用户名: 密码: 验证码:
厌氧序批式生物反应器去除三氯乙烷过程及菌群毒性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三氯乙烷(Trichloroethane, TCA)曾经广泛用作工业清洗剂,由于过度使用和储存不当,造成严重的土壤和地下水污染。基于逐步还原性脱氯的厌氧生物修复方法能够彻底清除TCA污染,本文主要研究厌氧生物脱氯过程机理和微生物群落毒性效应,重点分析降解过程中微生物酶活性变化和群落结构演替规律。结果表明在TCA的降解反应中,硫酸盐和硝酸盐还原条件下TCA降解效率较高,均达到80%以上;产甲烷及TCA与苯共代谢条件下TCA降解效率居中,均处于70%-80%之间;TCA与甲苯共代谢条件下TCA降解效率最低,低于70%。酶活性分析表明,产甲烷和硝酸盐还原条件的厌氧序批式生物反应器中酶的活性变化较小,但随着TCA浓度的增大乳酸脱氢酶和碱性磷酸酶的活性明显降低。PCR-DGGE指纹图谱分析表明,反应器中的微生物群落结构发生了明显改变。Clostridium sp. DhR-2/LM-G01, Bacterial clone DCE25和Bacterial cloneDPHB06三个菌株在产甲烷体系中丰度明显增加,推测它们可能是反应体系中主要的功能菌群,在厌氧条件下能够有效地降解TCA。综合考虑TCA降解过程、酶活性变化和功能菌群富集程度,本研究认为产甲烷条件的厌氧序批式生物反应器的微生物菌群对TCA的耐受性最高,有可能适于用开发TCA的厌氧降解实用技术。
1,1,1-Trichloroethane (TCA) as a cleaning solvent in manufacturing plants is widespread soil and groundwater contaminants due to extensive use and inappropriate disposal practices. environment. One approach for the cleanup of TCA-contaminated water is anaerobic bioremediation relies on stepwise reductive declorenation. In this study, anaerobic sequencing batch reactor (ASBR) was constructed to remove TCA contamination. The change of enzyme activity and bacterial communities was chosed to evaluate the toxic effects and metabolism of TCA in the ASBR. The result showed that the removal efficence of TCA was more than 80% under sulfate-reducing and nitrate-reducing conditions, approximate 70-80% under methanogenic and TCA and benzene co-metabolism conditions were lower than 70% under TCA and toluene co-metabolism condition after 21 days exposure. TCA had little effect on bacterial enzyme activities in methanogenic and nitrate-reducing conditions. The activity of lactate dehydrogenase and phosphatase decreased as the concentration of TCA increased. The microbial community significantly changed through 21 days of exposure to TCA. The TCA-biodegrading bacteria became the dominant functional bacterial populations, while other bacteria decreased under all conditions. Clostridium sp. DhR-2/LM-G01, Bacterial clone DCE25 and DPHB06 were enriched in the methanogenic ASBR systems which could effectively degrade TCA under anaerobic conditions. Based on the analysis of biodegration, enzyme activities and microbial community structure, the methanogenic ASBR system was most suitable to tolerate and metabolize TCA, which was potentially employed to develop the TCA bioremediation technology.
引文
[1]张锡辉.水环境修复工程学原理与应用.化学工业出版社,2003,55(3):160-161
    [2]张达政,陈鸿汉,李海明等.浅层地下水卤代烃污染初步研究.中国地质,2002,29(3):326-329
    [3]舒艺,陈嘉文.室内空气VOCs检测方法中问题和思考.广东化工,2011,38(3):251-253
    [4]江梅,张国宁,邹兰等.有机溶剂使用行业VOCs排放控制标准体系的构建.环境工程技术学报,2011,1(3):221-225
    [5]Scheutz C, Durant ND, Hansen MH et al. Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface a critical review. Water Research,2011,45(2):2701-2723
    [6]何江涛,李烨,刘石,陈鸿汉.浅层地下水氯代烃污染的天然生物降解.环境科学,2005,26(2):36-41
    [7]唐艳冬,马文超,王铎.a-三氯乙烷淘汰现状与替代技术.清洗世界,2007,23(10):13-18
    [8]曹以慧,姚远,李娟.飞机维护清洗中的1,1,1-三氯乙烷溶剂淘汰技术.清洗世界,2008,24(3):19-24
    [9]Grostern A, Edwards EA. A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Applied and Environmental Microbiology,2006,72(12):7849-7856
    [10]雷晓雨,王京刚.1,1,1-三氯乙烷的TiO2光催化降解.有色金属,2006,58(4):115-118
    [11]卢杰,李梦红,潘嘉芬.有机氯代烃污染地下水环境的治理与修复.山东理工大学学报(自然科学版),2008,22(4):27-30
    [12]Rowe BL, Toccalino PL, Moran MJ et al. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States. Environmental Health Perspectives,2007,115(11):15-39
    [13]路国慧,杨永亮.沈阳地区河水及沿岸地下水中卤代烃的污染特征.岩矿测试,2009,28(4):316-320
    [14]俞光明,刘红樱.杭州市浅层地下水有机污染及其风险初步评价.资源调查与环境,2007,28(3):198-204
    [15]刘菲,钟佐巢.地下水中氯代烃的格栅水处理技术.地学前缘,2001,8(2):309-315
    [16]肯思勤,王焰新.表面活性剂改性岩矿材料去除废水氯代烃的实验研究.地球科学,2004,29(1):55-64
    [17]高文燕.地下水中三氯乙烯污染修复技术研究进展.内蒙古水利,2009, 123(5):77-82
    [18]Reddy KR. Physical and chemical groundwater remediation technologies. Overexploitation and Contamination of Shared Groundwater Resources,2008, 45(3):257-274
    [19]向夕品.三氯乙烯和四氯乙烯处理方法研究进展.渝州大学学报(自然科学版),2002,19(4):77-82
    [20]贺启环.含氯代烃废水的生物毒性与处理方法探讨.污染防治技术,2010,23(1):16-21
    [21]Nakano Y, Hua LQ, Nishijima W et al. Biodegradation of trichloroethylene (TCE) adsorbed on granular activated carbon (GAC). Water Research,2000, 34(17):4139-4142
    [22]RW G, SE H. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water,1994,32(6):958-967
    [23]梁震,王焰新.纳米级零价铁的制备及其用于污水处理的机理研究.环境保护,2002,30(4):365-400
    [24]何小娟,汤鸣皋,沈照理等.Ni/Fe双金属对PCE脱氯影响因素研究.地球科学,2003,28(3):1120-1127
    [25]谢冰.超声波作用下有机污染物的降解.水处理技术,2000,26(2):114-1119
    [26]滕应,骆永明,李振高.污染土壤的微生物修复原理与技术发展.土壤(soil),2007,34(9):497-502
    [27]Semprini L, Dolan ME, Mathias MA et al. Bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene,1, 1-dichloroethane, and 1,1,1-trichloroethane. European Journal of Soil Biology,2007, 43(5-6):322-327
    [28]Grostern A, Chan WWM, Edwards EA.1,1,1-Trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environmental Science and Technology,2009, 43(17):6799-6807
    [29]王新新,张颖,韩斯琴.三氯乙烯降解菌的分离鉴定及其降解特性.生态环境,2008,17(5):1778-1783
    [30]张婷.地下水中三氯乙烯修复技术研究进展.环境生物技术,2005,65(21):8-10
    [31]WangL. Trichloroethylene (TCE) and Tetrachloroethylene (PCE) biodegradation with bioreactors. US The Faculty of the Graduate School University of Missouri-Columbia, 2001,45(3):156-167
    [32]Cecen F, Kocamemi BA, Aktas O. Metabolic and co-metabolic degradation of industrially important chlorinated organics under aerobic conditions. Xenobiotics in the Urban Water Cycle,2010,35(6):161-178
    [33]孙芹菊.三氯乙烯污染的地下水生物修复技术研究进展.环境科学与管理,2007,32(6):42-45
    [34]章立勇,林匡飞,徐圣友等.硫酸盐还原条件下三氯乙烯的降解研究.环境污染与防治,2009,31(2):1-3
    [35]王雪莲,席彩杰,杨琦等.不同基质中三氯乙烯的好氧代谢研究.地质调查与研究,2006,29(1):69-75
    [36]付琳琳,曹郁生,李海星.应用PCR-DGGE技术分析泡菜中乳酸菌的多样性.食品与发酵工业,2005,31(12):103-105
    [37]Omar B, N.Ampe F. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Applied and Environmental Microbiology,2000, 66(9):3664-3668
    [38]尹艳华,胡学敏,陈沙沙.利用PCR-DGGE技术鉴定氯酚降解菌株.应用基础与工程科学学报,2011,19(2):196-203
    [39]霍萍萍,耿晓娜,赵宝华PCR-DGGE法在微生物群落检测中的应用.安徽农业科学,2011,39(14):8204-8207
    [40]韩丽华,张绍璐.好氧脱氮菌群的筛选驯化及PCR-DGGE (?)分析.东北林业大学学报,2011,39(8):90-93
    [41]焦晨PCR-DGGE法在抚州市西湖水物种多样性研究中的探讨.内蒙古大学生命科学学院,2010,35(3):15-21
    [42]凌云,王辉,魏华PCR-DGGE技术在水产养殖中的应用及发展.安徽农业科学,2010,38(12):6244-6246
    [43]朱浩.SBR法短程硝化反硝化生物脱氮工艺的研究.科技信息,2011,38(17):1-6
    [44]Chen WH, Sung S, Chen SY. Biological hydrogen production in an anaerobic sequencing batch reactor:pH and cyclic duration effects. International Journal of Hydrogen Energy,2009,34(1):227-234
    [45]Ben W, Qiang Z, Pan X et al. Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton's reagent. Water Research,2009, 43(17):4392-4402
    [46]Ni BJ, Xie WM, Liu SG et al. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Research, 2009,43(3):751-761
    [47]Hu B, Rush D, van der Biezen E et al. New anaerobic, ammonium-oxidizing community enriched from peat soil. Applied and Environmental Microbiology,2011, 77(3):966-972
    [48]Wang T, Zhang H, Yang F et al. Start-up of the anammox process from the conventional activated sludge in a membrane bioreactor. Bioresource Technology,2009, 100(9):2501-2506
    [49]Yao Y, Lu Z, Min H et al. The effect of tetrahydrofuran on the enzymatic activity and microbial community in activated sludge from a sequencing batch reactor. Ecotoxicology,2011,34(6):1-10
    [50]王玉瑶.为地下水有机污染调查开发的GC/MS联用方法.中国地质大学.2006,33(2):23-24
    [51]黄毅,饶竹.吹扫捕集气相色谱-质谱法测定全国地下水调查样品中挥发性有机污染物.岩矿测试,2009,25(1):15-20
    [52]李攻科,胡玉玲,阮华贵.样品前处理仪器与装置.化学工业出版社,2007,33(2):207-220
    [53]李义,董建芳,张宇.地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定.岩矿测试,2010,29(5):513-517
    [54]夏君,黄晓,白凌.吹扫捕集与色谱-质谱联用分析宝钢水和废水中VOCs.宝钢技术,2010,125(3):60-64
    [55]瞿白露,许雄飞,陈军.吹扫捕集和GC-MS测定水中26种挥发性有机物.广州化学,2010,35(4):39-42
    [56]Arrojo B, Figueroa M, Mosquera-Corral A et al. Influence of gas flow-induced shear stress on the operation of the Anammox process in a SBR. Chemosphere,2008, 72(11):1687-1693
    [57]Liu C, Yang J, Wu G et al. Estimation of dominant microbial population sizes in the anaerobic granular sludge of a full-scale UASB treating streptomycin wastewater by PCR-DGGE. World Journal of Microbiology and Biotechnology,2010,26(2):375-379
    [58]Wartiainen I, Eriksson T, Zheng W et al. Variation in the active diazotrophic community in rice paddy-nifH PCR-DGGE analysis of rhizosphere and bulk soil. Applied Soil Ecology,2008,39(1):65-75
    [59]Kraigher B, Kosjek T, Heath E et al. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Research,2008,42(17):4578-4588
    [60]Perkins SD, Angenent LT. Potential pathogenic bacteria in metalworking fluids and aerosols from a machining facility. Ferns Microbiology Ecology,2010,74(3):643-654
    [61]Chouari R, Le Paslier D, Dauga C et al. Novel major bacterial candidate division within a municipal anaerobic sludge digester. Applied and Environmental Microbiology,2005, 71(4):2145-2153
    [62]Riviere D, Desvignes V, Pelletier E et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal,2009. 3(6):700-714
    [63]Collins M, Lawson P, Willems A et al. The phylogeny of the genus Clostridium:proposal of five new genera and eleven new species combinations. International Journal of Systematic Bacteriology,1994,44(4):812-826
    [64]Ziv-El M, Delgado AG, Yao Y et al. Development and characterization of DehaloR-2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene. Applied Microbiology and Biotechnology,2011,75(3):1-9
    [65]Diaz EE, Stams AJM, Amils R et al. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Applied and Environmental Microbiology,2006,72(7):42-49
    [66]Grostern A, Edwards EA. A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Applied and Environmental Microbiology,2006,72(12):7849
    [67]Middeldorp PJM, Luijten MLGC, van de Pas BA et al. Anaerobic microbial reductive dehalogenation of chlorinated ethenes. Bioremediation Journal,2010,3(3):151-169
    [68]Dong Y, Butler EC, Philp RP et al. Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene. Biodegradation,2011,45(2):1-14
    [69]姚开安,王娜,赵斌等.示差脉冲伏安法测定乳酸脱氢酶活性及纳米微粒生物毒性检测新方法研究.无机化学学报,2007,23(6):981-986
    [70]Shao T, Yang G, Wang M et al. Reduction of oxidative stress by bioaugmented strain Pseudomonas sp. HF-1 and selection of potential biomarkers in sequencing batch reactor treating tobacco wastewater. Ecotoxicology,2010,19(6):1117-1123
    [71]Lv Z, Yao Y, Min H. Effect of tetrahydrofuran on enzyme activities in activated sludge. Ecotoxicology and Environmental Safety,2008,70(2):259-265
    [72]Murono EP, Derk RC. The reported active metabolite of methoxychlor,2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits testosterone formation by cultured Leydig cells from neonatal rats. Reproductive Toxicology,2005,20(4):503-513
    [73]Zhang H, Ziv-El M, Rittmann BE et al. Effect of dechlorination and sulfate reduction on the microbial community structure in dnitrifying membrane-biofilm reactors. Environmental Science and Technology,2010,44(13):5159-5164
    [74]刘华伟,李建红,王健.肿癌患者血清乳酸脱氢酶水平变化的临床意义.临床肺科杂志,2011,16(8):1284-1288
    [75]田丽粉,任仲,崔毅等.胜利原油对褐牙鲆子稚鱼的急性毒性和幼鱼碱性磷酸酶的影响.海洋水产研究,2008,29(6):95-100
    [76]Tengjaroenkul B. Smith BJ, Caceci T et al. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture, 2000,182(3-4):317-327
    [77]Steinberg CEW, Strzenbaum SR, Menzel R. Genes and environment--Striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Science of the Total Environment,2008,400(1-3):142-161
    [78]Shimamura M, Nishiyama T, Shigetomo H et al. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Applied and Environmental Microbiology,2007,73(4):1065-1072
    [79]Yan ST, Zheng H, Li A et al. Systematic analysis of biochemical performance and the microbial community of an activated sludge process using ozone-treated sludge for sludge reduction. Bioresource Technology,2009,100(21):5002-5009
    [80]Molina-Mu oz M, Poyatos J, Rodelas B et al. Microbial enzymatic activities in a pilot-scale MBR experimental plant under different working conditions. Bioresource Technology,2010,101(2):696-704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700