用户名: 密码: 验证码:
多自由度扑翼微型飞行器设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型飞行器(MAV,Micro Air Vehicle)因在军事和民用领域具有十分广泛的应用前景而成为国内外研究的热点。扑翼飞行比固定翼和旋翼飞行具有其独特的优点,因而,微型扑翼飞行器必将在该研究领域占有重要地位。由于扑翼是新型的飞行器形式,扑翼的研究对航空技术的发展也有重要意义。
     本文针对多自由度扑翼微型飞行器的相关设计问题进行了研究。主要研究内容包括:
     首先,从昆虫和鸟类翅膀构造出发,分析两类飞行生物的飞行方式、飞行原理和翅膀的扑动模式为扑翼微型飞行器设计提供理论和仿生学依据。
     其次,以六杆七副传动机构为基础,归纳出其构造特性及设计约束,利用运动链再生变换原理,给出了新型六杆七副扑动机构。可以为扑翼微型飞行器的设计提供重要的参考。以昆虫翅膀运动机理为基础,提出了一种复合3种运动的多自由度仿生扑翼机构。由于能使翼尖按8字形或香蕉形运动及机翼扭转,使扑翼运动更符合昆虫运动形态。为了实现生物运动轨迹,建立了机构参数的优化模型,其扑动规律能更逼真地模拟昆虫翼的扑动形态。
     然后,针对扑翼驱动系统运转时,由于惯性和气动阻力矩的变化将引起系统速度的周期性波动,从而影响驱动效率和气动性能,为此,基于拉格朗日方程,对一种常用的扑翼机构,建立了动力学方程,并求解其真实运动规律。结果表明,扑翼传动机构速度波动的主要影响因素是扑翼;增设飞轮可以使系统运行平稳,进而提高驱动效率、改善气动性能;增设扭簧可使下扑速度提高,上扑速度降低,有利于进一步提高扑动升力。
     接着,针对具有上下扑动、前后划动和俯仰运动的扑翼流场进行了数值计算,分析了各种运动参数对复合运动扑翼气动特性的影响。具有多自由度复合运动的扑翼能够产生较大的升力和推力;对升力和推力影响最大的运动参数是上下扑动幅度和扑动频率,其次为前后划动幅度和俯仰运动平均角,影响较小的是俯仰运动的幅度,而增大俯仰运动平均角,可显著增大升力,但会减小推力。
     最后,在低速风洞中进行了多自由度扑翼微型飞行器的吹风试验,实测了扑翼机的升力、阻力随扑动频率、迎角和来流速度等参数的变化情况,探索了扑翼微型飞行器空气动力特性。
Because MAV (Micro Air Vehicle) has an extremely widespread application prospect in the military and the civil fields, it becomes a hot research spot at home and abroad. Compared to the fixed-wing and the rotary-wing MAV, flapping-wing MAV has superiority, flapping-wing MAV will certainly occupy important position in this research field and have great significance to develop aerial technology.
     This paper studies some related design questions about flapping-wing MAV. the main work is as follows:
     Firstly, embarking from the structure of insect and bird wing, this paper analyzed the flight mode, the flight theory and the flapping-wing motion pattern of two kind of flights biology. The basis of theory and bionics are provided for the flapping-wing MAV’s design.
     Secondly, the structural properties and the design constraint of flapping-wing mechanism are induced according to the mechanism including six links seven kinematic pairs. Applying kinematic chain transform theory, the new pattern flapping-wing mechanisms are evolved. This provides the important reference for flapping-wing MAV’s design. Based on the wing motion of insects, a multi-DOF(multi-degrees of freedom) mechanism with complex of tree-type motion for the insect-like flapping wing is proposed. Due to the tips of wings can trace a figure-of-eight or banana, and two wings can twist, the wing motion is in much more accord with the pattern of wing motion for insects. A parameter optimization model of the mechanism is established to realize the motion track of biology.
     Thirdly, in the motion of flapping-wing system, due to variety of the inertia and aerodynamic moment, the motion of the input link has speed fluctuation, affecting the mechanical efficiency and aerodynamic performance. Based on Lagrange’s equation, the dynamic equation of a single-DOF and Multi-DOF flapping-wing mechanism was established and the actual motion was studied. The major effect factor is the rotational inertia of flapping-wing. The system movement is steady by flywheel. The torsional spring enhances the efficiency of flapping-wing transmission system and the flapping-wing lift.
     Fourthly, the flow fielsd of flapping-wing with three kind of compound motions were computated. The flapping-wing with compound motion can produce higher lift and thrust. The influence motion parameters for the lift and thrust of flapping-wing is the plunging amplitude and frequency, next is the sliding amplitude and pitching mean angle, last is the pitching amplitude. The increases of pitching mean angle reduces the thrust.
     Using multi-DOF flapping-wing MAV, the load measurement experiment was done in low-speed wind tunnel. The lift and drag were measured with different flapping frequency, attack angle and free-stream velocity. The MAV’s aerodynamic characteristic was studied.
引文
[1] Ashley S. Palm-size spy plane [J]. Mechanical Engineering, 1998.11(3):74-78.
    [2] Davis W R. Micro UAV. In: 23rd Annual AUVSI Symposium, 1996.7:15-19.
    [3] Ashley S. Palm-size spy plane [J]. Mechanical Engineering, 1999, 120(2):74-78.
    [4] McMichael J M, Francis M S. Micro air vehicles-toward a New Dimension in Flight. US DARPA/TTO Report, 1997.8
    [5] Dornheim M A. Tiny drones may be soldier's new tool [J]. Aviation week & space technology, 1998, 148:42-43.
    [6]昂海松.微型飞行器与无人机不同概念与特点[J].无人机,2006,6.
    [7]王立文.空中小精灵-微型飞行器挑战传统设计思维和战争模式[J].国际航空, 2000, 12:46-48.
    [8] Tuncer I H, Platzer MF, Thrust generation due to airfoil flapping. AIAA Journal, 1996, 34:509-515.
    [9] Bloch A M, Krishnaprasad P S, Marsden J E. Nonholonomic mechanical systems with symmetry [J]. Archives for Rational Mechanics and Analysis, 1996, 136:21–99.
    [10] Bullo F. Averaging and vibrational control of mechanical systems [J]. SIAM Journal of Control and Optimization, 2002, 41(2):542–562.
    [11] Chan W P, Prete F, Dickinson M H. Visual input to the efferent control system of a fly’s“gyroscope”[J]. Science, 1998, 280(5361):289–292.
    [12] Grasmeyer J M, Keennon M T. Development of the Black Widow Micro Air Vehicle. AIAA paper, 2001-0127.
    [13] MicroSter Micro Air VehicleDesign to reality. BAE Systems,2000.
    [14]晓清.美国微型飞行器计划进入飞行试验阶段[J].国际航空, 1999,9:55-56.
    [15] Hewish M. A Bird in the hand-miniature and micro air vehicles challenges conventional thinking [J]. Jane’s International Defense Review, 1999, 32(11): 22-25.
    [16] Miki N, Shimoyama I. A micro-flight mechanism with rotational Wings [C]. Proceedings of the IEEE MEMS, 2000:155-163.
    [17] George R H, Multidisciplinary Design and Prototype Development of a Micro AirVehicle [J]. J of Aircraft, 1999, 36(1):227-234.
    [18] Fearing R S. Toward micromechanical flyers [J]. The Bridge, 2001, 31(4):4-8.
    [19] Angelucci E. World encyclopedia of civil aircraft [M]. New York: Crown Publishers, Inc, 1982.
    [20] Arch R D, Sapuppo J, Betteridge D S. Propulsion characteristics of flapping wings [J]. Aeronautical Journal, 1979(183):355-371.
    [21] Lippisch A M. Man powered flight in 1927 [J]. Aeronautic Journal, 1960(64):395- 398.
    [22] DeLaurier J D. An aerodynamic model for flapping-wing flight [J]. Aeronaut J, 1993(97):125-130.
    [23] DeLaurier J D. An ornithopter wing design[J].Can Aeronaut Space J, 1994(40): 10-18.
    [24] Schmidt W. Der wellpropeller, ein neuer antrieb fuerwasserland, und luftahrzeuge [J]. Z. Flugwiss, 1965(13): 472-479.
    [25] Bosch H. Interfering Airfoils in Two-Dimensional Unsteady Incompressible Flow [J]. ARARD-CP-227, 1978.
    [26] Tuncer I H, LAI J C S, Platzer M F. A Computational Study of Flow Reattachment Over a Stationary-Flapping Airfoil Combination in Tandem [J]. AIAA Paper 98-0109.
    [27] Mueller J. Fixed and flapping wing aerodynamics for micro air vehicle applications [M]. Virginia: Smerican Institute of Aeronautics and Astronautics, 2001.
    [28] Pornsin-Sisirak T, Lee S W, Nassef H, et al. MEMS wing technology for a battery-powered ornithopter [C]. 13th IEEE international Conference on Micro Electro Mechanical Systems, (MEMS’00), Miyazaki, Japan, 2000, 1:799–804.
    [29] Sisirak T, Tai T C, Ho C M. Microbat: a palm-sized electrically powered ornithopter. NASA/JPL Workshop on Biomorphic Robotics, Pasadena, CA, 2000.
    [30] Toon J. Flying on mars[R]. Georgia tech research horizons. 2001, 19 (1):19-23.
    [31] Michelson R C, Reece S. Update on flapping wing micro air vehicle research ongoing work to develop a flapping wing, crawling "Entomopter"[C]. In: 13th Bristol International RPV Conference. Bristol, England, 1998.3.
    [32] Colozza A. Planetary exploration using biomimetics: an entomopter for flight on mars[C]. In: NIAC Fellows Conference. NASA Ames Research Center, 2001, 6.
    [33] Fear R S, Chiang K H, Dickinson M H, et al. Wing transmission for amicromechanical flying insect[C].IEEE Int. Conf. on Robotics and automation. San Francisco, CA, 2000:1509-1515.
    [34] Scott P. A bug's lift-the Defense Department is looking for a few good mechanical insects [J]. Scientific American, 1999, 280(4):51-52.
    [35] Hall K C, Pigott S A, Hall R C. Power requirements for large-amplitude flapping flight [J]. Aircraft, 1998(35):359-360.
    [36] Hall K C, Hall S R. Minimum induced power requirements for flapping flight[J].Fluid Mech, 1996(323):285-215.
    [37] Betteridge D S, Widnall S E. A study of the mechanics of flapping wings [J].Aeros, 1974(25):129-142.
    [38] Jones K, Platzer M. Bio-inspired design of flapping wing micro air vehicles an engineer’s perspective[C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper, 2006-0037.
    [39] Fritz T, Long L. Object-oriented unsteady vortex lattice method for flapping flight [J]. Journal of Aircraft, 2004, 11(41):1275-1290.
    [40] Schroeder E, Baeder J. Using computational fluid dynamics for micro air vehicle airfoil validation and prediction[C]. 23rd AIAA Applied Aerodynamics Conference, Toronto, Ontario, Canada, AIAA Paper, 2005-4841.
    [41] Heathcote S, Martin D, Gursul I. Flexible flapping airfoil propulsion at zero freestream velocity[J]. AIAA Journal, 2004, 11(24):2196-2204.
    [42]赵亚溥.微型飞行器中的关键力学和智能材料问题[J].中国科学基金. 2000, (1):11-14.
    [43] Zhao Y P. Scaling in Microsystems[C]. In: 4th International Workshop on Similarity Methods. Stuttgart, Germany, 2001, 10.
    [44]曾锐,昂海松.仿鸟复合振动的扑翼气动分析[J].南京航空航天大学学报, 2003,35(1): 2-12.
    [45]曾锐,昂海松,刘国涛,等.柔性扑翼的模型建立及其功率研究[J].中山大学学报, 2004,43(3): 28-31.
    [46] Ho S, Nassef H, Pornsinsirirak N, et al. Unsteady aerodynamics and flow control for flapping wing flyers [J]. Progress in Aerospace Sciences, 2003, 39:635-681.
    [47] Shvv W,Berg M, Ljungqvist D. Flapping and flexible wings for biological and micro air vehicle [J]. Progress in Aerospace Sciences, 1999, 35:455-505.
    [48] Weis-Fogh T. Quick estimates of flight fitness in hovering animals including novel mechanism for lift productions [J]. J Exp Biol, 1973, 59:169-230.
    [49] Vogel S. Flight in drosophila.Ⅲ. Aerodynamic characteristics of fly wings and wing models [ J]. J Exp Biol, 1967, 44:431-443.
    [50] Wakeling J M, Ellington C P. Dragonfly flight.Ⅰ.Gliding flight and steady-state aerodynamic forces [J]. J Exp Biol, 1997, 200:543-556.
    [51]孙茂.昆虫飞行的高机理[J].力学进展,2002, 32:425-434
    [52] Ellington C P. The aerodynamics of hovering insect flight: II. Morphological parameters [J]. Philos Trans R Soc London Ser B, 1984; 305:17-40.
    [53] Zbikowski R. Flapping wing autonomous micro air vehicles: research programmer outline[C]. In: 14th international conference on unmanned air vehicle systems, vol. Supplementary Papers. 1999a, 38:1-5.
    [54] Zbikowski R. Flapping wing micro air vehicle: a guided platform for microsensors [C]. In: Royal aeronautical society conference on nanotechnology and microengineering for future guided weapons, 1999b, 1:1-11.
    [55] David C T. The relationship between body angle and flight speed in free-flying drosophila [J]. Physical Ent, 1978, 3:191-195.
    [56] Zallker J M. The wing beat of drosophila melanogaster. I. Kinematics [J]. Phil Trans R Socnd B, 1990, 327:1-l8.
    [57] Srygley R B, Thomas A L R. Unconventional lift-generating mechanisms in free-fling butterflies [J]. Nature,2002,420:660~664
    [58] Lightill M J. On the Weis-Fogh mechanism of lift generation [J]. J Fluid Mech, 1973, 60:1-17.
    [59] Maxworthy T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering.Ⅰ. Dynamics of the fling [J]. J Fluid Mech, 1979, 93:47-63.
    [60] Haussling H J. Boundary-fitted coordinates for accurate numerical solution of multibody flow problems [J]. J Comp Physics, 1979, 30:107-124.
    [61] Edwards R H, Cheng H K. The separation vortex in the Weis-Fogh circulation generation mechanism [J]. J fluid Meth, 1986, 165:247-272.
    [62] Ellington C P. The aerodynamics of hovering insect flightⅠ-The quasi-steady analysis [J]. Phil Trans R Sac Land B, 1984, 305:1-15.
    [63] Ellington C P. The aerodynamics of hovering insect flightⅡ-Morphological parameters [J]. Phil Trans R Sac Land B, 1984, 305:17-40.
    [64] Ellington C P. The aerodynamics of hovering insect flightⅢ-Kinematics [J]. Phil Trans R Sac Land B, 1984, 305:41-78.
    [65] Ellington C P. The aerodynamics of hovering insect flightⅣ-Aerodynamicmechanisms [J]. Phil Trans R Sac Land B, 1984, 305:79-113.
    [66] Ellington C P. The aerodynamics of hovering insect flightⅤ-A vortex theory [J]. Phil Trans R Sac Land B, 1984, 305:115-144.
    [67] Ellington C P. The aerodynamics of hovering insect flightⅥ-Lift and power requirements [J]. Phil Trans R Sac Land B, 1984, 305:45-181.
    [68] Spedding G R, Maxworthy T. The generation of circulation and lift in rigid two-dimensional fling [J]. J Fluid Mech, 1986, 165:247-272.
    [69] Dickinson M H, Lehmann F O, Sane S P, Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999(284):1954-1960.
    [70] Kármán T, Burgers J. General aerodynamic theory - perfect fluids[C]//In Aerodynamic theory, Berlin: Julius Springer, 1935:280-310.
    [71] Jones K D, Cent K B. Wake structures behind plunging airfoil: a comparison of numerical and experimental result. AIAA paper, 96-0078.
    [72] Cox A, Garcia E, Goldfarb M. Actuator development for a flapping microbotic microaerial vehicle [C]// SPIE Microrobotics Symposium. Boston, Massachusetts: SPIE, Nov 1998:102-108
    [73] Yoon K J, Shin S, Park H C, et al. Design and manufacture of a lightweight piezo-composite curved actuator [J]. Smart Materials and Structures, 2002, 10: 1-6.
    [74] Kim K J, Shahinpoor M. Ionic polymer-metal composites: II. Manufacturing techniques [J]. Smart Materials and Structures, 2003, 12:65-79.
    [75] Campolo D, Sahai R, Fearing R S. Development of piezoelectric bending actuators with embedded piezoelectric sensors for micromechanical flapping mechanisms [C]//IEEE International Conference on Robotics and Automation. Taipei, China, 2003:3339-3346
    [76] Sitti M, Campolo D, Yan J, et al. Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms[C]//IEEE International Conference on Robotics and Automation, Seoul Korea, 2001,5:3839-3846.
    [77] Smits J G, Ballato A. Dynamics admittance matrix of piezoelectric cantilever bimorphs [J]. Journal of Microelectromechanical Systems, 1994, 3:105-112.
    [78] Weinberg M. Working equations for piezoelectric actuators and sensors [J]. Journal of Microelectromechanical Systems, 1999, 10:529-533.
    [79] Fischer M , Giousouf M ,Schaepperle J. Electrostatically deflectable polysiliconmicro mirrors-dynamic behavior and comparison with the results from FEM modeling with ANSYS[J]. Sensors and Actuators A67, 1998:89-95.
    [80] Chu P B, Nelson P R, Tachiki M L, et al. Dynamics of polysilicon parallel-plate electrostatic actuators[J] .Sensors and Actuators A52,1996:216-220.
    [81] Khan Z A, Sunil K. Design of flapping mechanisms based on transverse bending phenomena in insects[C]//IEEE International Conference on Robotics and Automation. Orlando, Florida: IEEE, 2006: 2323-2328
    [82] Madangopal R, Khan Z A, Agrawal S K. Energeticsbased design of small flapping wing micro air vehicles [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4): 433-438
    [83]曲继方,安子军,曲志刚.机构创新设计[M].北京,科学出版社, 2001: 180
    [84]侯宇,方宗德,刘岚,等.仿生微型扑翼飞行器动态分析与工程设计方法[J].航空学报, 2005,26(2):173-178.
    [85] Fearing R, Chiang K, Dickinson M, Pick D, et al. Transmission mechanism for a micromechanical flying insect[C]//IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 2000,4:1509-1519.
    [86]孙茂.昆虫飞行的高升力机理[J].力学进展, 2002,32(3):425-434.
    [87] Norberg U M L. Bird flight [J]. Acta Zoomgica Sinica, 2004, 50(6):921-935
    [88] Chiang C H. Spherical kinematics in contrast to planar kinematics [J]. Mech. Mach.theory 1992, 27:243~250.
    [89] Zbikowski R, Galinski C, Pedersen C B. A four-bar linkage mechanism for insect-like flapping wings in hover: concept and an outline of its realization [J]. J Mech Des 2005,4(127):817~24.
    [90] Schenato L, Deng X, Wu W C, et al. Virtual insect flight simulator(VIFS):a software tested for insect fligh[tC]//In IEEE International Conference on Robotics and Automation,2001:3885-3892.
    [91] Madangopal R, Khan Z A, Agrawal S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics. Journal of Mechanical Design, 2005, 127(7):809-816.
    [92] Khan Z A, Agrawal S K. Design of flapping mechanisms based on transverse bending phenomena in insects[C]//In IEEE International Conference on Robotics and Automation. Florida: Orlando. 2006: 2323-2328.
    [93]张策.机械动力学.北京:高等教育出版社, 2002.
    [94] Sane S P. The aerodynamics of insect flight [J]. J. Exp. Biol., 2003(206): 4191-4208.
    [95] Deng X, Schenato L, Wu W C, Sastry S S. Flapping flight for biomimetic robotic insects. Part I: System modeling[C]//IEEE Transactions on Robotics. 2006, 22(4):776-788.
    [96]杨智春,李思政,舒忠平,等.一种柔性微型扑翼设计及其气动力特性的试验研究[J].机械科学与技术, 2006, l25(1):12-14.
    [97] Lai J C S, Platzer M.F. The characteristics of a plunging airfoil at zero free-stream velocity [J]. AIAA, 2001, 39(3):531-534.
    [98] Jone K D, Dohring C M, Platzer M F. An experimental and computational investigation of the knoller-betz effect [J]. AIAA Journal, 1998, 36(7):1240- 1246
    [99] Anderson J.M, Streitlien K, Barrett D S. Oscillating foils of high propulsive efficiency [J]. Journal of Fluid Mechanics, 1998, 360:41-72.
    [100] Sengupta T K, Dipankar A. A comparative study of time advancement methods for solving Navier-Stokes equations [J]. J. Sci. Comp. 2004, 21(2):225-250.
    [101] Jones K D, Castro B M, Mahmoud O., et al. A collaborative numerical and experimental investigation of flapping-wing propulsion. AIAA paper, 2002-0706.
    [102] Berton E, Maresca C, Favier D. A new experimental method for determining local airloads on rotor blades in forward flight [J], Expt. in Fluids, 2004,37(3): 455-457.
    [103] Weiss J M, Smith W A. Preconditioning applied to variable and Constant Density Flowsc [J].AIAA Journal, 1995, 33: 2050-2057.
    [104]肖天航,昂海松.定常/非定常全速流场的数值计算的预处理法[C]//中国第一届近代空气动力学与气动热力学会议论文集, CARS-2006-0-0043.
    [105] Tuncer I H, Kaya M. Thrust generation caused by flapping airfoils in a biplane configuration [J]. Journal of Aircraft, 2003, 40(3):509-515.
    [106] Miao J M, Ho M H. Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil [J]. Journal of Fluids and Structures, 2006(22):401- 419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700