophical Transactions of the Royal Society, Part A,2010,368:4543-4562.
    [102] Roman F, Verma H, Jermann P. Group dynamics findings fromcoordination in problem solving and decision making meetings[C]. GROUP'12-Proceedings of the ACM2012International Conference on Support Group Work,2012,305-306.
    [103] Cepeda R, Olgac N. Stability analysis for the group dynamicsconsensus with time delayed communications[J]. European Journal of Control,2012,18(5):456-468.
    [104] Dodds T, Ruddle R. Using mobile group dynamics and virtual timeto improve teamwork in large-scale collaborative virtual environments[J].Computers and Graphics,2009,33(2):130-138.
    [105] Zhou Y, Guan X, Zheng Q. Group dynamics in discussing incidentaltopics over online social networks[J]. IEEE Network,2010,24(6):42-47.
    [106] Grimshaw R, Pelinovsky D, Pelinovsky E. Wave group dynamics inweakly nonlinear long-wave models[J]. Physica D: Nonlinear Phenomena,2001,159(1-2):35-57.
    [107] Dodds T, Ruddle Roy. Mobile group dynamics in large-scalecollaborative virtual environments[C]. Proceedings-IEEE Virtual Reality, p59-66,2008, IEEE Virtual Reality2008, VR.
    [108] Zhou Y, Guan X, Zheng Q. Analyzing group dynamics for incidentaltopics in online social networks[C]. Proceedings of the World Congress onIntelligent Control and Automation,2010,1941-1946.
    [109] Kawauchi Y, Inaba M, Fukuda T. Genetic evolution andself-organization of cellular robotic system[J]. JSME International Journal, SeriesC: Dynamics, Control, Robotics, Design and Manufacturing,1995,38(3):501-509.
    [110] Zhu M, Zhang X, Wang X. Computer integration system forautonomous intelligent robot with self-organization structure[J]. Journal ofSoftware,2000,11(3):368-371.
    [111] Zhang Y, Zhang J, Zhang L. A survivability information systembased on service self-organization[C]. Proceedings-5th International Conferenceon Internet Computing for Science and Engineering, ICICSE2010,158-161.
    [112] Barrett E, Howley E, Duggan J. Evolving group coordination in anN-player game[J]. Lecture Notes in Computer Science (including subseriesLecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2011,5777,450-457.
    [113] Sanchez E, Squillero G, Tonda A. Group evolution: Emergingsynergy through a coordinated effort[C].2011IEEE Congress of EvolutionaryComputation, CEC2011,2662-2668.
    [114] Roman F, Verma H, Jermann P. Group dynamics findings fromcoordination in problem solving and decision making meetings[C]. GROUP'12-Proceedings of the ACM2012International Conference on Support Group Work,2012,305-306.
    [115]唐毅南.群体模型下的金融市场和资产定价研究[D].复旦大学,2009.
    [116]何增镇.基于Multi-agent与博弈论的城市交通控制诱导系统及其关键技术研究.中南大学,2009.
    [117]李一啸.基于复杂网络和演化博弈理论的社会-经济系统建模研究[D].浙江大学,2010.
    [118]王明忠,范翠英,周宗奎.主观群体动力学模型述评[J].心理科学进展.2010,(11):1789-1799.
    [119]薛志斌.智能群体系统集群行为的动力学建模与分析及其仿真研究[D].兰州理工大学,2012.
    [120]楚天广,杨正东,邓魁英,等.群体动力学与协制控制研究中的若干问题[J].控制理论与应用,2010,27(1):86-93.
    [121]刘轼介.干道群协调控制模型研究[D].广州:华南理工大学,2012.
    [122]卢凯,徐建闽,郑淑鉴.相邻交叉口关联度分析及其应用[J].华南理工大学学报(自然科学版),2009,37(11):37-42.
    [123]卢凯,徐建闽,李轶舜.基于关联度分析的协调控制子区划分方法[J].华南理工大学学报(自然科学版),2009,37(7):6-9.
    [124]卢凯,徐建闽,郑淑鉴,王世明.协调控制子区快速动态划分方法研究[J].自动化学报,2012,38(2):279-287.
    [125] Maric I. Optimization of self-organizing polynomial neuralnetworks[J]. Expert Systems with Applications,2013,40(11):4528-4538.
    [126] Breder C. Equations descriptive offish schools and other animalaggregations[J]. Ecology.1954,35(3):361-370.
    [127] Gazi V, Passino K. Stability analysis of swarms[J]. IEEETransactions on Automatic Control,2003,48(4):692-697.
    [128] Shi H, Wang L, Chu T. Virtual leader approach to coordinatedcontrol of multiple mobile agents with asymmetric interactions[J]. Physica D,2006,213(1):5l-65.
    [129] Xie G, Wang L. Consensus control for networks of dynamic agentsvia active switching topology[C]. Lecture Notes in Computer Science. Berlin:Springer-Verlag,2005,3612:424-433.
    [130] Xiao E, Wang L. State consensus for multi-agent systems withswitching topologies and time-varying delays[J]. International Journaal ofContro1.2006,79(10): l277-l284.
    [131] Vicsek T, Czirok A. Novel type of phase transition in a system ofself-driven particles[J]. Physical Review E,1995,75(6):1226-1229.
    [132] Jadbabaie A, Lin J, Morse A. Coordination of groups of mobileautonomous agents using nearest neighbor rules[J]. IEEE Transactions onAutomatic Control,2003,48(6):988-1001.
    [133]张敏捷.基于群体动力学的交通协调控制理论与方法研究[D].广州:华南理工大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700