用户名: 密码: 验证码:
电磁带隙结构的小型化设计及其在微带天线中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电磁带隙(Electromagnetic Band Gap, EBG)结构作为一种新兴的人工材料,引起人们极大的研究兴趣。由于其本身具有禁带特性和同相反射的优越性能,应用于微带天线领域,可以有效地改善天线的辐射方向图,提高增益,减小旁瓣和后瓣等,极大地改善了天线的性能,满足了现代无线通信技术对高性能天线的要求,从而使得它在微波通信领域的应用日益广泛。
     本文从构造新颖的小型化、紧凑型EBG结构和改善微带天线性能的实际应用出发,首先,归纳了EBG结构分类及分析方法;详细阐述了高阻抗表面EBG结构基本理论,包括LC等效媒质模型、EBG结构特性研究和抑制表面波的禁带特性,并简要介绍了EBG结构的实际测量方法。
     其次,深入研究了EBG结构小型化的实现方法,包括增加等效电容方法和增大等效电感方法。本文主要采用第二种方法实现EBG结构的小型化,在常规EBG金属贴片中引入平面螺旋电感,从而减小了EBG结构单元尺寸,并借助电磁仿真软件Ansoft HFSS,对Spiral-like EBG结构的电磁特性进行研究。并且采用加载平面螺旋电感理论,提出了一种新颖的小型化RSR EBG结构,并对该结构模型进行实际加工,实验结果和仿真结果吻合良好,验证了EBG结构具有小型化和良好的宽带特性。在此基础上,详细分析了EBG结构参数尺寸变化对其禁带特性的影响。
     最后,本文研究了小型化EBG结构在微带贴片天线的应用,主要是利用了EBG结构的禁带特性,通过抑制天线表面波,从而减小后瓣,降低阵元互耦,提高端口隔离度,改善了天线的性能。具体工作如下:(1)将RSR EBG结构作为分形贴片天线接地板使用,代替常规金属接地板,降低后瓣,提高辐射效率;(2)将RSR EBG结构加载到单层二元分形天线阵之间减小阵元间的互耦,在此基础上,增加辐射贴片周围的EBG单元数量加以改进,阵元之间的互耦降低的更加明显;(3)将Spiral-like EBG结构加载到宽带二元天线阵阵元中间,在整个宽频范围内,有效降低了阵元之间的互耦;(4)将Spiral-like EBG结构加载到二元双极化天线阵阵元中间,降低了阵元之间的同极化端口和交叉极化端口互耦,并降低后瓣;并且通过实际加工测试了EBG十二元双极化天线阵列,实验结果表明,EBG结构有效降低了同极化端口互耦,减小了后瓣,提高了增益,使之更加适于实际工程的应用。
Recently, the electromagnetic band Gap (EBG) structure, as one of the novel artificial materials, has been significant interested in researching. It presents some unique characteristics, such as forbidden band gap, in-phase reflection, etc. EBG structure can be used in antennas design to improve their characteristics, such as improving the radiation patterns, enhancing the gain, and reducing the sidelobe and backlobe levels, etc. So the EBG structure satisfied the modern wireless communication technology requesting the high performance antenna,and is applied widely in the microwave communication.
     With the requirement of the practical applications, the research works presented in this paper focuses on miniaturized compact EBG structures and improving the performances of the microstrip patch antennas. Firstly, several types and analyzing method of EBG structure are summarized. This paper expatiates on the basic theory of HIS EBG structure, including the LC equivalent circuit model, the study on the properties of the EBG structure and the surface wave suppressed. In addition, a number of measurement methods are introduced briefly in the paper.
     Secondly, the design methods of miniaturized EBG structure are discussed in details here, which contain the methods of increasing the equivalent capacitance and increasing the equivalent inductance. In this paper, the second method is adopted to introduce double reverse split rings (RSR) into the square patch to increase additional inductance, reducing the EBG cell size. The band-gap of the Spiral-like EBG structure is simulated and researched by Ansoft HFSS 11. Based on the theory of the loaded planar spiral inductance, a novel RSR (Reverse Split Rings) EBG structure is designed, for the small design of the EBG structure. The measured results show good agreements with the simulated results which show that the size of EBG cell is reduced, and the band-gap achieves bandwidth. It is also analyzing the effect of changing several parameters of the RSR EBG structure in details.
     In the end, the applications of miniaturized EBG structure on microstrip patch antennas are studied, which is mainly used to suppress the surface wave, in order to improve the antenna performances. The work is mainly focused on:
     (1) A fractal microstrip antenna is implemented using the EBG structure as a ground plane, and the measured results show that the reduction in the surface wave level is remarkable. Resulting in the backward radiation of the antenna suppressed. (2) The EBG structure is integrated between two fractal microstrip antennas to reduce the mutual coupling. Furthermore, more EBG cells are added around the patches, the mutual coupling is reduced more effectively. (3) The EBG structure is integrated between two broadband microstrip patch antennas to reduce the mutual coupling in the whole broadband frequency ranges. (4) The spiral-like EBG structures are placed into the middle of the dual-polarized antenna array, the simulated results show that the mutual coupling of the same polarization ports and cross-polarization ports are reduced in the whole working frequency ranges, and the backward radiation is also reduced. On this method, the dual-polarized antenna array having 12 units is fabricated and measured. Compared with the conventional antenna arrays, the experimental results demonstrate that the mutual coupling of the same polarization ports and cross-polarization ports are reduced and the backward radiation is decreased, and the gain is increased, making it more suitable for practical engineering applications.
引文
[1] E.Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J]. Phys.Rev.Lett.,, 1987, 58(20): 2059-62.
    [2] S.John. Strong Localization of Photons in Certain Disorded Dielectric Superlattices[J]. Phys.Rev.Lett.,, 1987, 58(23): 2486-89.
    [3] Y.Qian, V. R., and T.Itoh. Broad-Band Power Amplifer Using Dielectric Photonic Bandgap Structure,[J]. IEEE Microw.And Guided Wave Letters, 1998, 8(1): 13-14.
    [4] O.Painter, e. a. Two-Dimension Photonic Bandgap Defect Mode Laser[J]. Science, 1999, 284(5421): 1819-21.
    [5] R.F.Cregan, e. a. Single-Mode Photonic Band Gap Guidance of Light in Air[J]. Science, 1999, 285(5433): 1537-39.
    [6] J.D.Joannopuulos, S. G. J. a. Photonic Crystals:The Road from Theory to Practice[J]. Norwell:Kluwer Academic Publishers, 2002.
    [7]付云起,袁乃昌,温熙森.微波光子晶体天线技术[J].国防工业出版社, 2006.
    [8] T.H.Liu,W.X.Zhang. Compound Technique for Broadening the Bandwidth of Microstrip Patch a Entna[J]. APMC proceeding, 1997: 241-44.
    [9] A.K.Shackerfold,K.F.Lee,K.M.Luk. Design of Small Size Wide-Bandwidth Microstrip Patch Antennas[J]. IEEE Ant. & Prop. Mag., Feb.2003, 45: 78-82.
    [10] D.Pozar. A Microstrip Antenna Aperture-Coupled to a Microstrip Line[J]. Electronics Letters, May 1985, 21: 49-50.
    [11]钟顺时.微带天线理论与应用[J].西安电子科技大学出版社, 1991: 1-10.
    [12]顾莹莹.高阻抗表面EBG结构天线应用的研究.东南大学, 2006.
    [13] Kumar, R.,Deshmukh, V. A. On the Design of Compact Broadband Gap-Coupled Microstrip Patch Antenna with Pbg[C]. Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, 2005, 2: 4 pp.
    [14] Sun, S.,Zhu, L. Electromagnetic Bandgap Enhancement Using the High-Impedance Property of Offset Finite-Ground Microstrip Line[J]. Microwave and Optical Technology Letters, 2005, 47(6): 543-46.
    [15]闫敦豹,付云起,张国华,高强,袁乃昌. EBG结构在微带天线阵中的应用[J].微波学报, April 2005, 21.
    [16] Radisic, V., Qian, Y., Coccioli, R.,etal. Novel 2-D Photonic Bandgap Structure for Microstrip Lines[J]. Microwave and Guided Wave Letters, IEEE, 1998, 8(2): 69-71.
    [17] J.D.Joannopuulos, S. G. J. a. Photonic Crystals:The Road from Theory to Practice[J]. Norwell:Kluwer Academic Publishers, 2002.
    [18] Sievenpiper, D. High-Impedance Electromagnetic Surfaces[J]. Ph.D. dissertation, Department of Electrical Engineering, University of California at Los Angeles, CA, 1999.
    [19] Coccioli, R., Fei-Ran, Y., Kuang-Ping, M.,etal. Aperture-Coupled Patch Antenna on Uc-Pbg Substrate[J]. Microwave Theory and Techniques, IEEE Transactions on, 1999, 47(11): 2123-30.
    [20] Yuan, Y.,Xin, W.,Zhenghe, F. A Novel Dual-Band Compact Electromagnetic Bandgap (EBG) Structure and Its Application in Multi-Antennas[C]. Antennas and Propagation Society International Symposium 2006, IEEE, 2006: 1943-46.
    [21] L. Liang, C. H. L., L. Chen, and X. Chen. A Novel Broadband Ebg Using Cascaded Mushroom-Like Struacture[J]. Microwave and Optical Technology Letters, August 2008, 50(8): 2167-70.
    [22] Sorolla, R. G. P. D. a. M. Enhanced Patch Antena Performance by Suppressing Surafce Waves Using Photonic-Bandgap Substares[J]. IEEE Trans.[J].Microwave Theory and Techniques, 1999: 2131-38.
    [23] Poh Sok Hui; Alphones, A. Microstrip Patch Antenna with Annular Ring EBG[J]. Microwave Conference, 2000 Asia-Pacific,, 2000: 1347 -51.
    [24] Sanyi, Z.,Weber, R. J.,Jiming, S. A New Approach to Design a Low Profile Dipole Antenna Backed by a Mushroom-Like Electromagnetic Bandgap (EBG) Surface[C]. Antennas and Propagation Society International Symposium, 2007 IEEE, 2007: 4060-63.
    [25] Fan, Y.,Rahmat-Samii, Y. Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications[J]. Antennas and Propagation, IEEE Transactions on, 2003, 51(10): 2691-703.
    [26] Yasushi Horri, M. T. Harmonic Control by Photonic Bandgap on Microstripp Atcha Ntenna[J]. IEEE Microwave and Guided Wave Leters, 1999, 9(1): 13-15.
    [27] Yasushi Horri, M. T. Suppression of the Harmonic Radiation from the PBG Microstrip Patch Antenna[J]. Microwave conference, Asia pacific, 1999, 3724-27.
    [28] Dan, Q., Shafai, L. The Performance of Microstrip Patch Antennas over High Impedance Ebg Substrates within and Outside Its Bandgap[C]. Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2005. MAPE 2005. IEEE International Symposium on, 2005, 1: 423-26
    [29] Inoue, K., Higaki, M., Sekine, S.,etal. Wideband Characteristic of Dipole Antenna on Mushroom-Like Ebg Substrate with Narrow Gap[C]. Antenna Technology: Small Antennas and Novel Metamaterials, 2008. iWAT 2008. International Workshop on, 2008: 314-17.
    [30] Yunqi, F.,Naichang, Y. Surface-Wave Bandgap of Polarization Dependent Electromagnetic Bandgap Structures[J]. Microwave and Optical Technology Letters, 2007, 49(4): 946-49.
    [31] Yongxi, Q. Microwave Journel[J]. A Microstrip Patch Antenna Using Novel Photonic Band-gap Structure1999, 221~224.
    [32] Waterhouse, D. P. a. R. B. Shorted Microstrip Antenna on a Photonic Bandgap Substrate[J]. IEEE Transactions on antennas and propagation, septermber 2003, 51(9): 2472-75.
    [33] Gu, Y. Y., W. X. Zhang, and Z. C. Ge. Two Improved Fabry-Perot Resonator Printed Antennas Using Ebg Superstrate and Amc Substrate[J]. Journal of Electromagnetic Waves and Applications, 2007, Vol. 21(No. 6): 719-28.
    [34] Min Qiu, S. H. High-Directivity Patch Antenna with Both Photonic Bandgap Substrate and Photonic Bandgap Cover[J]. Microwave and Optical Technology Letters, July 2001, 30(1): 41-44.
    [35] M. Thèvenot, M. S. D., A. Reineix, B. Jecko. Design of a New Photonic Cover to Increase Antenna Directivity[J]. Microwave and Optical Technology Letters, July 1999, 22(2): 136-39.
    [36] C. Serier, C. C., R. Chantalat, M. Thèvenot, T. Monédière, A. Reineix, B. Jecko. 1-D Photonic Bandgap Resonator Antenna[J]. Microwave and Optical Technology Letters, June 2001, 29(5): 312-15
    [37] Young Ju Lee, etal. Design of a Novel Microstrip Electromagnetic Bandgap (EBG) Structure[J]. Microwave and Optical Technology Letters, 2005, 46(4): 399-401.
    [38] M. Thevenot, etal. Design of a New Photonic Cover to Increase Antenna Directivity[J]. Microwave and Optical Technology Letters, 1999, 22(2): 136-39.
    [39] Liujun, Z. Numerical Characterization of Electromagnetic Band-Gap Materials and Applications in Printed Antennas and Arrays[J]. Ph.D. Dissertation,University of California at Los Angles, 2000.
    [40] Li, Y.,Mingyan, F.,Zhenghe, F. A Spiral Electromagnetic Bandgap (EBG) Structure and Its Application in Microstrip Antenna Arrays[C]. Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, 2005, 3: 4 pp.
    [41] Li Yang, Z. F., Fanglu Chen, and Mingyan Fan. A Novel Compact Electromagnetic Band-Gap (EBG) Structure and Its Application in Microstrip Antenna Arrays[J]. 2004 IEEE MTT-S Digest, 2004: 1635-38.
    [42] Li, L., Dang, X.-J., Li, B.,etal. Analysis and Design of Waveguide Slot Antenna Array Integrated with Electromagnetic Band-Gap Structures[J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5(4): 111-15.
    [43]张玉发,吕跃广,孙晓泉,etal.一种基于叉型电磁带隙结构微带天线设计[J].安徽大学学报(自然科学版), 2009(02).
    [44] Chappell, W. J.,Gong, X. Wide Bandgap Composite Ebg Substrates[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10 I): 2744-50.
    [45] K.M.Leung, L. Y. F. Full Vector Wave Calculation of Photonic Band Structures in Fface-Centered-Cubic Dielectric Media[J]. Physical Review Letters, 1990, 65(21): 2646~49.
    [46] S.Fan, P. R. V., J.D.Joasrmopoulos. Large Omnidirectional Band Gaps in Metallodielectric Photonic Crystals[J]. Physical Review B., 1996, 54(16): 11245-51.
    [47] M.Thevenot, A. R., B.Jecko. A New FDTD Surface Impedance Formulism to Study PBG Structures[J]. Microwave and Optical Technology Letters, 1998, 18(3): 203-06.
    [48] J.A.Roden, S. D. G., M.P.Kesler. Time-Domain Analysis of Periodic Structures at Oblique Incidence:Orthogonal and Nonorthogonal Fdtd Implementations[J]. IEEE Trans.on Microwave Theory and Techniques, 1998: 420-26.
    [49] Electromagnetics, T. A. A. i. The Finite Different Time-Domain Method.Artech Horse[J]. Boston London, 1998: 396.
    [50] P.H.Harms, R. M., W.Ko. Implementatino of the Periodic Boundary Condition in the Finite-Difference Time-Domain Algorithm for Fss Structures[J]. IEEE Trans.on Antenna and Propagation, 1994, 42: 1317-24.
    [51] D. Sievenpiper, L. Z. R. F. J. B., N.G. AlexoPolus, and E.、Yablonovitch. High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band[J]. Microwave Theory and Techniques, IEEE Transactions on, Nov. 1999, 47(11): 2059-74.
    [52] C. H. Liang, L. L. a. J. Y. An Improved Quasi-Static Effective Medium Model of Photonic Band Gap High-Impedance Surface[J]. Submitted to IEEE Trans.Microwave Theory Techniques
    [53] E.Yablonovitch, T. J. G., and K.M.Leung. Photonic Band Structure:The Face-Centered-Cubic Case Employing Nonspherical Atoms[J]. Physical Review Letters, 1991, 67(17): 2265.
    [54] Li, Y., Mingyan, F., Fanglu, C.,etal. A Novel Compact Electromagnetic-Bandgap (EBG) Structure and Its Applications for Microwave Circuits[J]. Microwave Theory and Techniques, IEEE Transactions on, 2005, 53(1): 183-90.
    [55]郑秋容,袁乃昌,付云起.紧凑型电磁带隙结构在短路微带天线中的应用[J].电子与信息学报, 2007(06).
    [56]杨立,冯正和.电磁带隙结构(EBG)小型化设计研究[J]. 2005年海峡两岸三地无线科技学术会, 2005.
    [57] John McVay, N. E., Ahmad Hoorfar. High-Impedance Metamaterial Surface Using Hilbert-Curve Inclusions[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(3): 130-33.
    [58] Pynttari, V., Makinen, R., Heikkinen, J.,etal. Microstrip Antenna Arrays on Thin Substrates with Electromagnetic Band-Gap Structures[C]. Antennas and Propagation, 2006. EuCAP 2006. First European Conference on, 2006: 1-5.
    [59]张钧,刘克诚等.微带天线理论与工程.国防工业出版社, 1988.
    [60] A.Yariv, e. a. Coupled-Resonator Optical Waveguide:A Proposal and Analysis[J]. Optics Letter, 1999, 24(11): 711-13.
    [61]柴雯雯,张晓娟.共面馈电凹口矩形贴片天线间的互耦[J].微计算机信息, 2008, 18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700