用户名: 密码: 验证码:
碳纤维复合材料数字化超声检测系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维复合材料在航空航天和军事工业方面的广泛应用使得对其可靠性和安全性的要求越来越高。超声检测在产品质量控制中具有举足轻重的地位,是碳纤维复合材料检测常用技术。对于碳纤维复合材料工件,如何提高检测的精度和自动化程度是超声检测中需要深入研究的问题。本文结合碳纤维复合材料超声无损检测系统项目的实际需求和开发过程,对超声检测中的检测方法、信号处理、缺陷分析、孔隙率测试和软件设计等关键技术进行了深入的研究。
     第一章阐述了论文研究工作的意义,对碳纤维复合材料的超声无损检测、孔隙率测试、超声扫描成像方法、超声信号处理、超声C扫描图像处理等相关技术及国内外发展现状进行了综述和分析;
     第二章研究了曲面工件自动化超声检测方法。首先介绍了超声波检测技术的理论,然后针对碳纤维复合材料曲面构件,构建了基于超声测量、曲面建模、路径规划、超声扫描成像的一体化检测系统。以机器人理论为基础,建立了曲面工件多自由度超声检测机器人的运动学模型,给出了五自由度超声检测系统的运动学方程及求解结果。
     第三章对曲面变厚度工件超声信号中缺陷波定位技术进行了研究。阐述了小波变换的基本理论,包括连续小波变换的概念和算法实现,离散小波变换的物理意义,多分辨率分析及Mallet快速算法。提出了基于复小波变换的缺陷波定位技术,先通过小波变换提取超声射频信号特征波形包络,然后用连续点阈值算法找出采样信号中各超声回波信号的位置,根据表面波和底波来确定缺陷波的位置和幅值。结果表明,小波处理方法可以准确的判定射频信号中缺陷波信号的峰值和峰位。
     第四章对超声C扫描图像的缺陷分析方法进行了研究。提出在C扫描图像中采用阈值分割和区域标记算法将缺陷区域分离出来,通过边缘跟踪算法提取缺陷的边缘,用构建的几何参数体系对缺陷进行统计和识别。研究了超声C扫描图像的成像方法和表示方法,根据误判概率最小化原则给出了确定图像分割的阈值确定方法。然后给出了缺陷区域标记的概念和标记算法,分别使用边缘检测算子和边缘跟踪算法对超声C扫描图像进行边缘提取,最后计算各缺陷区域的几何参数。结果表明,构建的参数能够比较好的表现缺陷区域的特征,可进行进一步的缺陷识别工作。
     第五章开发了碳纤维复合材料孔隙率检测便携式超声系统。研究了碳纤维复合材料孔隙率检测的数学模型,建立了孔隙率和超声衰减系数之间的关系式。以超声反射法为基础,研究了超声衰减系数与材料表面和底面回波幅值之间的数学关系,构建了碳纤维复合材料孔隙率检测便携式超声系统。针对系统中的探头定位问题,提出了改写光电式鼠标的过滤驱动程序将其在计算机中映射为虚拟位置传感器的方法,编写下层过滤驱动程序拦截光学鼠标的报告描述符和输入输出中断请求,然后制作安装程序将过滤驱动程序安装到计算机的操作系统中;最后通过用户态的应用程序访问此用户设备并读取其报告描述符以获取检测系统所需要的位置信息。检测实例结果表明,研制的仪器结果准确,可以比较全面地评价碳纤维复合材料的孔隙状况。
     第六章研究了碳纤维复合材料构件超声扫描成像系统软件设计。介绍了软件能力成熟度模型(CMM)的分级标准和内部结构,对CMM在碳纤维复合材料超声检测系统软件开发过程中的实施方法和关键过程进行了研究。然后阐明了分层设计方法在软件系统整体设计中的实现,对系统中数据的类型、特点及组织形式进行了探讨。阐述了碳纤维复合材料软件系统的整体功能结构,对于系统中组合成像和输出报表两项关键技术,给出了实现方法。
     最后对全文的工作进行了总结,对进一步的工作提出了一些初步的设想。
Carbon Fiber Reinforced Plastics (CFRP) was widely used in the aeronautic、astronautic and arms industry and so its reliability and security become more and more important. Ultrasonic inspection which takes a crucial position in products quality control is the regular technology for CFRP test. For the CFRP parts, how to improve precision and degree of automation is a problem that need deeper research. Combined with the actual requirement and developing process of CFRP Ultrasonic non-destructive inspection project, some key techniques such as inspection method, signal processing, flaw analysis, void content test and software design are deeply studied in this thesis.
     In chapter 1, the signification of research work of this thesis was discussed. The developing status of relative technique such as CFRP Ultrasonic non-destructive inspection、void content test, ultrasonic scan and imaging means, ultrasonic signal process, ultrasonic C-scan image process were analyzed.
     In chapter 2, the automatic ultrasonic inspecting method for curved surface part was studied. Firstly, the basic theory of ultrasonic inspection technique was introduced, then based on ultrasonic measure, curved surface modeling, scanning path planning and ultrasonic scan imaging, the all-in-one system of inspection was constructed. On the basis of robot theory, the kinematic model of multi-freedom ultrasonic inspecting robot for curved surface parts was set up. Finally, the kinematic equation and result of five-freedom ultrasonic inspecting system were presented.
     In chapter 3, the flaw wave position-finding technique of curved surface and depth-changeable parts was researched. Depict the basic theory of wavelet transform, including concept and algorithm realization of continuous wavelet transform, physical meaning of discrete wavelet transform, multi-resolution analysis and Mallet algorithm. A flaw wave position-finding technique based on complex wavelet transform was proposed. Wavelet transform was used to draw contour feature wave of ultrasonic radio signal, then found the position of all echo wave by continuous-point threshold algorithm, finally decided the peak and position via surface wave and bottom wave. It is shown that method of wavelet process can find the peak and position of flaw wave accurately.
     In chapter 4, the flaw analysis method of ultrasonic C-can image was studied. Proposed a method that segregated flaw area from image by means of threshold segment and area label algorithm, then edge-track algorithm was used to draw the edge of flaw area, geometrical parameter system was built to depict and recognize flaw. The imaging method of ultrasonic C-scan was studied, the threshold-deciding method of image segment was offered by the principle of error probability minimum. Then the concept and algorithm of flaw area labeling was presented, edge operator and edge-track algorithm were employed to draw the flaw edge from C-scan image. The geometrical parameter of flaw area was calculated. It is shown that the parameter system can describe the feature of flaw area well and so redound to works of flaw recognition further.
     In chapter 5, A portable ultrasonic inspecting system for void content of CFRP was developed. The mathematic model to test void content of CFRP was studied and the formula between void content and ultrasonic attenuation coefficient was established. Based on ultrasonic echo method, the relation between ultrasonic attenuation coefficient and the amplitude of surface as well as bottom echo wave was studied, and portable ultrasonic inspecting system for void content of CFRP was constructed. In order to acquire the position data of probe in the testing system, an method of mapping an optical mouse into a virtual position sensor was proposed. The lower filter driver for optical mouse was programmed, which can intercept the report descriptor and I/O interrupt requires of the mouse. An installation program was made to set up filter driver into operating system of computer. User application accessed this device and read its report descriptor to obtain the position information needed for testing system. It is shown that the result of developed device is accurate so it can all-sided evaluate void content status of CFRP.
     In chapter 6, Software design of ultrasonic imaging system for CFRP was researched. Classification standard and internal structure of software capability maturity model(CMM) were introduced and the realizing method and key process of CMM in CFRP ultrasonic test system software were studied. The practice of layered design method in software system general design was depicted and discussed the rype、trait and form of data in the software system. General function structure of CFRP software system was described. The realizing method of two key technique like combined imaging and report output in the system was offered.
     Finally, main result of the thesis was summarized, the prospects and further research work were presented.
引文
[1] 冯若主编.超声手册.南京:南京大学出版社,1999
    [2] 周晓军. 突变信号相平面特征小波分析及其检测声学中应用[博士学位论文].杭州:浙江大学,1993
    [3] 赵稼祥.2000年美国材料加工工程促进学会年会与展览简介.宇航材料工艺,2001,1:58~61
    [4] B. C. Hoskin, A. A. Baker. Composite Materials for Aircraft Structures American Institute of Aeronautics and Astronautics, Inc., 1986
    [5] 张旭辉,马宏伟.超声无损检测技术的现状和发展趋势.机械制造,2002,40(7):24~26
    [6] 宋焕成,赵时熙.聚合物基复合材料.北京:国防工业出版社,1986
    [7] 赵稼祥.碳纤维复合材料在民用航空上的应用. 高技术纤维与应用, 2003,28(3):74~78
    [8] 李志君.先进复合材料的无损检测.宇航材料工艺,2000,24~26:28~31
    [9] 陈积懋,余南廷.胶接结构与复合材料的无损检测.北京:国防工业出版社,1984
    [10] 刘松平,郭恩明.复合材料无损检测技术的现状与展望.航空制造技术,2001,3:30~32
    [11] 雷宁,高凌.复合材料无损检测技术的新进展.同体火箭技术,1994,6 (2):74~78
    [12] Michael MacRae. Details without damage: NDT methods"find fault" with composite materials. Advanced Composites, 1993, July/August: 28~34
    [13] Robert E, Green J R. Nondestructive characterization of material properties[J]. Mechanical Engineering, 1987, 109(2): 268
    [14] 王小民,李明轩.复合材料的超声检测与评价.应用声学,1998,17(6):29~44
    [15] 王耀俊,许明翔.层状各向异性固体媒质的声反射和声透射声学学报,1995,20(3):161~169
    [16] 余南廷,陈积懋.复合材料无损检测与评定, 中国航空学会,1997
    [17] David K. Hsu, Kevin M. A morphological study of porosity defects in graphite-epoxy, In Review of progress in quantitative nondestructive evaluation 6B, 1986.
    [18] D. E. W. Stone, B. Clarke. Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Non-destructive testing, 1975, June: 137-145.
    [19] N. C. Judd, W. W. Wright. Voids and their effects on the mechanical properties of composites. SAMPEJournal, 1978, Jan/Feb: 10-14.
    [20] H. JEONG. Effects of voids on the mechanical strength and ultrasonic attenuation of laminated composites. Journal of Composite Materials, 1997, 31(3): 276~291.
    [21] 宋立军.复合材料孔隙率检测方法及其实现技术的研究[硕士学位论文]. 杭州:浙江大学,200;
    [22] 莫锦秋.超声扫描成像与分析—透明件超声检测系统的开发.浙江大学博士后出站报告,1999
    [23] http://www.cii.com.cn
    [24] 吴乘波.环形电子束焊缝超声自动检测系统研制[硕士学位论文].杭州:浙江大学,2005
    [25] Birt E A, Smith R A. A review of NDE methods for porosity measurement in fibre-reinforced polymer composites. Non-Destructive Testing and Condition Monitoring, 2004, 46(11): 681~686.
    [26] Fairouz Bettayeb, Tarek Rachedi,, Hamid Benbartaoui. An improved automated ultrasonic NDE system by wavelet and neuron networks. Ultrasonics, 2004, 42: 853~858
    [27] Ramazan Demirli, Jafer Saniie. Model-based estimation of ultrasonic echoes, Part Ⅱ Nondestructive evaluation applications. IEEE TRANSACTIONS ON ULTRASONICS, PERROELECTRICS, AND FREQUENCY CONTROL, 2001, 48(3): 803~811
    [28] Yu Zhang, Yuanyuan wang. Doppler ultrasound signal denoising based on wavelet frames. IEEE TRANSACTIONS ON ULTRASONICS, PERROELECTRICS, AND FREQUENCY CONTROL, 2001, 48(3): 709~716
    [29] Th Laopoulos, N Michalodimitrakis. A novel approach to narrow-bandwidth signals analysis by wavelet transform. IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK, USA, 2002: 1217~1222
    [30] Lawrence H. An investigation of pulse-timing techniques for broadband ultrasonic velocity determination in cancellous bone: a simulation study. Phys. Med. Biol., 1998, 43: 2295~2308
    [31] Albert Boggess, Francis Narcowich. A first course in wavelets with Fourier Analysis. Pearson Education North Asia Limited and Publishing House of Electronics Industry, 2002.
    [32] Mo Li, Wu Siliang, Li Hai. Radar detection of range migrated weak target trough long-term integration, Chinese of Journal Electronics. 2003, 12(4): 539~544
    [33] 刘忠英,张毅.基于STFT与G函数相结合的短波DFH跳检测方法。电子学报,2003,31(1):13-16
    [34] Marc C Robini, IsabeIle E Magnin. Tow-dimensional ultrasonic flaw detection based on the wavelet packet transform, IEEL TRANSACTIONS ON ULTRASONICS, PERROELECTRICS, AND FREQUENCY CONTROL. 1997, 44(6): 1382~1394
    [35] Sylvie Legendre. Wavelet-Transform-Based method of analysis for Lamb-Wave ultrasonic NDE signals. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2000, 49(3): 524~530
    [36] Suiren Wan, Mandayam A Srinivasan. Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis wavelets. IEEE TRANSACTIONS ON ULTRASONICS, PERROELECTRICS, AND FREQUENCY CONTROL, 2003, 50(10): 1286~1295
    [37] IK Keun Park, Un Su Park, Hyung Keun Ahn. Experimental wavelet analysis and applications to ultrasonic non-destructive evaluation, 35 Fairouz Bettayeb, Tare, Rachedi, Harold Benbartaoui. An improved qutomated ultrasonic NDE system by wavelet and nerron networks. Ultrasonics, 2004, 42: 853~858
    [38] 张羽,王源源,王威琪等.双向血流超声多普勒信号的小波降噪.声学学报,2004, 29(3): 262-266
    [39] Stephen W. Kercel, Marvin B Klein, Bruno Pouet. Wavelet and wavelet-packet analysis of Lamb wave signatures in real-time instrumentation. IEEE Mountain workshop on soft computing in industrial applications, Virginia Tech, Blacksburg Viginia, 2001
    [40] Arjuna Flenner, Brian DeFacio. A wavelet characterization of levy noise for ultrasonic nondestruction. Review of quantitative nondestructive evaluation, 2005, 24: 697~703
    [41] Roger L Claypoole. Adaptive wavelet transforms vie lifting. Ph.D. thesis in Rice University, 1999
    [42] Shengyu FU, Engineering surface analysis using wavelet, Ph. D. thesis in the University of North Carolina at Charlotte, 2003
    [43] Wim Sweldens, Wavelets and the lifting scheme: A 5 minute tour. Math. Mech, 1996
    [44] Ingrid Daubechies, Wim Sweldens. Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl, 1998: 1~26
    [45] 吴梅.小波理论在导弹故障诊断中的应用研究[博士学位论文].两安:西北工业大学,2003
    [46] Wim Sweldens. The lifting scheme: A construction of second generation wavelets. Technical Report 1994: 7, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina(1994): 1~41
    [47] Wim Sweldens. The lifting scheme: a custom-design construction ofbiorthogonal wavelets. Applied and computational harmonic analysis, 1996, 3: 186~200
    [48] 谭善文,秦树人,汤宝平等.Hilber-Huang变换的滤波特性及其应用,重庆大学学报,2004,27(2):9-12
    [49] 石春香,罗奇峰.时程信号的Hilber-Huang变换与小波分析.地震学报,2003,25(4):398~405
    [50] 杜寿吕.基于Hilber-Huang变换的心音信号时频分析研究[硕士论文].云南大学,2003
    [51] J A Oliver, J B Kosmatka. Evaluation of the Hilber-Huang transform for modal-based structural health monitoring applications. Nondestructive evaluation and health monitoring of aerospace materials, composites, and civil infrastructure IV, Proc. Of SPIE 2005, 5767: 274~285
    [52] Norden E Huang, Zheng Shen, Steven R Long etc. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A(1998) 454: 903~995
    [53] 胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究.[博士学位论文],浙江大学,2003
    [54] 刘镇清,魏墨盒.超声检测的信号处理与模式识别.声学技术,1996,15(1):19~20
    [55] 刘镇清,李成林.用于增强粗品材料超声检测信号的分离谱方法 无损检测,1995,17(5):211~214
    [56] 刘镇清,梁穗.自适应滤波器在粗品材料超声检测中的应用.信号处理,1997,13(3):286~289
    [57] 华志恒.基于信号处理碳纤维复合材料孔隙率无损检测方法研究[博士学位论文].杭 州:浙江大学,2005
    [58] 吕干霖,黎宗潼,蔡杰.超声检测缺陷模糊识别模型.无损检测,1996,18(5):121~124
    [59] 刘伟军,王小明,吴宏基等.基于神经网络的超声无损检测缺陷定征方法的研究.大连理上大学学报,1998,38(5):548~552
    [60] 张道富,周晓军,程耀东.基于隐马尔可夫模型的无损检测缺陷模式识别.模式识别与人工智能,2002,15(4):489~493
    [61] 张吉堂,朱博丽.粘结质量超声图像诊断中消除白点噪声研究.无损探伤,2002,5:40~42
    [62] Zong X L, Laine A F, Geiser E A. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing, [J]. IEEE Trans. Med. Imag. 1998, 17: 532~540.
    [63] Zong X L, Geiser E A, Laine A F, et al. Homomorphic wavelet shrinkage and feature emphasis for speckle reduction and enhancement of echocardiographic images[J]. SPIE, 1996, 2710: 658~667.
    [64] Xiang S H, Zhang Y T. Maximization of the signal-to-noise ratio for two dimensional medical ultrasound transducer sensitivity improvement by denoising wavelets[A], in Proc. Int. Conf. Biomedical Engineering[C] Hong Kong, 1996.
    [65] 孙俊喜,陈亚珠.一种具有边缘保持性质的超声图像小波域阈值去噪新方法.光学精密工程,2002,5(10):429~433
    [66] 陈怀东,曹宗杰,张柯柯,等.基于遗传算法的超声检测图像分割识别方法.西安交通大学学报,2003,1(37):22~25
    [67] 严加勇,庄天戈.基于边带限制的梯度矢量流主动轮廓线模型的超声图像分割.上海交通大学学报,2003,2(37):232~235
    [68] 刘继忠,朱根兴,周晓军,等.基于Haralick算法的超声图像边缘特征提取.无损检测,2005,5(27):228~230
    [69] 周晓军,徐志农,莫锦秋,等.超声C扫描图像的缺陷模式识别.模式识别与人工智能,1998,2(11):222~227
    [1] Bowman JJ, Senior TB. Electromagnetic and Acoustic Scattering by Simple Shapes [M]. Amserdam: North-Holland Publishing Company, 1969.
    [2] Stubbs David A, Zawads Larry P. Detection of porosity in glass ceremic matrix composites using ultrasonic multiple-gate C-scan technique. Materials Evaluation. 1996, 54(7): 827~831.
    [3] 王艳颖 吴瑞明 周晓军等.大型非对称复合材料构件超声C扫描技术研究.浙江大学学报(工学版),2004,38(9):1208~1211.
    [4] 《超声波探伤》编写组编著,超声波探伤,北京:水利电力出版社,1985.1.
    [5] 中国机械工程学会无损检测分会编,超声波检测(第二版),北京:机械工业出版社,2000.
    [6] 江键.航空构件一体化超声成像检测的若干关键技术研究:[博士学位论文].杭州:浙江大学,2005.
    [7] 杜兴吉. 面向超声检测的复杂曲面反求技术及路径规划研究[博士学位论文].杭州:浙江大学,2003.
    [8] 朱心雄等著.自由曲线曲面造型技术,北京:科学出版社,2000.
    [9] Farin G. Smooth Interpolation to Scatered Data. In Barnhill R E, Boehm W (eds), Surface in CAGD, North-Holland, Amsterdam, 1983: 43-63.
    [10] DeRose T D. Necessary and sufficient conditions for tangent plane continuity of Bezier Surface., CAGD, 1990(7): 165-179.
    [11] Liu D. GC continuity conditions between two adjacent rational Bezier patches, CAD, 1990, 17(3): 151-16.
    [12] 施法中.计算机辅助几何设计与非均匀有理B样条,北京:北京航空航天大学出版社,2001.
    [13] Dimas E, Briassoulis D, 3D geometric modeling based on NURBS: a review, Advances in Engineering Software, 1999, 30: 741-751.
    [14] Piegl L, Tiller W. Curve Interpolation with Arbitrary End Derivatives, Engineering with Computers, 2000, 16: 73-79.
    [15] V. Weiss, L. Andor, G. Renner, T. Varady. Advanced surface fitting techniques, Computer Aided Geometric Design, 2002, 19: 19-42.
    [16] Park H. An error-bounded approximate method for representing planar curves in B- splines, Computer Aided Geometric Design, 2004, 21: 479-497.
    [17] Ueng W D, Lai J Y, Doong J L, Sweep-surface reconstruction form three-dimensional measured data, Computer-Aided Design, 1998, 30 (10): 791-805.
    [18] Ma W, He P, B-spline surface local updating with unorganized points, Computer-Aided Design, 1998, 30 (11): 853-862.
    [19] Menq C, Chen F. L. Curve and surface approximation from CMM measurement data, Computers Industrial Engineering, 1996, 30 (2): 211-225.
    [20] Lin C. Y, Liou C. S and Lai J. Y. A surface-lofting approach for smooth-surface reconstruction from 3D measurement data, Computers in Industry, 1997, 34: 73-85.
    [21] Chivate P. N, Jabiokow A. G. Review of surface representations and fitting for reverse engineering, Computer Integrated Manufacturing System, 1995, 8: 193-204.
    [22] 周济,周艳红.数控加工技术,北京:国防工业出版社,2002.
    [23] 张伯鹏,张昆,徐家球.机器人工程基础.北京:机械工业出版社,1989.
    [24] 王艳颖,周晓军,等.自由曲面超声检测机器人运动学分析.机电工程,2001,18(5):71~74.
    [25] 蔡自兴.机器人学.北京:清华大学出版社,2000.
    [1] 陈东义,曹长修,彭伟.工程信号的小波时频分析方法.重庆大学学报(自科版),1999,22(5):27~31.
    [2] 卢超,邬冠华,吴伟等.小波变换在超声探伤仪检测回波处理中的应用.仪器仪表学报,2003,24(6):559~563.
    [3] 练秋生,卢辉斌,王成儒.基于小波分析的自适应数字水印算法.仪器仪表学报,2002,23(6):617~619.
    [4] S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans, 1989, PAMI-11(7): 674~693.
    [5] S. Mallat. Mlultifrequency channel decomposition of images and wavelet models. IEEE Trans, 1989, ASSP-37(12): 2091~2010.
    [6] L. Weiss. Wavelets and WideBand correlation processing. IEEE Signal Processing Magazine, 1994, 11(1): 13~31.
    [7] M. Benham. Restoration of signal channel images using a wavelet-based subband decomposition. IEEE Trans, 1994, IP-3(6): 821~833.
    [8] 刘贵喜,杨万海.基于小波分解的图像融合方法及性能评价.自动化学报,2002,28(6):927~934.
    [9] 任国全,韦有民,郑海起.基于小波分析的轴承故障诊断研究.河北省科学院学报,2002,19(2):112~116.
    [10] 甘传付,张尊泉.小波分析在微波探伤中的应用.无损检测,2000,22(5):209~211.
    [11] 毛建旭,王耀南方,孙炜.一种基于模糊小波基函数神经网络的图像分类器.仪器仪表学报,2003,24(2):114~118.
    [12] 荆双喜,铁古绪,张英琦.基于小波分析的机械故障诊断技术研究.煤炭学报,2000,25:143~146.
    [13] 秦树人,汤宝平,徐铭陶,等.工程信号小波分析仪系统的研究.中国机械工程,1999,10(4):443~445.
    [14] 薛家祥,贾林,李海宝.基于M带小波变换的焊接熔池图像边缘检测.中国机械工程,2004,15(13):1144~1146.
    [15] 李弼程,罗建书.小波分析机器应用.北京:电子工业出版社, 2003
    [16] 董晓马,张为公.小波分析技术在复合材料损伤检测中的应用.仪器仪表学报,2004,25(4):489~491.
    [17] Daubechies. Ten Lectures on Wavelets. Capital City Press, 1992.
    [18] Albert Boggess, Francis. Narcowich. A First Course in Wavelets with Fourier Analysis.北京:电子工业出版社,2002.
    [19] [18]冉启文,谭立英.小波分析与分数傅立叶变换及应用.北京:国防工业出版社,2002.
    [20] 高论,刘向阳,王昕,等.基于小波变换的AFM图像处理的研究.中国机械工程,2004,15(8):725~727.
    [21] 张涛,王成儒.基于小波变换的多尺度自配纹理分析.仪器仪表学报,2006,27(4):406~408.
    [22] 李建秋,欧阳明高.汽车发动机瞬时转速信号的小波分析.中国机械工程,1999,10(5):552~555.
    [23] 崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995.
    [24] 黄晶,阙佩文.小波分析在管道缺陷超声检测中的应用.传感技术学报,2003,3:263~265.
    [25] 王楠,杜劲松.小波消躁在振动信号处理中的应用.仪器仪表学报,2001,22(4):225~226.
    [26] 杨福生.小波变换的工程分析与应用.北京:科学出版社,2006.
    [27] 马维祯 殷瑞祥.子波分析与子波变换.广州:华南理工大学出版社,1996.
    [28] 飞思科技研发中心.小波分析理论与MATLAB 7实现.北京:电子工业出版社,2005.
    [29] 袁晓,虞厥邦.复解析小波变换与语音信号包络提取和分析.电子学报,1999,27(5):142~144.
    [30] 刘建国,李志舜.湖底回波的包络特征提取.计算机仿真,2005,22(10):151~154.
    [31] 张绪省,朱贻胜,成晓雄,等.信号包络提取方法—从希尔伯特变换到小波变换.电子科学会刊,1997,19(1):120~123.
    [32] 杨文献,姜节胜.基于复小波变换的超声信号分析技术研究.西北工业大学学报,2004,22(4):511~514.
    [1] 张广明,陈自强,王裕文,等.小波变换在超声成像检测中的应用.中国机械工程,2000,11 (3):325~327.
    [2] 杨风暴,王召巴.超声C扫描绝热层粘结图像分割识别[J].兵工学报,2001,22(1):99~101.
    [3] Subramanian, K. Rose, Joseph L. C-Scan Testing for Complex Parts. Advanced Material and Processes[J], 1987, 131(2): 40~43.
    [4] 程建政.超声检测图像分辨率的维纳滤波去卷积研究[J].无损检测,2004,26(5):221~224.
    [5] 杨风暴,韩焱.多探头超声C扫描包覆层粘结图像的融合处理[J].应用基础与工程科学学报,2001,9(2~3):283~286.
    [6] 刘德镇,魏星,周艳华.焊接缺陷的超声C扫描成像.焊接学报,1999,20(2):77~83.
    [7] 林时钱,周晓军,莫锦秋.超声C扫描图像处理和仿真研究.无损检测,1997,19(11):301~303.
    [8] 朱良峰,曹宗杰,吴勇,等.用径向基函数网络复原超声C扫描图像.仪器仪表学报,2005,26(8):673~675.
    [9] 王浩全,曾光宇.玻璃纤维复合材料超卢C扫描检测研究.兵工学报,2005,26(4):570~572
    [10] 吴瑞明,周晓军,王邦凯.复合材料超声C扫描多传感器信息融合技术.传感技术学报,2005,18(3):561~564.
    [11] 曹宗杰,潘希德,薛锦,等.基于数学形态学的超声C扫描图像校正方法.仪器仪表学报,2005,26(8):681~683.
    [12] 曹宗杰,潘希德,薛锦,等.提高超声C扫描图像分辨率的插值方法研究.西安交通大学学报,2005,39(9):921~924.
    [13] 刘继忠,朱根兴,周晓军,等.基于Hamlick算法的超声图像边缘特征提取[J].无损检测,2005,27(5):228~230.
    [14] 曹宗杰,陈怀东,薛锦,等.一种基于超声C扫描成像原理的图像边缘检测方法[J].中国机械工程,2005,16(5):392~395.
    [15] 何军,陈刚.超声图像的表面轮廓提取及三维图像重建过程的探讨[J].兰州理工大学学报,2004,30(4):53~56.
    [16] 廖朵朵,张华军.OpenGL三维图形程序设计[M].北京:星球地图出版社,2004.
    [17] 费广正,乔林.VC++高级编程技术(OpenGL篇)[M].北京:中国铁道出版社,2000.
    [18] 王兰美,赵继成,秦华东.OpenGL及其在VC++开发环境下的编程实现.山东理工大学学报(自然科学版),2006,20(4):36~38.
    [19] 贾志刚.精通OpenGL[M].北京:电子工业出版社,1998.
    [20] 杨淑莹.图像模式识别—VC~(++)技术实现[M].北京:清华大学出版社,北京交通大学出版社,2005.
    [21] Rafael C Gonzalez,Richard E Woods 著,阮秋琦,阮宇智,等译.数字图像处理[M].北京:电子工业出版社,2005.
    [22] 徐建华.图像处理与分析[M].北京:科学出版社,1992.
    [23] 周晓军,徐志农,莫锦秋.超声波C扫描图像的缺陷模式识别[J].模式识别与人工智能,1998,11(2):222~227.
    [1] 《超声波探伤》编写组,超声波探伤.北京:水利电力出版社,1985.
    [2] 周晓军 游红武 程耀东,含孔隙碳纤维复合材料的超声衰减模型,复合材料学报,1997,14 (3):99~106.
    [3] 周晓军 莫锦秋 游红武,碳纤维复合材料分布孔隙率的超声衰减检测方法,复合材料学报,1997,14 (3):107~114.
    [4] 张双寅 郊维平 蔡良武译,复合材料导论,北京:中国建筑工业出版社,1989.
    [5] 魏月贞 主编,复合材料,北京:机械工业出版社,1987.
    [6] D J Hagemaier, R H Fassbender. Nondestructive testing of advanced composites. Material Evaluation , 1979, June: 43~49.
    [7] B R Jones, D E Stone. Towards an ultrasonic attenuation technique to measure void content in carbon-fiber composites. Non-Destructive Testing, 1976, April: 71~79.
    [8] D. E. W. Stone, B. Clarke. Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Non-destructive testing, 1975, June: 137-145.
    [9] 刘少峰,韦克平.USB软件系统的开发[J].计算机应用研究,2002,(3):102~104.
    [10] 萧世文.USB2.0硬件设计.北京:清华大学出版社,2002.
    [11] Jan Axeison.USB大全[M].北京:中国电力出版社,2001.
    [12] 王洪,顾本斗.USB设备的开发[J].计算机工程与设计,2002,23(3):61~63.
    [13] Solomon D A, Russinovich M E. Inside microsoft windows 2000[M]. New York: Microsoft Press, 2001.
    [14] 陈升来,郭立红,谭振江,等.Win2000下USB数据采集系统驱动程序开发[J].吉林大学学报(信息科学版),2003,21(2):183~187.
    [15] 佘金燕,李楚元,李森生.Windows 2000/98下USB驱动程序开发[J].计算机科学与工程,2003,25(5):86~89.
    [16] 郎宝华,郭俊杰.Windows 2000环境下测控系统的WDM设备驱动程序开发及应用[J].现代电子技术,2003(2):4~6.
    [17] 赵志诚,帖栩,杜栓义.基于Windows WDM的USB设备驱动开发[J].无线电通信技术,2003,29(6):18~19.
    [18] 姜江,柳泉,罗跃华.基于Win2000的WDM设备驱动程序开发[J].应用科技,2002,29(7):45~47.
    [19] Chris Cant著;孙义等译.Windows WDM设备驱动程序开发指南.北京:机械工业出版社,2000.
    [1] 胡凤根,张可汇.CMM定量过程管理KPA实践分析中的软件过程的定量控制.中山大学学报,2003,42 (2):120~123
    [2] 傅锚生.CMM对软件工程中的过程管理和改进作用研究.测控技术,2005,24(1):1~4
    [3] 张凯.CMM技术及发展.重庆工商大学学报,2003,20 (2):90~93
    [4] 熊策,陈志刚.CMM在中国软件企业中的应用研究.计算机工程与应用,2003,21:107~109
    [5] 朱旭东.软件过程与CMM.安徽大学学报,2003,27 (2):28~30
    [6] 康宁.实现基于CMM软件过程改进的研究.东北电力学院学报,2004,24(8):91~94
    [7] 何新贵,王伟,王方德,等.软件能力成熟度模型.北京:清华大学出版社,2000.11
    [8] 杨一平.现代软件工程技术与CMM的融合.北京:人民邮电出版社,2002.11
    [9] 徐小平.CMM中的需求管理.计算机工程与设计,2004,25 (6):965~967
    [10] 单银根,王安,黎连业.软件能力成熟度(CMM)模型与软件开发技术.北京:北京航空航天大学出版社,2003.5
    [11] 杨一平.软件能力成熟度模型CMM方法及其应用.北京:人民邮电出版社,2001.4
    [12] 马闰娟,梁成才.CMM二级KPA软件质量保证的一个实施方案.计算机工程,2003,29 (2):112~114
    [13] 王勇,张发勇,周顺平.CMM质量保证的理论与实践.计算机工程与实践,2005,26 (4):990~992
    [14] Evelyn Stiller,Cathie Leblanc著,贲可荣,张秀山等译.基于项目的软件工程——面向对象研究方法.北京:机械工业出版社,2002.7
    [15] B·Bruegge,A·H·Dutoit著,吴丹,唐忆,申震杰译.面向对象的软件工程——构建复杂且多变的系统.北京:清华大学出版社,2002.10
    [16] 陈涵生,徐智晨,沈怡.面向对象技术开发及应用.上海科技文献出版社,1995-3
    [17] Cameron Hughes,Tracey Hughes著,周良忠译.C++面向对象多线程编程,北京:人民邮电出版社,2003.4
    [18] 侯俊杰.深入浅出MFC.武汉:华中科技大学出版署,2001.1
    [19] David J. Kruglinski, Scot Wingo, George Shepherd著,希望图书创作室译.VisualC++6.0技术内幕.北京:北京希望电子出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700