用户名: 密码: 验证码:
基于代谢网络的产甲烷菌的耐热性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于嗜热菌对高温环境有很强的适应性,近几年来嗜热菌在基因工程、蛋白质工程、发酵工程及矿产资源的开发利用上均有很大的应用价值。为了从系统水平上阐明嗜热菌的耐热机制,并指导嗜热菌在工业生产上的进一步应用,本文以产甲烷菌的代谢网络作为研究对象,从研究代谢网络的拓扑结构以及模块化出发,探索常温产甲烷菌Methanosarcina acetivorans (M. acetivorans)和嗜热产甲烷菌Methanopyrus kandleri (M. kandleri)之间的代谢网络的耐热性的差异。
     论文首先基于日本京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)数据库重构了常温的产甲烷菌M. acetivorans和嗜热的产甲烷菌M. kandleri的代谢网络,并进一步验证了代谢网络具有小世界、无标度网络等特征。
     根据全局代谢网络的比较,发现途径00010(糖酵解/葡糖异生)、00020(柠檬酸循环)以及00250(丙氨酸、天冬氨酸和谷氨酸代谢)是常温产甲烷菌M. acetivorans与嗜热产甲烷菌M. kandleri的重要途径,它们的度也是整个网络最高的,这说明它们是在进化过程中是较早出现的途径。同时基于全局代谢网络考察了代谢网络中酶的性质分类与连接度之间的关联,发现常温产甲烷菌M. acetivorans与嗜热产甲烷菌M. kandleri的代谢网络中合成酶类的连接度最低,而连接度最高的是氧化还原酶类与转移酶类。为了比较分析网络拓扑结构与耐热性之间的关联,计算了代谢网络的度、度的中心性、介数中心性、聚集系数以及直径等参数值,发现常温产甲烷菌M. acetivorans和嗜热产甲烷菌M. kandleri的代谢网络的聚集系数远高于同样规模及拓扑结构的随机网络的聚集系数,表明这两个菌具有较高的模块化结构。常温产甲烷菌M. acetivorans的代谢网络比嗜热产甲烷菌M. kandleri有更长的平均路径长度,更大的直径,这表明常温产甲烷菌M. acetivorans的总体结构是相对低密度、松散的网络结构。
     对于大规模的网络而言,高度紧密的子网络能反映网络的全局特征,并且是比较不同生物体代谢网络的重要因素。发现常温产甲烷菌M. acetivorans最紧密的9-核和嗜热产甲烷菌M. kandleri最紧密的7-核分别包含27和19个酶。其中嗜热产甲烷菌M. kandleri网络中最紧密的7-核分成两个小网络,一个子网中酶是两个产甲烷菌所共有的酶,而另一个子网络中的酶是嗜热产甲烷菌M. kandleri7-核所特有的酶,这些特有的酶全部与酪氨酸的合成有关,推测嗜热产甲烷菌M. kandleri的耐热性可能受到胞内酪氨酸的影响。
     代谢网络与其他复杂网络系统相类似,也具备一定的模块化组织结构,有效识别并提取代谢网络中的功能模块有助于把握其中蕴含的功能信息。因此在代谢网络全局研究的基础上,从系统水平上分析这些特征蕴含的功能意义,采用了Girvan和Newman提出的GN模块识别算法以及模拟退火算法(Simulated Annealing, SA)分析这两个产甲烷菌的功能模块。采用GN算法后,常温产甲烷菌M. acetivorans的代谢网络由39个模块组成,而嗜热产甲烷菌M. kandleri的代谢网络被划分了30个模块,其中常温产甲烷菌M. acetivorans的代谢网络中模块1、15、16以及模块4,较其它模块来说节点更多,连接也更紧密,所以这四个模块是整个代谢网络中的hub模块。而嗜热产甲烷菌M. kandleri的代谢网络的模块1和11是hub模块。模块化后,识别了具有一定功能意义的网络模块,发现常温产甲烷菌M. acetivorans中有4个模块属于碳水化合物,1个模块属于次级代谢的生物合成,而嗜热产甲烷菌M. kandleri中有2个模块属于碳水化合物代谢。用SA算法对代谢网络模块化后,发现常温产甲烷菌M. acetivorans有39个模块,包括25个与其它模块之间没有连接的独立模块。独立模块中,有15个模块是纯功能模块。而嗜热产甲烷菌M. kandleri有30个模块,其中20个是独立模块。独立模块中14个模块是纯功能模块。同时发现hub模块是核苷酸代谢、氨基酸代谢以及碳水化合物代谢。Hub模块间的酶的度也远高于整个网络的平均度,尤其是酶EC2.6.1.1, EC1.2.1.3,这表明度高的酶是更重要的。
     生物网络比对是生物体的结构、功能和进化分析的重要研究手段。最后采用MI-GRAAL算法对两个产甲烷菌的整体代谢网络以及模块化后的hub模块进行比对,发现嗜热的产甲烷菌M. kandleri的hub模块K-1,K-11所特有的酶都包含在高度紧密的子网络k-核中,因此对不同物种的代谢网络的比较研究可分别从高度紧密子网络、模块化以及网络比对等几方面进行。
Because thermophiles have strong adaptability to high temperature, they have greatapplication value in genetic engineering, protein engineering, fermentation engineering andutilizationof mineral resources in recent years. In order to clarify heat-resistant mechanism ofthese thermophiles from system level and guide further applications of thermophiles inindustry, this paper focuses on the research of the metabolic network of methanogens. Westudied the metabolic network’s topology structure and modular, and explored the differenceof metabolic network of heat resistance between mesophilic methanogen Methanosarcinaacetivorans (M. acetivorans) and thermophilic methanogen Methan opyrus kandleri(M. kandleri).
     The paper firstly reconstructed the metabolic network of mesophilic methanogen M.acetivorans and thermophilic methanogen M. kandleri based on the KEGG database, thenverified the metabolic networks which had characters such as small world and scale-freenetworks.
     According to global comparison of metabolic networks, the pathways00010(glycolysis/glucose dysplasia),00020(citric acid cycle) and00250(Alanine, aspartate andglutamate metabolism) are important pathways in mesophilic methanogen M. acetivorans andthermophilic methanogen M. kandleri. Their degrees are the highest of the entire networkwhich mean that they are appeared in early stage of the evolution. Meanwhile, the relationbetween the classification of the enzymes of metabolic network and degree was examinedbased on the global metabolic network. The lowest degree is synthetases and the higest degreeis oxidoreductases. And transferases are found in their metabolic networks. In order tocompare and analyze the relation between topology and heat resistance of their metabolicnetworks, the degree, degree centrality, closeness centrality, betweenness centrality, clusteringcoefficient and diameter of their metabolic network were calculated. The clusteringcoefficients of the mesophilic methanogen M. acetivorans and thermophilic methanogenM. kandleri metabolic network are much higher than random network of the same size andtopology. It indicates that the two species have high modular structure. And the metabolicnetwork of mesophilic methanogen M. acetivorans has longer average path length, largerdiameter than thermophilic methanogen M. kandleri. It shows that the overall structure ofmesophilic methanogen M. acetivorans is relative low density and loose network structure.
     The highly closeness subnetwork can reflect the network's global characteristics, so it isan important factor in comparing the metabolic network of different species of large-scalenetwork. Our experiments shows that the9-core has27enzymes of the mesophilicmethanogen M. acetivorans and7-core of the thermophilic methanogen M. kandleri has19enzymes. The7-core of the thermophic methanogen M. kandleri is divided into two smallnetworks. One has shared enzymes of the two methanogens, the other has particular enzymesof the7-core of thermophilic methanogen M. kandleri. These unique enzymes are associatedwith the synthesis of tyrosine, so the heat resistance of thermophilic methanogen M. kandlerimay be affected by the intracellular tyrosine.
     The metabolic networks are similar to other complex network systems. They havemodular structure. The effective recognition and extracting the function module of metabolicnetworks can help us grasping the implied function information. Therefore, based on theglobal research of metabolic network, Girvan and Newman’s module identification algorithm(GN) and simulated annealing algorithm (SA) were adopted for analysis the functionalsignificance of these characteristics at the system level. The metabolic network of themesophilic methanogen M. acetivorans is composed of39modules. And the metabolicnetwork of the M. kandleri is divided into30modules. The hub modules are1,4,15and16ofM. acetivorans because the connections of these modular nodes are much closer thanother modules. The hub modules are module1and11of the thermophilic methanogenM. kandleri. The certain functional meaning network modules are identified using GNalgorithm. There are four modules belonging to carbohydrates, one module belonging to thebiosynthesis of secondary metabolism of M. acetivorans. And two modules belong to thecarbohydrate metabolism of the thermophilic methanogen M. kandleri.
     Biological network alignment is an important research method to the study of organism'sstructure, function and evolutionary analysis. Finally, global metabolic networks of the twomethanogens and hub module were compared after using MI-GRAAL algorithm. All specificenzymes of hub modules K-1and K-11of thermophilic methanogen M. kandleri are includedin a highly close k-core subnetwork. So the comparative study on the metabolic network ofdifferent species can use respectively highly closest subnetwork, modular, and networkalignment methods, etc.
引文
1.马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社环境科学与工程出版中心,2005.21,24-53
    2.和致中,彭谦,生物学,等.高温菌生物学[M].北京:科学出版社,2000.69-70
    3.单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志,2003,23(6):42-46
    4. Lowe D C. Global change:a green source of surprise [J]. Nature,2006,439(7073):148-149
    5. Ahmed M, Smith J W. Biogenic methane generation in the degradation of eastern Australian Permian coals [J]. Organic Geochemistry,2001,32(6):809-816
    6. Balch WE, Fox GE, Magnum LJ, et al. Methanogens:reevaluation of a unique biological group [J]. Microbiological reviews,1979,43(2):260-296
    7. Liu Y, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea [J]. Annals of the New York Academy of Sciences,2008,1125(1):171-189
    8.周群英,高廷耀.环境工程微生物学(第二版)[M].北京:高等教育出版社,2008
    9. Kiene R P, Oremland R S, Catena A, et al. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen [J]. Applied and environmental microbiology,1986,52(5):1037-1045
    10. Straub K L, Benz M, Schink B. B., F. Widdel. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron [J]. Appl. Environ. Microbiol,1996,62(4):1458-1460
    11. Zellner G, Vogel P, Kneifel H, et al. Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia [J]. Applied microbiology and biotechnology,1987,27(3):306-314
    12. Yin XB, Lian LW, Xu JQ, et al. Unique enzymes and biochemical monitoring methods in methanogenesis [J]. China Biogas,1998,10(3):8-13
    13. Wu X L, Friedrich M W, Conrad R. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils [J]. Environmental microbiology,2006,8(3):394-404
    14. Thummes K, Schafer J, Kampfer P, et al. Thermophilic methanogenic Archaea in compost material: Occurrence, persistence and possible mechanisms for their distribution to other environments [J]. Systematic and applied microbiology,2007,30(8):634-643
    15.于晓章,彭晓英,周朴华.温度对厌氧嗜热菌群产甲烷能力的影响[J].湖南农业大学学报:自然科学版,2005,31(4):422-426
    16.路子佳.高温菌糠沼气发酵的初探及产甲烷菌的分离[D]:[硕士学位论文].哈尔滨:东北农业大学,2010
    17. Maurice S M高温油藏微生物群落结构及石油烃厌氧降解产甲烷体系构建研究[D]:[硕士学位论文].上海:华东理工大学,2012
    18. Vepachedu V R, Ferry J G. Role of the fused corrinoid/methyl transfer protein CmtA during CO-dependent growth of Methanosarcina acetivorans [J]. Journal of bacteriology,2012,194(16):4161-4168
    19. McCarty P L, Smith D P. Anaerobic wastewater treatment [J]. Environmental science&technology,1986,20(12):1200-1206
    20. Harper S R, Pohland F G. Recent developments in hydrogen management during anaerobic biological wastewater treatment [J]. Biotechnology and bioengineering,1986,28(4):585-602
    21.钱泽澎,闵航.沼气发酵微生物学[M].杭州:浙江科学技术出版社,1986
    22.蒋西然.刘纪文,李义利.嗜热菌在纤维素乙醇中的研究进展及应用前景[J].生命科学研究2004,14(5):449-455
    23. Schnellen, C G T P. Onderzoekingen over de methaangisting [D]. Rotterdanm:Technical University Delft,1947
    24. Boone D R, Whitman W B, Rouviere P. Diversity and taxonomy of methanogens[M]. Methanogenesis. Springer US,1993:35-80
    25. Galagan J E, Nusbaum C, Roy At et al. The genome of M. acetivorans reveals extensive metabolic and physiological dliversity[J]. Genome Res,2002,12(4):532-542
    26. Benedict M N, Gonnerman M C, Metcalf W W, et al. Genomescale metabolic reconstruction and hypothesis testing in the methanogenic archaeon c2A [J]. Bacteriol,2012,94(4):855-865
    27. Welander P V, Metcalf W W. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway [J]. Proc Natl Acad Sci,2005,102(30):10664-10669
    28.农业部厌氧微生物重点开放实验室.产甲烷细菌及其研究方法[M].成都:成都科技大学出版社,1997.09
    29.袁振宏.能源微生物学[M].北京:化学工业出版社,2012.234
    30.唐天元,陈存,陈凤莲,等BnRCH同源基因耐热性分析[J].四川大学学报自然科学版,2012,49(5):1169-1174
    31.谢云龙.嗜热木聚糖酶的克隆,表达及酶学性质研究[D]:[硕士学位论文].上海:上海交通大学,2012
    32.胡建恩,曹茜,杨帆,等.耐高温α-淀粉酶高密度高表达发酵条件的优化[J].食品科学,2012,33(01):219-225
    33. Maves S A, Sligar S G. Understanding thermostability in cytochrome P450by combinatorial mutagenesis [J]. Protein Science,2001,10(1):161-168
    34. Strop P, Mayo S L. Contribution of surface salt bridges to protein stability [J]. Biochemistry,2000,39(6):1251-1255
    35. Merz A, Knochel T, Jansonius J N, et al. The hyperthermosTable indoleglycerol phosphate synthase from Thermotoga maritima is destabilized by mutational disruption of two solvent-exposed salt bridges [J]. Journal of molecular biology,1999,288(4):753-763
    36. Kawamura S, Tanaka I, Yamasaki N, et al. Contribution of a salt bridge to the thermostability of DNA binding protein HU from Bacillus stearothermophilus determined by site-directed mutagenesis [J]. Journal of biochemistry,1997,121(3):448-455
    37. Rumelhart D E, Hintont G E, Williams R J. Learning representations by back-propagating errors [J]. Nature,1986,323(6088):533-536
    38. Cortes C, Vapnik V. The nature of statistical learning theory [J]. M. acetivoranshine Learning,1995,20:273-297
    39. Li L, Zhang X L. Optimization of SVM with RBF kernel [J]. Computer Engineering and Applications,2006,42(29):190-192
    40.张正阳,须文波,丁彦蕊.SVM的参数优化及在耐热酶和常温酶分类中的应用[J].食品与生物技术学报,2010,29(002):312-316
    41.王文超,丁彦蕊,陈璟.基于PCA-SVM混合算法的嗜热菌和常温菌网络特征的研究[J].计算机与应用化学,2012,29(2):142-146
    42.王文超.基于智能计算的微生物代谢网络与耐热性的关系研究[D]:[硕士学位论文].无锡:江南大学,2012
    43.赵伟,许尤厚,郑甲,等.基于支持向量机的脂肪酶耐热序列与嗜热序列分类研究[J].中南大学学报自然科学版,2011,42(9):2543-2550
    44. Chen C L, Wu J H, Liu W T. Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia [J]. Water research,2008,42(8):1963-1976
    45.丁彦蕊,蔡宇杰,孙俊,等.基于SVM和KNN的蛋白质耐热性分类[J].计算机工程与应用,2007,43(16):228-230
    46.董艺凝.耐热β-半乳糖苷酶BgaB分子改造以及突变体性质研究[D]:[博士学位论文].无锡:江南大学,2011
    47.刘伟,丁祖泉,王海芸.蛋白质结构与功能研究中的分子模拟技术[J].上海生物医学工程,2006,1(27):20-25
    48.朱伟平,鲁建春,韩强.采用分子模拟技术研究开发高耐热ABS[J].合成树脂及塑料,2002,19(3):19-23
    49.戴林森,季朝能,王健,等.耐热碱性磷酸酶(FD-TAP)的结构模型研究[J].中国生物化学与分子生物学报,2001,17(3):365-371
    50.郑朝成,周立祥.污泥中一株产耐高温蛋白酶菌株的分离,鉴定及酶学特性[J].环境科学学报,2012,32(3)
    51.何培青,许守英,黄晓航,等.高温海藻床中微生物的分离鉴定及其耐热,耐盐特性研究[J].微生物学通报,2012,39(12):1769-1777
    52. Heinzelman P, Snow C D, Wu I, et al. A family of thermosTable fungal cellulases created by structure-guided recombination [J]. Proceedings of the National Academy of Sciences,2009,106(14):5610-5615
    53.杨捷,叶秀云,严芬,等.产高温纤维素酶木霉菌株的筛选,鉴定及酶学性质研究[J].中国生物工程杂志,2012,32(007):60-65
    54.吴秀秀,吕晓慧,胡亚冬,等.耐高温耐酸稳定假密环菌(Armillariella tabescens) MAN47(3甘露聚糖酶体外分子定向进化[J].2012,32(3):83-90
    55.程峰,董俐住,柳志强,等.改进酶稳定性的定向进化技术[J].生物技术通报,2010,(12):93-99
    56. Xu W, Yan M, Xu L, et al. Engineering the activity of thermophilic xylose isomerase by site-directed mutation at subunit interfaces [J]. Enzyme and Microbial Technology,2009,44(2):77-83
    57. Watts D J, Strogatz S H. Collective dynamics of'small-world'networks [J]. nature,1998,393(6684):440-442
    58. Barabasi A L, Albert R. Emergence of scaling in random networks [J]. science,1999,286(5439):509-512
    59. Rain JC,Selig L,DeR H, et al. The protein-protein interaction map of Helicobacter Pylori [J]. Nature,2001,409(6817):211-215
    60. Maslov S, Sneppen K. Specificity and stability in topology of protein networks [J]. Science Signaling,2002,296(5569):910-913
    61.赵静,陶林,俞鸿,等.代谢网络的蝴蝶结结构特征及其功能意义[J],科学通报,2007,52(1):47-54
    62.王卓,陈琦,刘盏.代谢网络进化过程中拓扑结构与功能之间的关联[J],科学通报,2009,54(2):187-192
    63. Mazurie A, Bonchev D, Schwikowski B, et al. Evolution of metabolic network organization [J]. BMC systems biology,2010,4(1):59
    64.丁彦蕊,徐星宇,须文波.BP和概率神经网络预测微生物热稳定性的比较[J].江南大学学报自然科学版,2012,11(6):637-641
    65. Newman M E J, Girvan M. Finding and evaluating community structure in networks [J]. Physical review E,2004,69(2):026113
    66. Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(9):2658-2663
    67. Girvan M, Newman M E J. Community structure in social and biological networks [J]. Proceedings of the National Academy of Sciences,2002,99(12):7821-7826
    68. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity in metabolic networks [J]. Science.2002,297(5586):1551-1555
    69. Ma HW, Zhao XM, Yuan YJ, Zeng AP. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph [J]. Bioinformatics,2004,20(12):1870-1876
    70. Gagneur J, Jackson D B, Casari G. Hierarchical analysis of dependency in metabolic networks [J]. Bioinformatics,2003,19(8):1027-1034
    71. Holme P, Huss M, Jeong HW. Subnetwork hierarchies of biochemical pathways [J]. Bioinformatics.2003,19(4):532-538
    72. Guimera R, Amaral LAN. Cartography of complex networks:modules and universal roles [J]. Journal of Statistical Mechanics-Theory and Experiment.2005,(02):P02001
    73. Goh K I, Kahng B, Kim D. Graph theoretic analysis of protein interaction networks of eukaryotes [J]. Physica A:Statistical Mechanics and its Applications,2005,357(3):501-512
    74. Newman M E J. Finding community structure in networks using the eigenvectors of matrices [J]. Physical review E,2006,74(3):036104
    75. Guimera R, Sales-Pardo M, Amaral L A N. Modularity from fluctuations in random graphs and complex networks [J]. Physical Review E,2004,70(2):025101
    76. Guimera R, Nunes Amaral L A. Functional cartography of complex metabolic networks [J]. Nature,2005,433:895-900
    77. Michele Rajtmajer S, Vukicevic D. A note on the Estrada-Hatano communicability algorithm for detecting community structure in complex networks [J]. Applied mathematics and computation,2010,217(7):3516-3521
    78. Zhou W, Nakhleh L. Convergent evolution of modularity in metabolic networks through different community structures [J]. BMC evolutionary biology,2012,12(1):181
    79. Szalay-Beko M, Palotai R, Szappanos B, et al. ModuLand plug-in for Cytoscape:determination of hierarchical layers of overlapping network modules and community centrality [J]. Bioinformatics,2012,28(16):2202-2204
    80. Ma H, Zeng A P. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms [J]. Bioinformatics,2003,19(2):270-277
    81.侯静,宋安平,王卓.图形聚类算法的代谢网络模块化分析[J].应用科学学报,2007,24(6):588-592
    82. Wang Z, Chen Q, Liu L. Relationship between topology and functions in metabolic network evolution [J]. Chinese Science Bulletin,2009,54(5):776-782
    83. Shen H, Cheng X, Cai K, et al. Detect overlapping and hierarchical community structure in networks [J]. Physica A:Statistical Mechanics and its Applications,2009,388(8):1706-1712
    84. Shen H W, Cheng X Q, Guo J F. Quantifying and identifying the overlapping community structure in networks [J]. Journal of Statistical Mechanics:Theory and Experiment,2009,2009(07):P07042
    85.王正华,周婷婷.代谢网络结构特征的生物信息学研究[J].国防科技大学学报,2010,32(1):107-111
    86.赵建邦,高琳.基于AP算法的多物种同源功能模块挖掘算法[J].华中科技大学学报:自然科学版,2012,40(001):35-39
    87. Notebaart R A, van Enckevort F H J, Francke C, et al. Accelerating the reconstruction of genome-scale metabolic network [J]. BMC bioinformatics,2006,7(1):296
    88. Francke C, Siezen R J, Teusink B. Reconstructing the metabolic network of a bacterium from its genome [J]. TRENDS in Microbiology,2005,13(11):550-558
    89. Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment [J]. Nucleic acids research,2008,36(suppl1):D480-D484
    90. Pruitt KD, Tatusova T, Klimke W, et al. NCBI Reference Sequences:current status, policy and new initiatives [J]. Nucleic acids research,2009,37(suppl1):D32-D36
    91. Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics:new developments in KEGG [J]. Nucleic acids research,2006,34(suppl1):D354-D357
    92. Karp P D, Ouzounis C A, Moore-Kochlacs C, et al. Expansion of the BioCyc collection of pathway/genome databases to160genomes [J]. Nucleic acids research,2005,33(19):6083-6089
    93. Caspi R, Altman T, Dreher K, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases [J]. Nucleic Acids Research,2012,4O(D1): D742-D753
    94. Maltsev N, Glass E, Sulakhe D, et al. PUMA2—grid-based high-throughput analysis of genomes and metabolic pathways [J]. Nucleic Acids Research,2006,34(suppl1):D369-D372
    95. Schellenberger J, Park J O, Conrad T M, et al. BiGG:a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions [J]. Bmc Bioinformatics,2010,11(1):213
    96. Gao J, Ellis L B M, Wackett L P. The University of Minnesota biocatalysis/biodegradation database: improving public access [J]. Nucleic acids research,2010,38(suppl1):D488-D491
    97. Ellis L B M, Roe D, Wackett L P. The University of Minnesota biocatalysis/biodegradation database: the first decade [J]. Nucleic Acids Research,2006,34(suppl1):D517-D521
    98. Bader G D, Cary M P, Sander C. Pathguide:a pathway resource list [J]. Nucleic Acids Research,2006,34(suppl1):D504-D506
    99.赵静,俞鸿,骆建华,等.应用复杂网络理论研究代谢网络的进展[J].科学通报,2006,51(11):1241-1248
    100. Home AB, Hodgman TC, Spence HD, et al. Constructing an enzyme-centric view of metabolism [J]. Bioinformatics,2004,20(13):2050-2055
    101. Schuster S, Fell D A, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks [J]. Nature biotechnology,2000,18(3):326-332
    102. Wagner A, Fell D A. The small world inside large metabolic networks [J]. Proceedings of the Royal Society of London. Series B:Biological Sciences,2001,268(1478):1803-1810
    103. Ma H W, Zeng A P. The connectivity structure, giant strong component and centrality of metabolic networks [J]. Bioinformatics,2003,19(11):1423-1430
    104. Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks [J]. Nature,2000,407(6804):651-654
    105. Lemke N, Heredia F, Barcellos C K, et al. Essentiality and damage in metabolic networks [J]. Bioinformatics,2004,20(1):115-119
    106. Goto S, Nishioka T, Kanehisa M. LIGAND:chemical database for enzyme reactions [J]. Bioinformatics,1998,14(7):591-599
    107. Feist A M, Herrgard M J, Thiele I, et al. Reconstruction of biochemical networks in microorganisms [J]. Nature Reviews Microbiology,2009,7(2):129-143
    108. Poolman M G, Bonde B K, Gevorgyan A, et al. Challenges to be faced in the reconstruction of metabolic networks from public databases [J]. IEE Proceedings-Systems Biology,2006,153(5):379-384
    109. Gevorgyan A, Poolman M G, Fell D A. Detection of stoichiometric inconsistencies in biomolecular models [J]. Bioinformatics,2008,24(19):2245-2251
    110. Herrgard MJ, Fong SS, Palsson B(?). Identification of genome-scale metabolic network models using experimentally measured flux profiles [J]. PLoS computational biology,2006,2(7):e72
    111. Borgatti S P, Everett M G, Freeman L C. Ucinet for Windows:Software for social network analysis [J].2002
    112. Barabasi A L, Albert R, Jeong H. Mean-field theory for scale-free random networks [J]. Physica A: Statistical Mechanics and its Applications,1999,272(1):173-187
    113. Rain J C, Selig L, De Reuse H, et al. The protein-protein interaction map of Helicobacter pylori [J].Nature,2001,409(6817):211-215
    114. Takemoto K, Nacher J C, Akutsu T. Correlation between structure and temperature in prokaryoticmetabolic networks [J]. BMC bioinformatics,2007,8(1):303-314
    115. Wasserman S, Faust K. Social network analysis: Methods and applications [M]. Britain: EnglandCambridge university press,1994.20
    116. Goh K I, Oh E, Jeong H, et al. Classification of scale-free networks [J]. Proceedings of the NationalAcademy of Sciences,2002,99(20):12583-12588
    117. Freeman L C. A set of measures of centrality based on betweenness [J]. Sociometry,1977:35-41
    118. Albert R, Barabási A L. Statistical mechanics of complex networks [J]. Reviews of modern physics,2002,74(1):47-97
    119. Takemoto K, Nacher J C, Akutsu T. Correlation between structure and temperature in prokaryoticmetabolic networks [J]. BMC bioinformatics,2007,8(1):303-314
    120. Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks [J]. Nature,2000,406(6794):378-382
    121. Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet topology [C]. In:ACM SIGCOMM Computer Communication Review. ACM,1999,29(4):251-262
    122. Dorogovtsev S N, Mendes J F F. Evolution of networks [J]. Advances in physics,2002,51(4):1079-1187
    123. Albert R, Barabási A L. Statistical mechanics of complex networks [J]. Reviews of modern physics,2002,74(1):47
    124. Bader G D, Hogue C W V. An automated method for finding molecular complexes in large proteininteraction networks [J]. BMC bioinformatics,2003,4(1):2
    125. Ramadan E, Tarafdar A, Pothen A. A hypergraph model for the yeast protein complex network [C]. In:Parallel and Distributed Processing Symposium,2004. Proceedings.18th International. IEEE,2004:189
    126. Wuchty S, Almaas E. Peeling the yeast protein network [J]. Proteomics,2005,5(2):444-449
    127. Rhee S K, Lee S G, Hong S P, et al. A novel microbial interaction: obligate commensalism between anew gram-negative thermophile and a thermophilic Bacillus strain [J]. Extremophiles,2000,4(3):131-136
    128. Warren G L, Petsko G A. Composition analysis of.-helices in thermophilic organisms [J]. Proteinengineering,1995,8(9):905-913
    129. Hartwell L H, Hopfield J J, Leibler S, et al. From molecular to modular cell biology [J]. Nature,1999,402: C47-C52
    130. Schuster S, Pfeiffer T, Moldenhauer F, et al. Exploring the pathway structure of metabolism:decomposition into subnetworks and application to Mycoplasma pneumoniae [J]. Bioinformatics,2002,18(2):351-361
    131. Takemoto K, Borjigin S. Metabolic network modularity in archaea depends on growth conditions[J].PloS one,2011,6(10): e25874
    132. Newman M E J. Modularity and community structure in networks [J]. Proceedings of the NationalAcademy of Sciences,2006,103(23):8577-8582
    133. Parter M, Kashtan N, Alon U. Environmental variability and modularity of bacterial metabolicnetworks [J]. BMC Evolutionary Biology,2007,7(1):169
    134. Snel B, Huynen M A. Quantifying modularity in the evolution of biomolecular systems [J]. Genomeresearch,2004,14(3):391-397
    135. Yamada T, Kanehisa M, Goto S. Extraction of phylogenetic network modules from the metabolicnetwork [J]. BMC bioinformatics,2006,7(1):130
    136. Erten S, Li X, Bebek G, et al. Phylogenetic analysis of modularity in protein interaction networks [J].BMC bioinformatics,2009,10(1):333
    137. Newman M E J. Fast algorithm for detecting community structure in networks [J]. Physical review E,2004,69(6):066133
    138. Kirkpatrick S, Jr. DG, Vecchi MP. Optimization by simulated annealing [J]. science,1983,220(4598):671-680
    139. Wang Z, Zhu X G, Chen Y, et al. Exploring photosynthesis evolution by comparative analysis ofmetabolic networks between chloroplasts and photosynthetic bacteria [J]. BMC genomics,2006,7(1):100-112
    140. Zhao J, Ding G H, Tao L, et al. Modular co-evolution of metabolic networks [J]. Bmc Bioinformatics,2007,8(1):311
    141. Barabási A L, Frangos J. Linked: The New Science Of Networks Science Of Networks [M]. BasicBooks,2002.40
    142. Alon U. Biological networks: the tinkerer as an engineer [J]. Science,2003,301(5641):1866-1867
    143. Huss M, Holme P. Currency and commodity metabolites: their identification and relation to themodularity of metabolic networks [J]. IET systems biology,2007,1(5):280-285
    144. Barabási A L, Oltvai Z N. Network biology: understanding the cell's functional organization [J].Nature Reviews Genetics,2004,5(2):101-113
    145. Flannick J, Novak A, Do C B, et al. Automatic parameter learning for multiple network alignment [C].In: Research in Computational Molecular Biology. Springer Berlin Heidelberg,2008:214-231
    146. Liao C S, Lu K, Baym M, et al. IsoRankN: spectral methods for global alignment of multiple proteinnetworks [J]. Bioinformatics,2009,25(12): i253-i258
    147. Zaslavskiy M, Bach F, Vert J P. Global alignment of protein–protein interaction networks by graphmatching methods [J]. Bioinformatics,2009,25(12):1259-1267
    148. Kelley B P, Yuan B, Lewitter F, et al. PathBLAST: a tool for alignment of protein interaction networks[J]. Nucleic acids research,2004,32(suppl2):83-88
    149. Sharan R, Suthram S, Kelley R M, et al. Conserved patterns of protein interaction in multiple species[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(6):1974-1979
    150. Koyutürk M, Kim Y, Topkara U, et al. Pairwise alignment of protein interaction networks [J]. Journalof Computational Biology,2006,13(2):182-199
    151. Flannick J, Novak A, Srinivasan B S, et al. Graemlin: general and robust alignment of multiple largeinteraction networks [J]. Genome research,2006,16(9):1169-1181
    152. Singh R, Xu J, Berger B. Pairwise Global Alignment of Protein Interaction Networks by MatchingNeighborhood Topology [C]. In: Research in Computational Molecular Biology. Berlin Heidelberg:Springer,2007.16-31
    153. Kuchaiev O, Pr ulj N. Integrative network alignment reveals large regions of global networksimilarity in yeast and human [J]. Bioinformatics,2011,27(10):1390-1396
    154. Kuchaiev O, Milenkovi üT, Memi evi üV, et al. Topological network alignment uncovers biologicalfunction and phylogeny [J]. Journal of the Royal Society Interface,2010,7(50):1341-1354
    155. Milenkovi üT, Ng W L, Hayes W, et al. Optimal network alignment with graphlet degree vectors [J].Cancer informatics,2010,9:121
    156. Zaslavskiy M, Bach F, Vert J P. Global alignment of protein–protein interaction networks by graphmatching methods [J]. Bioinformatics,2009,25(12):1259-1267
    157. Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool [J]. Journal of molecularbiology,1990,215(3):403-410
    158. Milenkovi T, Pr ulj N. Uncovering biological network function via graphlet degree signatures [J].Cancer informatics,2008,6:257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700