用户名: 密码: 验证码:
高压输电线路外绝缘动态积污机理及在线监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据统计,20世纪80~90年代,污闪事故次数在电网事故总次数中占居第2位,仅次于雷害事故,而污闪事故通常是跨区域大面积事故,其危害远大于其它种类电网故障,造成的损失是雷害事故的10倍。随着复合绝缘子的广泛使用,电力外绝缘防污能力普遍提高,500kV以上的输电线路的污闪事故得到遏制,但是110kV~500kV的输电线路仍然大规模使用瓷和玻璃绝缘子,污闪事故仍时有发生。
     本文分析瓷和玻璃绝缘子常用防污措施效果不理想的原因,任何防污措施的实施方案或者实施周期都需要根据积污情况确定,而目前国内外的积污监测方法尚无法有效监测积污情况。因此,本文研究了动态积污机理,建立了动态积污模型。为了验证和修正上述模型,创新性地设计和建造了风洞实验平台,创造性地设计和建造了人工降雨冲刷实验平台,并实验验证和修正了动态积污模型。此后,研究了基于表面电导率的污秽在线监测系统,用于修正动态积污预测结果。最后,以动态积污模型,以及基于表面电导率的污秽在线监测系统为基础,开发了悬式瓷和玻璃绝缘子动态积污预测软件系统。本文主要研究内容如下所示。
     1.从动态积污的过程,以及悬式瓷和玻璃绝缘子上下表面积污差异入手,对自然污秽的动态沉积机理进行了研究。从微观角度分析1~50μm的污秽颗粒,在空气中、在边界层、在绝缘表面碰撞吸附的受力情况和运动情况,进而研究了污秽颗粒在绝缘表面吸附的判据。对自然污秽的动态冲刷机理进行了研究,分别分析污秽颗粒的风力冲刷作用和降雨冲刷作用。
     2.根据动态积污机理,将动态积污过程用动态积污系数和动态冲刷系数表示,建立了动态积污总体模型。而后,分别研究了空气气流场简化模型、流体力学的污秽颗粒等效模型、空气污秽颗粒粒径分布模型等,进而建立了动态积污系数模型;最后,分别研究了自然降雨特征参数、降雨冲刷作用影响因素等,进而建立了动态冲刷系数模型。
     3.为实验验证和修正上述模型,创新性地设计和建造了一种电力外绝缘风洞实验平台,实现了对相对湿度、污秽浓度、风场湍流度的控制,并实验验证和修正了动态积污系数模型;创造性地设计和建造了一种电力外绝缘人工降雨实验平台,实现了对降雨强度、降雨冲刷角度、降雨时间、降雨均匀度的控制,并实验验证和修正了动态冲刷系数模型。
     4.为实现动态积污监测与预测,开发了基于表面电导率的污秽在线监测系统,用于定期修正动态积污预测结果;开发了悬式瓷和玻璃绝缘子动态积污预测软件系统,用于实现动态积污预测。
     本文研究工作得到了国家重点基础研究发展计划项目(973项目)(2009CB724507)的资助。
According to statistics, during the80s and90s in the twentieth century, the number ofcontamination flashover accidents is the second of the total number of the power systemaccidents, and it is second to the number of lightning accidents. However, contaminationflashover accident interrupts the power system’s regular supply for a long time over a largearea. The loss caused by contamination flashover accident is10times as much as the losscaused by lightning accidents. In the last few years, with the wide use of composite insulators,the anti-contamination ability of power system was generally improved. The contaminationflashover accident of transmission line whose voltage level is more than500kV wascontained. But the contamination flashover accident of transmission line whose voltage levelis less than500kV was still happened occasionally.
     This paper studies the dynamic contamination accumulating mechanism, establishes thedynamic contamination accumulating model. In order to validate and correct the model, thewind tunnel experiments platform was designed and built innovatively, and the artificialrainfall rushing experiment platform was designed and built creatively. And the dynamiccontamination accumulating model was validated and corrected by experiments. After that,the contamination on-line monitoring system based on the conductivity of insulator surfacewas established to correct dynamic contamination accumulating result. At last, based on thedynamic contamination accumulating model and the contamination on-line monitoring systembased on the conductivity of insulator surface, dynamic contamination accumulatingprediction software system of porcelain and glass insulator was developed. The main researchcontents of this paper are shown as follows.
     1. From the study of dynamic contamination accumulating progress and the top andbottom surface’s contamination accumulating difference of porcelain and glass insulator, thedynamic contamination accumulating mechanism of natural contamination was studied. Fromthe micro perspective, the stress analysis and motion analysis of contamination particles,whose particle size is1~50μm, in the air, in the boundary layer of insulation surface and aftercolliding on the insulation surface were studied. Based on that, the criterion of contaminationparticles adsorping on insulation surface is studied. And from the wind rushing effect and rainfall rushing effect on contamination particles, the dynamic contamination rushingmechanism was studied.
     2. According to the dynamic contamination accumulating mechanism, dynamiccontamination accumulating progress can be stated by dynamic contamination accumulatingcoefficient and dynamic contamination rushing coefficient. Thus, dynamic contaminationaccumulating overall model was established. Then, the air flow field, the contaminationparticle equivalent model based on fluid dynamics, and the contamination particle sizedistribution model were studied. Therefore, the dynamic contamination accumulatingcoefficient model was established. At last, from the study of natural rainfall characteristicparameters and influence factors of natural rainfall rushing effect, the dynamic contaminationrushing coefficient model was established.
     3. In order to validate and correct the above model, the wind tunnel experimentsplatform was designed and built innovatively. It can control the relative humidity,contamination concentration, wind field turbulence. And the dynamic contaminationaccumulating model was validated and corrected. Then, the artificial rainfall rushingexperiment platform was designed and built creatively. It can control the rainfall intensity,rainfall erosion angle, rainfall time, rainfall homogeneous degree. And the dynamiccontamination rushing model was validated and corrected.
     4. In order to realize the monitoring and prediction of contamination degree, thecontamination on-line monitoring system based on the conductivity of insulator surface wasstudied, which is used to correct the result of dynamic contamination accumulating prediction.And dynamic contamination accumulating prediction software system was developed torealize dynamic contamination accumulating prediction.
     This research work was supported by National Key Basic Research and DevelopmentProgram(973Program)(2009CB724507).
引文
[1]顾乐观,孙才新.电力系统的污秽绝缘[M].重庆:重庆大学出版社,1990.
    [2]孙才新,司马文霞,舒立春,空气环境与电气外绝缘[M].北京:中国电力出版社,2002.
    [3]张仁豫,绝缘污秽放电[M].第一版,北京:水利电力出版社,1994.
    [4]陶元中,包建强,输电线路绝缘子运行技术手册[M].北京:中国电力出版社,2003.
    [5]李恒真,刘刚,李立浧.自然污秽成分CaSO4对电力设备外绝缘沿面绝缘特性的影响综述[J].电网技术,2011,35(3):140-145.
    [6]宿志一.防止大面积污闪的根本出路是提高电网的基本外绝缘水平一对我国电网大面积污闪事故的反思[J].中国电力,2003,36(12):57-61.
    [7]崔江流,宿志一,车文俊等,2001年初东北,华北和河南电网大面积污闪事故分析[J].电力设备,2001,(4):6-20.
    [8]周正.常德及湘潭电网大面积污闪事故的分析[J].电力安全技术,2003,5(4):23-30.
    [9]樊灵孟,刘平原,郑晓光等.广东电网污闪原因分析和防污对策[J].电瓷避雷器,2006,(2):1-6.
    [10]袁红波,郭贤珊.佛山电网110kV-500kV输电线路防污闪实践[J].华中电力,2005,18(4):55-58.
    [11]刘勇.基于泄漏电流递归分析的绝缘子状态检测研究[D].天津:天津大学博士学位论文,2009.
    [12]石岩.基于泄漏电流特征量的绝缘子污闪预测模型及方法研究[D].重庆:重庆大学博士学位论文,2010.
    [13]贺博.高压污秽绝缘子闪络机理及在线监测和风险预警中关键技术研究[D].西安:西北工业大学博士学位论文,2006.
    [14]焦尚彬.交流电压下染污绝缘子表面污秽智能检测方法研究[D].西安:西安理工大学博士学位论文,2006.
    [15]邓毅.高压绝缘子污秽在线监测结果智能评定方法的研究[D].西安:西安理工大学硕士学位论文,2006.
    [16]宿志一.用饱和盐密确定污秽等级及绘制污区分布图的探讨[J].电网技术,2004,28(8):16-19.
    [17]李恒真,刘刚,李立浧等.采用离子交换色谱法的自然污秽离子成分测量与分析[J].高电压技术,2010,36(9):2154-2159.
    [18]ChengTC,WuCT,ZedanF.EPRI-HVDC insulator studies part i field test at the sylmarHVDC converter station[J].IEEE Trans on Power Apparatus and Systems,1981,100(2):902-909.
    [19]喻华玉,城市和典型工业区空气污染扩散对绝缘子污染影响的现场监测研究[J].西北电力技术,1996,(3):45-47.
    [20]宿志一,葛南直流输电线路华东段和南桥换流站绝缘子自然积污状况调查[J].电网技术,1993,(3):9-15.
    [21]王靖勤,沈庆河,刘砚,程学启,500kv线路自然积污规律的试验研究[J].中国电力,1995,(6):46-50.
    [22]董新胜.对污闪的研究及绝缘子在线监测系统的设计[D].乌鲁木齐:新疆大学硕士学位论文,2005.
    [23]李璟延,申敏.绝缘子污秽度检测与污闪预警研究综述[J].广东电力,2007,20(6):1-4.
    [24]何耀佳,刘毅刚,刘晓东等.高压输变电设备绝缘子盐密的在线监测[J].电力设备,2006,7(12):21-25.
    [25]毛颖科,关志成,王黎明等.基于BP人工神经网络的绝缘子泄漏电流预测[J].中国电机工程学报,2007,27(27):7-12.
    [26]王雪波.光传感器输变电设备盐密在线监测系统研究[D].武汉:湖北工业大学硕士学位论文,2007.
    [27]万德春,蔡炜,宋伟.光技术盐密在线监测系统的研究[J].高电压技术,2005,31(8):33-35.
    [28]李彬.光技术在输变电设备盐密在线监测系统上的应用[J].电力技术,2010,19(5):30-33.
    [29]张锐,吴光亚,刘亚新.光技术在线监测绝缘子盐密和灰密的实现及应用[C].中国电机工程学会高电压专委会学术年会论文集,2009,1526-1533.
    [30]陈宇强,吴光亚,田强.光谱法检测输变电设备盐密的实验室研究[J].高电压技术,2001,27(5):57-58.
    [31]焦尚彬,刘丁.基于最小二乘支持向量机的绝缘子盐密光纤在线检测[J].仪器仪表学报,2008,29(11):2335-2340.
    [32]吉开俊.空气质量指数在防污闪工作中的应用研究[D].南京:南京理工大学硕士学位论文,2002.
    [33]陈震平,焦景慧.福建沿海空气环境对输电设备积污影响的分析[J].福建电力与电工,2006,26(3):29-31.
    [34]宿志一,范建斌,谷琛等.高压直流换流站污秽水平预测方法研究[J].中国电机工程学报,2007,27(13):1-5.
    [35]朱美平.基于粗糙集理论与最小二乘法支持向量机的绝缘子等值附盐密度预测[J].电力建设,2010,(5):129-131.
    [36]陈锡阳.气象统计污秽与污闪预警的设计与应用研究[D].合肥:合肥工业大学硕士学位论文,2009.
    [37]陈锡阳.气象统计污秽与污闪预警的探讨[J].高电压技术,2007,33(9):211-213.
    [38]董新胜,李长凯.利用基于气象因素的BP神经网络对污闪进行预测的探索[J].电磁避雷器,2005,(3):20-23.
    [39]张寒,文习山,丁辉.用神经网络预测基于气象因素的绝缘子等值附盐密度[J].高压电器,2003,39(6):31-35.
    [40]邱志贤.高压复合绝缘子及其应用[M].北京:中国电力出版社,2006.
    [41]N.RaVelonmanantsoa,M.Farzaneh and W.A.Chisholm.Effects of Wind Velocityon Contamination of HV Insulators in Winter Conditions[C].Electrical Insulation andDielectric Phenomena,2008.CEIDP2008.Annual Report Conference on,2008,116-119.
    [42]关志成等.绝缘子及输变电设备外绝缘[M].北京:清华大学出版社,2006.
    [43]马振良,不带电绝缘子和带电绝缘子积污程度的对比实验[J].高电压技术,1993,19(4):33-35.
    [44]蔡成良,谭章英,傅军,鄂州自然污秽试验站绝缘子的自然污秽试验[J].华中电力,1996,9(4):10-14.
    [45]张开贤,悬式绝缘子串自然积污规律的探讨[J].电网技术,1997,21(3):39-43
    [46]李艳强,微颗粒在表面的粘附力学及其可视化应用研究[D].长沙:中南大学硕士论文,2007.
    [47]姬铁兰,周祁连,王彩枝,交流绝缘子表面积污分析及防污闪措施[J].有色设备,2004,(4):38-39.
    [48]N.Ravelomanantsoa,M.Farzaneh,W.A.Chisholm.Insulator Pollution Processesunder Winter Conditions[C].2005Annual Report Conference on Electrical Insulation andDielectric Phenomena,2005.
    [49]范建斌,宿志一,李武峰.高压直流支柱绝缘子和套管伞形结构研究[J].中国电机工程学报,2007,27(21):1-6.
    [50]Gertsik A K,Korsuntser A V,Nikol'skii N K.The effect offouling on insulators forHVDC overhead lines[J].Direct Current,1957(12):219-226.
    [51]Haerer H. Insulators for high voltage direct current under contaminationconditions[D].Stuttgart,Germany:University of Stuttgart,1971.
    [52]Witt H. Insulation levels and corona phenomena on HVDCtransmissionlines[M].Goteborg,Sweden:Chalmers University of Technology,1960.
    [53]Olsen R G,Furumasu B C,Hartmann D P.Contaminationmechanisms for HVDCinsulators[C].IEEE Power Apparatus and Systems Winter Conference.New York,USA:IEEE,1977.
    [54]Olsen R G,Daffe J.The effect of electric field modification andwind on the HVDCinsulator contamination process[C]. IEEEPower Apparatus and Systems WinterConference.New York,USA:IEEE,1978.
    [55]Mark N Horenstein,James R Melcher.Particle contaminationof high voltage DCinsulators below corona threshold[J].IEEETransactions on Electrical Insulation,1979,14(6):297-305.
    [56]王晶,陈林华,刘宇等.电场对复合绝缘子积污特性影响的探究[J].高电压技术,2011,37(3).585-593.
    [57]刘绍银.电气绝缘子污闪的空气物理化学因素作用机理[J].湖北电力,2009,33(3):7-12.
    [58]蒋兴良,李海波.计算流体力学在绝缘子积污特性分析中的应用[J].高电压技术,2010,36(2):329-334.
    [59]李海波.基于流体力学原理的悬垂绝缘子串积污特性研究[D].重庆:重庆大学硕士论文,2007.
    [60]贺博,陈邦发,高乃奎.沙尘微粒在硅橡胶绝缘材料表面的沉降模型[J].高电压技术,2009,43(12):86-90.
    [61]李恒真,刘刚,李立浧等.广州地区线路盘式防污型玻璃绝缘子的自然积污规律[J].中国电机工程学报,2011,31(16).118-124.
    [62]陈景华.材料工程测试技术[M].上海:华东理工大学出版社,2006.
    [63]成波,马英等.空气污染指数及污闪机理研究[M].北京:中国电力出版社,1995.
    [64]丁一汇,高素华.痕量气体对我国农业和生态系统影响研究[M].北京:中国科学技术出版社,1995.
    [65]柳冠青,李水清,姚强.微米颗粒与固体表面相互作用的AFM测量[J].工程热物理学报,2009,30(5):803-806.
    [66]王淑兰,柴发合,张远航,周来东,王琴玲.成都市空气颗粒物污染特征及其来源分析团.地理科学,2004,(4):488-492.
    [67]张成君,胡轶鑫,钱韵砚.兰州市冬季空气沉降尘粒度特征及来源解析[J].兰州大学学报(自然科学版),2006,(6):39-43.
    [68]奚晓霞,宋庆海,黄建国等.兰州市冬半年空气污染分布特征及变化规律[J].兰州大学学报(自然科学版),1995,31(3):136-140.
    [69]Shi z,Shao L,Jones T.P,et al.Characterization of airborne individual particles collectedin an urban area satellite city and clean air area in Beijing,2001[J].Atmospheric Environment,2003,37(29):4097-4108.
    [70]何葵,谢远云,张丽娟,周嘉,康春国.哈尔滨2002年3月20日沙尘暴沉降物的粒度特征及其意义[J].地理科学,2005,25(5):0597-0600.
    [71]李令军,王英,李金香,李云婷,魏强,金军.北京市冬春季空气颗粒物的粒径分布及消光作用[J].环境科学研究,2008,21(2):90-94.
    [72]程雅芳,张远航,胡敏.珠江三角洲空气气溶胶辐射特性:基于观测的模型方法及应用[M].北京:科学出版社,2008.
    [73]宿志一.换流站直流绝缘子的自然积污特性与直交流积污比[C].中国电机工程学会高压专委会2007年学术年会论文集,深圳:中国电机工程学会高压专委会,2007:281-290.
    [74]王志清.粘性流体动力学[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [75]马金花.工程流体力学[M].北京:中国建筑工业出版社,2010.
    [76]归柯庭,汪军,王秋颖.工程流体力学[M].北京:科学出版社,2003.
    [77]董湘怀.材料成形理论[M].北京:化学工业出版社,2008.
    [78]贺礼清.工程流体力学[M].北京:石油工业出版社,2004.
    [79]丛晓春,张旭.开放性尘源粉尘运动轨迹的数值计算[J].同济大学学报,2005,33(3):330-333.
    [80]施学贵,徐旭常,冯俊凯.颗粒在湍流气流中运动的受力分析[J].工程热物理学报,1989,10(3):320-325.
    [81]岑可法,樊建人.煤粉颗粒在气流中的受力分析及其运动轨迹的研究[J].浙江大学学报,1987,21(6):1-11.
    [82]高建明.材料力学性能[M].北京:北京大学出版社,2004.
    [83]凌邦国.碰撞过程中碰撞力定量计算[J].南通工学院学报,2001,12:7-9.
    [84]郑小静,周又和.风沙运动研究中的若干关键力学问题[J].力学与实践,2003,25(2)1-6.
    [85]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [86]卿涛,邵天敏,温诗铸.空气相对湿度对材料表面粘附力影响的研究[J].摩擦学学报,2008,21(2):90-94.
    [87]Xiao X D,Qian L.Investigation of humidity—dependent capillaryforce[J].Langmuir,2000,16:8153-8158.
    [88]葛藤,贾智宏,周克栋.钢球和刚性平面弹塑性正碰撞恢复系数研究[J].工程力学,2008,25(6)209-213.
    [89]张文斌,祁海鹰,由长福.颗粒碰撞模型与数值研究[C].中国工程热物理学会2002年学术年会论文集,北京:中国工程热物理学会,2002:396-402.
    [90]李贵谋,聂楚南.用真实接触面积计算静摩擦系数[J].武汉水利电力学院学报,1980(1):43-51.
    [91]丁健.人工模拟降雨装置的试验测试与特性研究[D].北京:北京交通大学,2007.
    [92]陈文亮,王占礼.人工模拟降雨特性的试验研究[J].水土保持学报,1990,4(1):61-65.
    [93]江中善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究[J].中国水土保持,1983(3):32—36.
    [94]牟金泽.雨滴速度计算公式[J].中国水土保持,1983(3):40-41.
    [95]吕宏兴,武春龙,熊运章,李援农.雨滴降落速度的数值模拟[J].土壤侵蚀与水土保持学报,1997,3(2):10-21.
    [96]姚文艺,陈国祥.雨滴降落速度及终速公式[J].河海大学学报(自然科学版),1993,21(3).
    [97]刘素媛,韩奇志,聂振刚,贾天会.SB-YZCP人工降雨模拟装置特性分析及应用研究[J].土壤侵蚀与水土保持学报,1998,4(2):47-53.
    [98]陶俊.重庆市空气总悬浮颗粒物污染特征及来源解析[D].重庆:重庆大学,2003.
    [99]伍荣林,王振羽.风洞设计原理[M].北京:北京航空学院出版社,1985.
    [100]Ramos N G,Campillo R M T,Naito K.A study on the characteristics of variousconductive contaminants accumulated on high voltage insulators[J].IEEE Transactions onPower Delivery,1993,8(4):1842-1850.
    [101]李恒真,刘刚,李立浧.绝缘子表面自然污秽成分分析及其研究展望[J].中国电机工程学报,2011,31(16).128-137.102李恒真、叶晓君、刘刚等.广州地区输电线路外绝缘自然污秽化学成分来源分析.高电压技术.2011(8).
    [103]INTERNATIONAL ELECTROTECHNICAL COMMISSION.IEC60815-1:Selectionand dimensioning of high voltage for polluted conditions part1:Definitions,information andgeneral principles[S].Geneva:InternationalOrganization for Standardization,2002.
    [104]Lin X,Chen Z,Liu X.Natural insulator contamination test results on various shedshapes in heavy industrial contamination areas[J].IEEE Transactions on Electrical Insulation,1992,27(3):593-600.
    [105]阎东,卢明,张亚鹏.500kV获仓线污闪故障分析[J].高电压技术,2006,32(10):138-140.
    [106]Takeshi Goto,Tokui Yonemura,Yoshikatsu Hori.Artificial contamination tests ofsilicone rubber cylindrical models[C].Proceedings of The6th International Conference onProperties and Applications of Dielectric Materials,Xi'an:International ElectrotechnicalCommission,2000:272-275.
    [107]Chrzan K.Conductivity of aqueous dust solutions[J].IEEE Transactions on ElectricalInsulation,1987,22(3):241-244.
    [108]Zhou J G,Dong G,Imakoma T.Contamination performance of outer-rib typesuspension insulators[C].Transmission and Distribution Conference and Exhibition,Shanghai:International Electrotechnical Commission,2002:2185-2190.
    [109]Kazuhiko Takasu,Takatoshi Shindo,Noboru Arai.Natural contamination test ofinsulators with DC voltage energization at inland areas[J].IEEE Transactions on PowerDelivery,1988,3(4):1947-1853.
    [110]李文涛,高锡明,贺智.天广直流输电工程换流站直流场外绝缘评估[J].高电压技术,2007,33(11):251-254.
    [111]张志劲,蒋兴良,孙才新.污秽绝缘子闪络特性研究现状及展望[J].电网技术,2006,30(2):35-40.
    [112]刘煜,王少俊,范立群.硫酸钙对等值盐密贡献的定量分析与验证[J].高电压技术,2005,31(2):9-12.
    [113]关志成,张仁豫,薛家麒.自然污秽可溶盐构成及其对污闪电压值的影响[J].电瓷避雷器,1989,(6):13-18.
    [114]宿志一,刘燕生.我国北方内陆地区线路与变电站用绝缘子的直,交流自然积污试验结果的比较[J].电网技术,2004,28(10):13-17.
    [115]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T4585—2004/IEC605071991交流系统用高压绝缘子的人工污秽实验[S].北京:中国标准出版社,2004.
    [116]宋云海,基于表面电导的绝缘子积污在线监测系统[D].广州:华南理工大学硕士学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700