用户名: 密码: 验证码:
工艺波动对纳米尺度MOS集成电路性能影响模型与相关方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体工艺的特征尺寸进入纳米数量级,日趋复杂的硅基MOS集成电路(Integrated Circuit IC)制造流程使得精确的工艺控制变得越来越困难,而芯片实际几何图形和纵向结构的不确定性导致器件的工作状态及其特性参数与设计目标产生显著偏离,产生工艺参数变化或工艺波动(Process Variation PV)现象。而且这一现象随着持续缩小的特征尺寸愈趋严重,使电路的性能和成品率受到极大影响。因此,工艺波动引起的可制造性(Design for manufacturability DFM)问题已成为纳米尺度IC设计和制造中亟待解决的技术瓶颈和重要挑战。
     本文先探讨了IC制造中的内在波动源——随机掺杂波动(Random dopant Fluctuation RDF)及其概率密度分布,并用统计分析方法推导了RDF引起的阈值电压偏离标准差的简洁表达式,得到芯片上阈值电压的概率密度分布函数,该方法和得到的模型具有简洁和精确较高的特点。接着研究了RDF影响沟道载流子有效迁移率μeff以及电流增益因子β等参数的改变及其引起的电流失配,在详细研究失配模型的数学理论基础和已有模型特点基础上寻找并应用一个简单又有较高精度的改进ALPHA律平均漏电流模型,进而实现了65nm工艺的MOS电流失配解析模型。同时利用该模型,推导了既简单、有效又能保证精度的RDF引起的电流失配模型。
     MOS电流的变化将影响模拟电路精度、功耗和带宽等各种性能和数字电路时序的偏差。因此本文实现了工艺波动RDF引起的用于模拟集成电路仿真分析的电路模型,并以基本电流镜为测试电路仿真验证,计算并得出电路在不同面积和偏置等设计条件下的性能参数关系表达式,并用于显示特定工艺波动下IC设计者选择器件面积和偏置条件对电路性能影响差异。再利用平均电流模型以CMOS反相器为测试电路,推导了数字电路时延及其变化标准差的解析模型,并用HSPICE的蒙特-卡罗仿真验证其精度和可靠性。
     论文最后介绍了分析、设计、优化和控制IC工艺波动的相关数学和统计方法,主要包括σ空间分析法、主成分分析法和响应曲面法。并将统计实验设计(DOE)中的稳健设计方法与人工智能中的神经网络方法相结合,提出了数字逻辑函数的神经网络稳健设计方法,只要适当地扩展因子变量水平和取值,即有望用于1C工艺波动的优化设计中。
As feature size of semiconductor process is scaled to nano regime, silicon-based MOS integrated circuit (IC) manufacturing has become increasingly complex. This will make precise process control become increasingly difficult and result in the actual chip geometry, internal structure, working mechanism and characteristics parameters with a significant deviations from their design goals, which is called process parameters variation (PV) or process fluctuations. Furthermore, shrinking feature sizes with growing process variation makes the circuit performance degeneration and yield loss. So design for manufacturing (DFM) due to process variations has become a technical bottleneck and key challenge for today's nano-scale IC design and manufacturing.
     Firstly, an internal source of variation called random dopant fluctuations (RDF) in IC manufacturing with its probability density function is discussed in this article. Then a statistical model of simple expression of threshold voltage standard deviation induced by RDF and its probability density distribution function of the chip is presented. This method and obtained model are both simple and accurate. After that, changes of effective channel carrier mobilityμeff and parameters such as current gain factor p and the standard deviation of current mismatch are studied cause by RDF. After study on the theoretical basis of mathematical models and characteristics of existing models in detail, a simple, high accuracy and improved average drain current model called ALPHA law is found and applied in the article, thus a MOS current mismatch analytical model is achieved for a 65 nm process. At the same time, a simple, effective and accurate current mismatch model induced by RDF is derived based on this model.
     Variation of MOS current affects the accuracy, power, bandwidth and other performance of analog ICs and timing variability of digital ICs. A circuit simulation model for analog integrated circuits is presented considering PV due to RDF and an expression of different area and bias conditions of the circuit with a basic current mirror as a benchmark. The results show the impact on circuit performance for IC designers selecting different size and biasing condition in a specific process fluctuation. Average current model is reused to calculate standard deviation of an analytical model for digital circuit delay variability with a CMOS inverter as a benchmark, whose accuracy and reliability is verified by HSPICE Monte-Carlo simulations.
     Finally mathematical and statistical methods in analysis, design, optimization and control of IC process fluctuations includingσspace analysis, principal component analysis and response surface methodology is introduced. Then a robust design method for digital logical function base on neural network is proposed after combination of robust design methods in statistical design of experimental (DOE) and artificial neural networks. As long as appropriate expansion levels and values of the variables of factors, it is expected to application to optimization for IC design in process variation.
引文
[1]王阳元,王永文.我国集成电路产业发展之路—从消费大国走向产业强国.北京:科学出版社,2008.
    [2]Lanny L. Lewyn, Trond Ytterdal, Carsten Wulff et al. Analog Circuit Design in Nanoscale CMOS Technologies. Proceedings of the IEEE,2009,97(10):1687-1714.
    [3]张瑛.VLSI中互连线工艺变化的若干问题研究.南京,南京理工大学,2007:1-2.
    [4]陶俊.纳米尺度集成电路建模与分析方法研究.上海,复旦大学,2007:7-8.
    [5]蒋建飞.纳电子学导论.北京:科学出版社,2006:1-3.
    [6]CaoY, Clark L T.. Mapping Statistical Process Variations Toward Circuit Performance Variability:An Analytical Modeling Approach. IEEE Trans on Computer-Aided Design of Integrated Circuits and Systems,2007,26(10):1866-1873.
    [7]Hans Tuinhout, Nicole Wils, Pietro Andricciola. Parametric Mismatch Characterization for Mixed-Signal Technologies, IEEE Journal of solid-state circuits, 2010,45(9):1687-1696.
    [8]Saxena S, Hess C, Karbasi H et al. Variation in Transistor Performance and Leakage in Nanometer-Scale Technologies. IEEE Transaction on Electron Device, 2008,55(1):134-144.
    [9]史峥.亚波长光刻条件下集成电路可制作性设计与验证技术研究.杭州,浙江大学,2005:3-5.
    [10]骆祖莹.芯片功耗与工艺参数变化:下一代集成电路设计的两大挑战.半导体学报,2007,30(7):1054-1063.
    [11]郝跃,刘红侠.微纳米MOS器件可靠性与失效机理.北京,科学出版社,2008:3-4.
    [12]Ashish S, Dennis S, David B. Statistical Analysis and Optimization for VLSI: Timing and Power.北京:科学出版社,2007.
    [13]Abu-Rahma M H. Design of Variation-Tolerant Circuits for Nanometer CMOS Technology:Circuits and Architecture Co-Design. Ontario, Canada: University of Waterloo,2008:9
    [14]Tschanz J, Bowman K, De V. Variation-Tolerant Circuits:Circuit Solutions and Techniques, Proceedings of the 42nd annual conference on Design automation, 2005:762-763.
    [15].Mikolajick T, Haublein V, Ryssel H. The Effect of Random Dopant Fluctuations on The Minimum Channel Length of Short-Channel MOS Transistors. Applied physics A Material Science and Processing,1997,64:555-560.
    [16]Tomohisa Mizuno, Jun-ichi Okamura, Akira Toriumi. Experiment Study of Threshold Voltage Fluctuation Due To Statistical Variation of Channel Dopant Number in MOSFET's, IEEE transaction on electron devices,1994,41(11): 2216-2221.
    [17]Asen Asenov, Gabriela Slavcheva, Andrew R. Brown et al. Increase in The Random Dopant Induced Threshold Fluctuations and Lowering in Sub-100nm MOSFETs Due To Quantum Effects:A 3-D Density-Gradient Simulation Study, IEEE transaction on electron devices,2001,48(4):722-729.
    [18]Asen Asenov, Subhash Saini. Polysilicon Gate Enhancement of The Random Dopant Induced Threshold Voltage Fluctuations in Sub-100 nm MOSFET' s with Ultrathin Gate Oxide, IEEE transaction on electron devices,2000,47(4):805-812.
    [19]Gareth Roy, Andrew R.Brown, Fikru Adamu-Lema, et al. Simulation Study of Individual and Combined Sources of Intrinsic Parameter Fluctuations in Conventional Nano-MOSFETs. IEEE transaction electron devices,2006,53(12):3063-3070.
    [20]Hans P. Tuinhout, Impact of Parametric mismatch and fluctuation on Performance and Yield of Deep-Submicron CMOS Technologies, Proc.ESSDERC. 2002:95-101.
    [21]Mayergoyz I.D., Andrei P. Statistical Analysis of Semiconductor Devices. Journal of Applied Physics,2001,90(6):3019-3029.
    [22]Victoria Wang, Kanak Agarwal, Kevin J. Nowka, Dejan Markovic. A Simplified Design Model for Random Process Variability, IEEE Transaction on semiconductor manufacturing,2009,22(1):12-21.
    [23]Kanak Agarwal. Sani Nassif. Frank Liu, et al. Rapid Characterization of Threshold Voltage Fluctuation in MOS Devices. IEEE International Conference on Microelectronic Test Structures,2007:74-77.
    [24]Kong J T. CAD for Nanometer Silicon Design Challenges and Success, IEEE Transaction on Very Large Scale Integrated Circuits,2004,12(11):1132-1147.
    [25]程玉华.纳米CMOS工艺下集成电路可制造性设计技术.中国科学,2008,38(6):968-978.
    [26]Ming-Hung Han, Yiming Li, Chih-Hong Hwang. The Impact of High-Frequency Characteristics Induced by Intrinsic Parameter Fluctuations in Nano-MOSFET Device and Circuit, Microelectronics Reliability,2010,50:657-661.
    [27]Yiming Li, Chih-Hong Hwang, Tien-Yeh Li. Random-Dopant-Induced Variability in Nano-CMOS Devices and Digital Circuits, IEEE Transactions on electron device,2009,56(8):1588-1697.
    [28]S Borkar. Designing Reliable Systems from Unrealiable Components:The Challenges of Transistor Variability and Degradation, IEEE Micro,2005, 25(6):10-16.
    [29]Hamid Mahmoodi, Saibal Mukhopadhyay, Kaushik Roy. Estimation of Delay Variations due to Random-Dopant Fluctuations in Nanoscale CMOS Circuits, IEEE Journal of solid-state circuits,2005,40(9):1787-1796.
    [30]Hansch W, Anil K, Bieringer P et al. Channel Engineering for The Reduction of Random-Dopant-Placement-Induced Threshold Voltage Fluctuation, IEEE international Electron Devices Meeting,1997:408-411.
    [31]Sano N, Tomizawa M.Random Dopant Model for Three Dimensional Drift-Diffusion Simulations in Metal-Oxide-Semiconductor Field-Effect-Transistors, Applied Physics Letter,2001,79(14):2267-2269.
    [32]Li Y. Yu S M, Hwang J R, et al. Discrete Dopant Fluctuated 20 nm/15 nm-Gate Planar CMOS. IEEE Transaction on Electron Devices,2008,55 (6):1449-1455.
    [33]Li Y, Hwang C H, Huang H.-M. Large-Scale Atomistic Approach to Discrete-Dopant-Induced Characteristic Fluctuations in Silicon Nanowire transistors, Physica. Status Solidi (A),2008,205(6):1505-1510.
    [34]Hongning Yang, Veronique Macary, John L. Huber et al. Current Mismatch Due to Local Dopant Fluctuations in MOSFET Channel, IEEE Transactions on electron device,2003,50(11):2248-2254.
    [35]Springe r S K, Lee S, Lu N, et al. Modeling of Variation in Submicrometer CMOS ULSI Technologies, IEEE Transaction on Electron Devices,2006,53(9): 2168-2178.
    [36]Van der Lann H, Carpaij R, Krist J, O. et al, Etch, reticle, and track CD fingerprint corrections with local dose compensation, Proc. SPIE,2005,5755:107-118.
    [37]Drennan P G, McAndrew C C. Understanding MOSFET Mismatch for Analog Design, IEEE Journal of Solid-State Circuits,2003,38(3):450-456.
    [38]Kinget P R. Device Mismatch and Tradeoffs in The Design of Analog Circuits, IEEE Journal of Solid-State Circuits,2005,40(6):1212-1224.
    [39]Kinget P R. Device Mismatch: an Analog Design Perspective. Proceedings of 2007 IEEE International Symposium on circuits and systems,2007:1245-1248.
    [40]Kadaba R. Lakshmikumar, Robert A. Hadaway, Miles A. Copeland. Characterization and Modeling of Mismatch in MOS Transistors for Precision Analog Design, IEEE journal of solid-state circuits 1986,21(6):1057-1066.
    [41]Difrenza R, Llinares P, and Ghibaudo G. A New Model for The Current Factor Mismatch in The MOS Transistor, Solid-State Electronics,2003,47:1167-1171.
    [42]Asen Asenov, Andrew R. Brown, John H. Davies, et al. Simulation of Intrinsic Parameter Fluctuations in Decananometer and Nanometer-Scale MOSFETs. IEEE Trans on Electron Device,2003,50(9):1837-1852.
    [43]Asenov A., Kaya S, Brown A. R. Intrinsic Parameter Fluctuations in Decananometer MOSFETs Introduced by Gate Line Edge Roughness, IEEE Transaction on Electron Devices,2003,50(5):1254-1260.
    [44]Andrew R. Brown, Gareth Roy, Asen Asenov. Poly-Si-Gate-Related Variability in Decananometer MOSFETs With Conventional Architecture, IEEE Transaction on Electron Devices.2007,54(11):3056-3063.
    [45]Asenov A, Kaya S, Davies J H. Intrinsic Threshold Voltage Fluctuations in Decanano MOSFETs Due to Local Oxide Thickness Variations, IEEE Transation on Electron Devices,2002,49(1):112-119.
    [46]Brown A. R, Roy G, Asenov A. Impact of Fermi Level Pinning at Polysilicon Gate Grain Boundaries on Nano-MOSFET Variability:A 3-D Simulation Study, Proc.36thESSDERC,2006:451-454.
    [47]Stephen W. Director, Peter Feldmann, Kannan Krishna et al. Statistical Integrated Circuit Design, IEEE Journal of Solid-State Circuits,1993,28(3):193-202.
    [48]Rajeev Rao, Ashish Srivastava, David Blaauw, Dennis Sylvester. Statistical Analysis of Subthreshold Leakage Current for VLSI Circuits, IEEE Transaction on VLSI,2004,12(2):131-139.
    [49]Yang F, Hwang J-R, Li Y. Electrical Characteristic Fluctuations in Sub-45nm CMOS Devices, IEEE Custom Intergrated Circuits Conference,2006:691-694.
    [50]Dennis Sylvester, Ashish Srivastava. Computer-Aided Design for Low-Power Robust Computing in Nanoscale CMOS. Proceedings of the IEEE,2007, 95(3):507-529.
    [51]Lee D, Blaauw D, Sylvester D. Static Leakage Reduction Through Simultaneous Vt/Tox and State Assignment, IEEE Transaction on Compute-Aided Design of Integrated Circuits and Systems,2005,24(7):1014-1029.
    [52 Dongwoo L, Blaauw D, Sylvester D. Gate Oxide Leakage Current Analysis and Reduction for VLSI Circuits, IEEE Transaction on VLSI,2004,12(2):155-166.
    [53]Calhoun Benton H, Cao Yu, Li Xin et al. Digital Circuit Design Challenges and Opportunities in the Era of Nanoscale CMOS, Proceedings of the IEEE,2008, 96(2):343-365.
    [54]Aseem Agarwal, David Blaauw, Vladimir Zolotov, et al. Statistical Delay Computation Considering Spatial Correlations, Proceeding ASP-DAC,2003:271-276.
    [55]Aseem Agarwal, Vladimir Zolotov, David T. Blaauw. Statistical Timing Analysis Using Bounds and Selective Enumeration, IEEE Transaction on Compute-Aided Design of Integrated Circuits and Systems,2003,22(9):1243-1260.
    [56]Martin Eisele. J"org Berthold, Doris Schmitt-Landsiedel et al. The Impact of Intra-Die Device Parameter Variations on Path Delays and on the Design for Yield of Low Voltage Digital Circuits, IEEE transaction on VLSI,1997,5(4):360-368.
    [57]Chih-Hong Hwang, Tien-Yeh Li, Ming-Hung Han et al. Statistical Analysis of Metal Gate Work Function Variability, Process Variation, and Random Dopant Fluctuation in Nano-CMOS Circuits. SISPAD'09 International Conference on, 2009:1-4.
    [58]Javid Jaffari, Mohab Anis. Variability-Aware Bulk-MOS Device Design, IEEE Transaction on Compute-Aided Design of Integrated Circuits and Systems,2008, 27(2):205-216.
    [59]Ali Keshavarzi, Gerhard Schrom, Stephen Tang et al. Measurements and Modeling of Intrinsic Fluctuations in MOSFET Threshold Voltage, ISLPED'05,2005, 26-29.
    [60]Asen Asenov, Andrew R. Brown, Gareth Roy. Simulation of Statistical Variability in Nano-CMOS Transistors Using Drift-Diffusion, Monte Carlo and Non-equilibrium Green's Function Techniques, Journal of Computational Electronics,2009,8(3-4):349-373.
    [61]Andrew R. Brown, Niza M. Idris, Jeremy R. Watling. Impact of Metal Gate Granularity on Threshold Voltage Variability:A Full-Scale Three-Dimensional Statistical Simulation Study, IEEE Electron Device Letter,2010,31(11):1199-1201.
    [62]Georgios Panagopoulos, Kaushik Roy. A Physics-Based Three-Dimensional Analytical Model for RDF-Induced Threshold Voltage Variations, IEEE Transaction on Electron Device,2011,58 (2):392-403.
    [63]Lakshmikumar K R, Hadaway R A, Copeland M A. Characterization and Modeling of Mismatch in MOS Transistors for Precision Analog Design. IEEE Journal of Solid-State Circuits,1986.21(6):1057-1066.
    [64]Pelgrom M, Duinmaijer A, Welbers A. Matching Properties of MOS Transistors, IEEE Journal of Solid-State Circuits,1989.24(5):1133-1140.
    [65]Sakurai T, Newton A R, Alpha-Power Law MOSFET Model and Its Applications to CMOS Inverter Delay and Other Formulas, IEEE Journal of Solid-State Circuits, 1990,25(2):584-594.
    [66]Wong S C, Pan K H. Ma D J. A CMOS Mismatch Model and Scaling Effects, IEEE Electron Device Letter,1997,18(6):261-263.
    [67]Lovett S J, Clancy R, Welten M et al. Characterizing The Mismatch of Submicron MOS Transistors, IEEE Int. Conf. Microelectronic Test Structures,1996, 9:39-42.
    [68]Croon J A, Rosmeulen M, Decoutere S et al. An Easy-To-Use Mismatch Model for The MOS Transistor, IEEE Journal of Solid-State Circuits,2002,37(8): 1056-1064.
    [69]Teresa S G, Bernabe L B.A New Five-Parameter MOS Transistor Mismatch Model, IEEE Electron Device Letter,2000,21(1):37-39.
    [70]Zhang Q, Liou J J, McMacken J R et al. SPICE Modeling and Quick Estimation of MOSFET Mismatch based on BSIM3 Model and Parametric tests, IEEE Journal of Solid-State Circuits,2001,36(10):1592-1595.
    [71]Zhang Q, Liou J J, McMacken J R et al. Modeling of Mismatch Effect in Submicron MOSFETs Based on BSIM3 Model and Parametric Tests, IEEE Electron Device Letter,2001.22(3):133-135.
    [72]Lim G. H, Zhou X, Khu K et al. Physics Based Scalable MOSFET Mismatch Model for Statistical Circuit Simulation, IEEE conference on Electron Device and Solid-State Circuit,2007:1063-1066.
    [73]Gyvez J P de, Tuinhout H P. Threshold Voltage Mismatch and Intra-Die Leakage Current in Digital CMOS Circuits. IEEE Journal of Solid-State Circuits,2004, 39(1):157-168.
    [74]Uyttenhove K, Steyaert M, Speed-Power-Accuracy Tradeoff in High-Speed CMOS ADCs. IEEE Transaction on Circuits and Systems Ⅱ,2002,49(4):280-287.
    [75]Pelgrom M, Tuinhout H, Vertregt M. Transistor Matching in Analog CMOS Applications. Technical Digest of The International Electron Devices Proceedings of the IEEE,1998:915-918.
    [76]Yeh T H, Lin J, Wong S C et al. Mis-match Characterization of 1.8 V and 3.3 V Devices in 0.18 μm Mixed Signal CMOS Technology. Proceedings of IEEE Int. Conf. Microelectronic Test Structures,2001:77-82.
    [77]Posch W, Enichlmair H, Schirgi E et al. Statistical Modeling of MOS Transistor Mismatch for High-Voltage CMOS Processes, Quality and Reliability Engineering International,2005,21:477-489.
    [78]Wang V, Agarwal K, Nassif S et al. A Design Model for Random Process Variability, Proc. IEEE Int. Symp. Quality Electronic Design,2008:734-737.
    [79]Zhang H, Zhao Y, Doboli A. A Scalable a-space Based Methodology for Modeling Process Parameter Variations in Analog Circuits, Microelectronics Journal, 2008,39(12):1785-1796.
    [80]Klimach H, Arnaud A, Schneider M C et al. Consistent Model for Drain Current Mismatch in MOSFETs Using the Carrier Number Fluctuation Theory, Proc. IEEE Int'l Symp. Circuits and Systems,2004,5:113-116.
    [81]Galup-Montoro C, Schneider M C, Klimach H. A Compact Model of MOSFET Mismatch for Circuit Design, IEEE Journal of Solid-State Circuits,2005, 40(8):1649-1657.
    [82]Klimach H, Arnaud A, Galup-Montoro C et al. MOSFET Mismatch Modeling:A New Approach, IEEE Design and Test of Computers.2006,23(1):20-29.
    [83]Michael C, Ismail M. Statistical Modeling of Device Mismatch for Analog MOS Integrated Circuits. IEEE Journal of Solid-State Circuits,1992,27(2):154-166.
    [84]Topaloglu R O, Orailoglu A. On Mismatch in The Deep Sub-Micron Era-from Physics to Circuits, Proceedings of the 2004 Asia and South Pacific Design Automation Conference,2004:62-67.
    [85]Flynn M P, Park S, Lee C C. Achieving Analog Accuracy in Nanometer CMOS. International Journal of High Speed Electronics and Systems,2005.15(2):255-275.
    [86]Brito J P M, Klimach H, Bampi S. A Design Methodology for Matching Improvement in Bandgap References,8th International Symposium on Quality Electronic Design,2007:586-594.
    [87]Pappu A M, Zhang X, Harrison A V et al. Process-Invariant Current Source Design:Methodology and Examples, IEEE Journal of Solid-State Circuits,2007, 42(10):2293-2302.
    [88]Gary S.May, Costas J. Spanos. Fundamentals of Semiconductor Manufacturing and Process Control,北京:机械工业出版社,2009.
    [89]Michael Orshansky, Linda Milor, Pinhong Chen et al. Impact of Spatial Intrachip Gate Length Variability on the Performance of High-Speed Digital Circuits, IEEE Transaction on Compute-Aided Design of Integrated Circuits and Systems,2002, 21(5):544-553.
    [90]Samie B. Samaan. The Impact of Device Parameter Variations on the Frequency and Performance of VLSI Chips, Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design,2004,343-346.
    [91]Zhang L, Yu Z P, He X Q. A Statistical Method for Characterizing CMOS Process Fluctuations in Subthreshold Current Mirrors, Journal of Semiconductors, 2008,29(1):82-87.
    [92]骆祖莹,钟燕清.VLSI晶体管级时延模拟方法,计算机辅助设计与图形学学报,2006,18(12):1855-1860.
    [93]张瑛,王志功,Janet M.Wang等.VLSI中互连线工艺变化的若干问题研究进展,电路与系统学报,2010,15(3):96-104.
    [94]张瑛,JanetM.wang,肖亮,吴慧中.工艺参数随机扰动下的传输线建模与新方法.电子学报,2005,33(11):1959-1964.
    [95]张瑛,JanetM.wang,肖亮,吴慧中.传输线电容参数提取中的奇异性处理,微波学报,2005,21(6):14-15.
    [96]张瑛,JanetM.wang,肖亮,吴慧中.传输线的随机建模及瞬态响应数值实析.电子与信息学报,2006,28(8):1516—1520.
    [97]张瑛,JanetM.wang,肖亮,吴慧中.二维微带线电容参数提取的有限元仿真系统仿真学报,2005,17(10):2334—2337.
    [98]蔡懿慈,熊焰,洪先龙,刘毅.考虑工艺参数变化的安全时钟布线算法[J].中国科学E辑信息科学,2005,35(8):887-896.
    [99]方君,陆伟成,赵文庆.工艺参数变化下的基于统计时序分析的时钟偏差安排,计算机辅助设计与图形学学报.2007.19(9):1172-1177.
    [100]阎丽,董刚,杨银堂.基于工艺波动下的互连延时统计模型,2010,15(1):10-15.
    [101]杨杨,董刚,柴常春.一种考虑工艺波动的RC互连延时统计模型,系统仿真学报,2010,22(3):584-588.
    [102]杨杨.考虑工艺波动的互连信号完整性分析,西安:西安电子科技大学,2009:3-4.
    [103]张培勇,严晓浪,史峥.亚100纳米级标准单元的可制造性设计,电子学报,2005,33(2):304-307.
    [104]吕伟锋,孙玲玲.随机掺杂波动引起阈值电压偏离的统计分析,电路与系统学报,2011,16(5):43-46.
    [105]吕伟锋,孙玲玲.模拟电路MOSFET晶体管失配研究:模型和参数,固体电子学研究与进展,2011,31(2):124-129.
    [106]吕伟锋,孙玲玲.一个简单的65nm MOSFET失配模型,计算机辅助设计与图形学学报,2011,23(7):1280-1284.
    [107]Lii Weifeng, Sun Lingling. Modeling of current mismatch induced by random dopant fluctuation in nano-MOSFETs, Journal of Semiconductors,2011,32(8):084003.
    [108]吕伟锋,孙玲玲.考虑随机掺杂波动的纳米MOS模拟集成电路性能分析,电子学报,2011送审.
    [109]Zhang H, Zhao Y, Doboli A. Alamo:An Improved Sigma-Space Based Methodology for Modeling Process Parameter Variations in Analog Circuits, Proceedings of The Design, Automation and Test in Europe Conference, 2006.156-161.
    [110]Zang C, Friswell M I, Mottershead J E. A Review of Robust Optimal Design and Its Application in Dynamics, Computers and Structures,2005,83:315-326.
    [111]G E. P. Box, J. S Hunter, W G. Hunter.试验应用统计.北京:机械工业出版社,2010:336-348.
    [112]D C. Montgomery.实验设计与分析.北京:人民邮电出版社,2009:398-411.
    [113]Wei-feng LU, Mi LIN, Lingling SUN.The most robust design for digital logics of multiple variables based on neurons with complex-valued weights. Journal of Zhejiang University Science A An international applied physics & engineering journal,2009,10 (2):184-188.
    [114]李惠军.现代集成电路制造技术原理与实践.北京:电子工业出版社,2009:77-110.
    [115]Peter Van Zant,赵树武等译.芯片制造-半导体工艺制程实用教程,北京:电子工业出版社,2006:216-239.
    [116]BSIM4.6.1 MOSFET Model -User's Manual, University of California, Berkeley,2007.
    [117]Peter A. Stolk, Frans P. Widdershoven, D. B. M. Klaassen. Modeling Statistical Dopant Fluctuations in MOS Transistors[J], IEEE Transaction on Electron Devices,45 (9),1998:1960-1971.
    [118]Gruenebaum U, Oehm J, Schumacher K. Mismatch modeling and simulation -A comprehensive approach, Analog Integrated Circuits and Signal Process,2001,29(3): 165-171
    [119]Anderson B L, Anderson R L. Fundamentals of Semiconductor Devices,北京:清华大学出版社,2008.
    [120]毕查德.拉扎维著,程贵灿等译.模拟CMOS集成电路设计.西安:西安交通大
    学出版社,2003.
    [121]施莹.深亚微米工艺下签核(sign-off)静态时序分析方法与研究.杭州:浙江大学,2006:12-31.
    [122]王毅.纳米尺度集成电路统计时序分析与成品率优化方法研究.上海:复旦大学,2008:10-27.
    [123]Jan.M.Rabaey. Digital Integrated Circuits A Design Perspective北京:清华大学出版社,1999.
    [124]钟文耀,郑美珠CMOS电路模拟与设计—基于Hspice北京:科学出版社,2007.
    [125]W Laosiritaworn, N Chotchaithanakorn. Artificial Neural Networks Parameters Optimization with Design of Experiments:An Application in Ferromagnetic Materials Modeling. Chiang Mai J. Sci.,2009,36(1):83-91.
    [126]J V. Ringwood, S Lynn, G Bacell. Estimation and Control in Semiconductor Etch:Practice and Possibilities. IEEE Transaction on Semiconductor Manufacturing, 23(1),2010:87-98.
    [127]S. Hong, G. May, and D. Park. Neural Network Modeling of Reactive Ion Etching Using Optical Emission Spectroscopy Data, IEEE Transaction semiconductor manufacturing.2003,16(4):598-608.
    [128]W Sukthomya, J Tannock. The Training of Neural Networks to Model Manufacturing Processes. Journal of Intelligent Manufacturing,2005,16:39-51.
    [129]陈魁.试验设计与分析.北京:清华大学出版社,2005:141-179.
    [130]Wimalin Sukthomya, James Tannock. The Optimization of Neural Network Parameters using Taguchi's Design of Experiment Approach:An Application in manufacturing process modeling, Neural Computing & Applications.2005, 14(4):337-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700