用户名: 密码: 验证码:
计及电网运行风险的设备状态检修理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设备检修决策是电网运行中最为关键的问题之一,适宜的检修可为电网带来极大的效益,提高设备运行的效能,反之就会带来损失,影响电网运行的可靠性与经济性,一直以来该问题是学术界和工程界关注的焦点。
     随着测量、通讯、计算机等技术的进步,以设备监测为依据的状态检修逐步得到推广和应用。在这一背景下,若从设备个体行为看,实时依据性能监测的检修决策变得容易,使检修时机与设备性能实时关联,利于提高设备个体效能;而从电网整体运行角度看,由于各设备检修时机实时关联其性能而产生差异性,设备在实施状态检修时,不免会产生设备个体间、设备个体与电网整体运行间的矛盾和冲突,进而降低电网整体运行的效能。
     由此,为解决这一矛盾与冲突,必须对设备间检修时机差异性、设备检修与电网运行间的关系进行折中处理,以此为线索,本文对电网运行中设备的检修理论进行了深入研究,主要工作和创新成果体现如下:
     (1)在对已有的设备故障率研究成果归纳总结的基础上,利用全概率公式,给出计及设备健康状态、故障后维修及预防性检修共同作用的设备故障率评价和预测模型。其焦点体现在:设备健康指数与其故障率之间的关系,故障后维修、预防性检修与设备故障率之间的关系,设备检修决策的不确定性分析,设备故障概率、故障率、设备状态(可靠、不可靠)之间的关系。该研究实现状态监测环境下,计及检修的设备性能评价及发展趋势预测,是电网设备检修理论研究的基础。
     (2)提出电网设备状态检修策略评价方法。从设备个体与电网整体运行的角度,定义了计及检修作用的电网运行风险指标,并给出了相应的求解流程。依据该风险指标,综合考虑设备个体性能及其在电网中的作用,针对设备检修,提出设备重要性概念,对相关指标进行量化,实现设备检修策略在个体与电网运行间进行折中表达。基于此,提出设备状态检修下的电网检修方案评价方法。该研究从电网整体运行的角度,实现计及电网运行风险的设备检修过程中设备个体重要性分析与电网检修方案评价,为电网中设备状态检修决策提供重要的依据。
     (3)提出电网状态检修的新概念,构建电网状态检修模型并给出相应的求解方法,使电网设备状态检修决策从设备个体层面提升到电网层面。为解决电网整体运行与设备个体间的矛盾和冲突,在分析设备检修与电网运行间的辩证关系的基础上,给出了电网状态检修的概念,从故障、检修两个角度分别定义故障风险、检修风险,并以研究周期内两种风险之和最小为目标,构建电网状态检修决策模型,并给出相应的解决方法。该模型和方法将设备检修、运行以及电网整体性能在概率的引导下相互牵制,算例分析表明了电网状态检修概念、模型与求解方法的正确性和有效性。
     (4)在电网状态检修概念下,针对设备在拓扑上仅与变电站关联的设备状态检修决策问题,建立变电站状态检修决策模型。对变电站实施状态检修决策必要性阐述的基础上,提出在设备状态监测、预测基础上的设备状态转移马尔科夫过程,基于马尔科夫过程方程实现研究周期内设备多状态概率的求解。继而给出因检修时机而变动的检修风险与故障风险的表达,并以二者之和最小为目标构建变电站设备状态检修决策模型,利用遗传算法实现模型的求解,通过算例阐明本研究的必要性和有效性。该研究是电网状态检修理论的基础,是实施复杂电网状态检修分解协调决策过程中的重要环节。
     (5)在设备检修理论研究的基础上,构建和开发设备状态检修决策的辅助支持系统。从电网整体运行层面对检修策略进行定量的风险分析,具体包括电网运行风险评估、设备重要性评价及检修方案评价等三项功能,提供友好的人机交互界面,同时与SQL数据库存储与处理技术结合,便于结果查看和分析。通过在山东电网及多个地区电网的应用,验证了该系统对应理论和方法的正确性和有效性。
Equipment maintenance decision-making is one of the most crucial issues in the power grid. Appropriate maintenance can bring great benefits to the power grid, and increase equipment operation efficiency. On the contrary, it will cause sacrifices, and affect the reliability and economic of power grid operation. So, maintenance decision-making has been always the focus of attention of the academic and engineering.
     Now, the concept of condition-based maintenance (CBM) has been receiving increasing attention and trust with the development of power system technology. It is based on the equipment monitoring and diagnosis. The appropriate maintenance time for the single equipment can be found under the background of CBM, and this not only makes the decision of maintenance easy, but also improves the efficiency of the single equipment. However, from the perspective of the whole power transmission system, the appropriate maintenance time of the equipment depends on its own performance instantly, which arouses the discrepancy between the equipment and the power transmission system. Once this discrepancy can not be compromised, it will certainly arouse contradictions and conflicts between individual and whole, and loses the integral efficiency.
     Under this background, in order to solve those contradictions and conflicts, it needs a good compromised mechanism to deal with the differences of equipments maintenance time and the relationship between equipments maintenance and integral efficiency of transmission system operation. Based on this line, the maintenance theory has been researched in this thesis for transmission system equipments. The main works and innovative achievements of the thesis are as follows:
     1. Research on equipment failure rate expression and prognostic technology. Based on the summarizing the relative outcome, from the viewpoint of probability, the equipment failure rate model is given taking into account the device status, corrective maintenance and preventive maintenance using the total probability formula. The focus is reflected like:the relationship between health index and the equipment failure rate, the role of corrective maintenance and preventive maintenance, the probability of maintenance decision making, the relationship between the probability of equipment failure, failure rate and equipment status (reliable, unreliable). In short, with the existing research results, the comparatively systematic analysis and research to the failure rate has been carried on in this part, which gives a precondition for risk-based transmission system maintenance theory.
     2. Maintenance strategy evaluation method was proposed taking into account the power grid operation risk. On the basis of calculating expected energy not served in the power grid, the cost risk indicators, security risk indicators and environmental risk indicators were deduced from the comprehensive view of equipment individual and the whole power grid. According to the CBM needs, the concept of equipment importance (EI) was proposed. El index was to quantify considering the individual performance of equipment and overall operating performance of the grid. The order of maintenance was proposed according to El index. On the other hand, power grid maintenance strategy evaluation and sorting methods was given based on risk. The methods take into account the relationship between the equipment performance and the maintenance strategy. From the perspective of the whole power grid operation, the equipment important analysis and power gird maintenance strategy evaluation were given based on risk, which provide the quantitative basis for the CBM in power grid.
     3. On the analysis of dialectical relationship between equipment maintenance and system operation, the concept of condition-based maintenance for power grid (CBM-PG) is put forward. In CBM-PG, from the perspective of failure and maintenance, the failure risk and maintenance risk are defined. On the basis of the condition trend prediction for the transmission equipment, the mathematics model and corresponding solutions are presented to minimize the sum of failure risk and maintenance risk, and get a balance between the equipment maintenance, operation and the efficiency of power transmission system. The detail analysis of the RBTS-BUS6and IEEE-RTS79system demonstrates the validity and practicability of the proposed concept, which provides a necessary foundation for the further research on the cooperation decision-making between maintenance and operation of power systems.
     4. Under the study of condition-based maintenance for power grid (CBM-PG), the model and solution of condition-based maintenance for substation (CBM-S) was studied. The equipment involved in this paper were only associated with the substation from the view of the topology. The necessity of the research for CBM-S was discussed first, and the equipment condition in the research time was obtained by Markov process under the technique of state monitoring and forecasting. Furthermore, the quantitative expression of the failure risk and maintenance risk were provided, in which the maintenance time was the only parameter. Then, the decision-making model of CBM-S was established. The goal of the model was to minimize the sum of failure risk and maintenance risk, and the maintenance constraints were also considered in this model. The genetic algorithm was selected to solve the model. The analysis of simple example demonstrates the necessity and effectiveness of the study in this paper. This paper is the further study of the CBM-PG, and is an important part of the decomposition and coordination of the decision-making process for CBM-PG.
     5. Under the study of condition-based maintenance for power grid based on risk, a Decision Support System for CBM is built. The system has three basis functions:the risk assessment of power grid, the analysis of equipment important for maintenance and the analysis of equipment maintenance strategy based on risk. The system provides a friendly interactive interface, and is easy to use. It has been used in the Shandong power transmission system, and the results demonstrate the validity and practicability of the system.
引文
[1]刘振亚.特高压电网口[M].北京:中国经济出版社,2005.
    [2]Endrenyi J, Anders G, Leite da Silva A. Probabilistic evaluation of the effect of maintenance on reliability-An application [J]. IEEE Transactions on Power Systems,1998,13(2):576-583.
    [3]Endrenyi J, Aboresheid S, Allan R, et al. The present status of maintenance strategies and the impact of maintenance on reliability [J]. IEEE Transactions on Power Systems,2001,16(4):638-646.
    [4]郭永基.电力系统可靠性原理和应用[M].清华大学出版社,1986.
    [5]孙才新,电工技术,陈伟根,等.电气设备油中气体在线监测与故障诊断技术[M].科学出版社,2003.
    [6]Aschenbrenner D, Kranzh H G. On line PD measurements and diagnosis on power transformers [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(2):216-222.
    [7]Kranz H G. Fundamentals in computer aided PD processing, PD pattern recognition and automated diagnosis in GIS [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(1):12-20.
    [8]王红宇,苏鹏声,王祥珩,等.油浸式大型电力变压器表面温度预测模型[J].清华大学学报(自然科学版),2005,45(4):569-572.
    [9]Schafer M, Feser K. Thermal monitoring of large power transformers [C]. International Conference on Electric Power Engineering,1999.
    [10]Tang W, WU Q, Richardson Z. Equivalent heat circuit based power transformer thermal model [C]. IET Proceedings-Electric Power Applications,2002.
    [11]韩学军,刘宾涛,陈永辉.基于无线通信的高压断路器温度在线监测系统[J].电力系统自动化,2006,30(8):84-8.
    [12]Aggarwal R, Johns A, Jayasinghe J, et al. An overview of the condition monitoring of overhead lines [J]. Electric Power Systems Research,2000, 53(1):15-22.
    [13]赵增华,石高涛,韩双立,等.基于无线传感器网络的高压输电线路在线监测系统[J].电力系统自动化,2009,33(19):80-84.
    [14]焦尚彬,刘丁,郑岗,等.基于遥测技术的输电线路绝缘子污秽在线监测系统[J].电力系统自动化,2004,28(15):71-75.
    [15]袁志坚,孙才新,李剑,等.基于模糊多属性群决策的变压器状态维修策略研究[J].电力系统自动化,2004,28(11):66-70.
    [16]熊浩,孙才新,张昀,等.电力变压器运行状态的灰色层次评估模型[J].电力系统自动化,2007,31(7):55-60.
    [17]廖瑞金,王谦,骆思佳,等.基于模糊综合评判的电力变压器运行状态评估模型[J].电力系统自动化,2008,32(3):70-75.
    [18]Isermann R. Process fault detection based on modeling and estimation methods-A survey [J]. Automatica,1984,20(4):387-404.
    [19]Ogunyemi O T, Nelson P I. Prediction of Gamma failure times [J]. IEEE Transactions on Reliability,1997,46(3):400-405.
    [20]Nelson W. Weibull prediction of a future number of failures [J]. Quality and Reliability Engineering International,2000,16(1):23-26.
    [21]Rietman E A, Beachy M. A study on failure prediction in a plasma reactor [J]. IEEE Transactions on Semiconductor Manufacturing,1998,11(4):670-680.
    [22]YANG S. A condition-based failure-prediction and processing-scheme for preventive maintenance [J]. IEEE Transactions on Reliability,2003,52(3): 373-383.
    [23]Dorofee A J, Walker J A, Alberts C J, et al. Continous risk management guidebook [M]. DTIC Document,1996.
    [24]Hughes D, Dennis G, Walker J, et al. Condition Based Risk Management (CBRM)-Enabling Asset Condition Information to be Central to Corporate Decision Making [J]. Engineering Asset Management,2006,1212-1217.
    [25]Hughes D. The use of Health Indices" to determine end of life and estimate remnant life for distribution assets [C].17th International Conference on Electricity Distribution,2003.
    [26]潘乐真,张焰,俞国勤,等.状态检修决策中的电气设备故障率推算[J].电力自动化设备,2010,30(2):91-94.
    [27]Nakagawa T. Optimum policies when preventive maintenance is imperfect [J]. IEEE Transactions on Reliability,1979,28(4):331-332.
    [28]Nakagawa T. Imperfect preventive-maintenance [J]. IEEE Transactions on Reliability,1979,28(5):402-402.
    [29]Brown M, Proschan F. Imperfect repair [J]. Journal of Applied Probability, 1983,851-859.
    [30]Block H W, Borges W S, Savits T H. Age-dependent minimal repair [J]. Journal of Applied Probability,1985,370-385.
    [31]Block H, Borges W, Savits T. A general age replacement model with minimal repair [J]. Naval Research Logistics (NRL),1988,35(5):365-372.
    [32]Makis V, Jardine A K S. Optimal replacement policy for a general model with imperfect repair [J]. Journal of the Operational Research Society,1992,43(2): 111-120.
    [33]Chan J K, Shaw L. Modeling repairable systems with failure rates that depend on age and maintenance [J]. IEEE Transactions on Reliability,1993,42(4): 566-571.
    [34]Malik M A K. Reliable preventive maintenance scheduling [J]. AIIE transactions,1979,11(3):221-228.
    [35]Martorell S, Sanchez A, Serradell V. Age-dependent reliability model considering effects of maintenance and working conditions [J]. Reliability Engineering & System Safety,1999,64(1):19-31.
    [36]Kijima M, Morimura H, Suzuki Y. Periodical replacement problem without assuming minimal repair [J]. European Journal of Operational Research,1988, 37(2):194-203.
    [37]韩帮军,范秀敏,马登哲.基于可靠度约束的预防性维修策略的优化研究[J].机械工程学报,2003,39(6):102-105.
    [38]赵渊,周家启,周念成,等.大电力系统可靠性评估的解析计算模型[J].中国电机工程学报,2006,26(5):19-25.
    [39]Billinton R, LI W. Reliability assessment of electric power systems using Monte Carlo methods [M]. Springer,1994.
    [40]Billinton R, LI W. A system state transition sampling method for composite system reliability evaluation [J]. IEEE Transactions on Power Systems,1993, 8(3):761-770.
    [41]Mello J, Pereira M, Leite Da Silva A. Evaluation of reliability worth in composite systems based on pseudo-sequential Monte Carlo simulation [J]. IEEE Transactions on Power Systems,1994,9(3):1318-1326.
    [42]Leite Da Silva A, Da Fonseca Manso L, De Oliveira Mello J, et al. Pseudo-chronological simulation for composite reliability analysis with time varying loads [J]. IEEE Transactions on Power Systems,2000,15(1):73-80.
    [43]任震,李本河.大型电力系统可靠性评估的模型及算法[J].电力系统自动化,1999,23(5):25-27.
    [44]宋晓通,谭震宇.基于自适应算法的电力系统可靠性评估[J].清华大学学报:自然科学版,2007,47(S1):1040-1044.
    [45]王晓滨,郭瑞鹏,曹一家,等.电力系统可靠性评估的自适应分层重要抽样法[J].电力系统自动化,2011,35(3):33-38.
    [46]程林,郭永基.可靠性评估中多重故障算法的研究[J].清华大学学报:自然科学版,2001,41(3):69-72.
    [47]Ruihua Z, Yunting S, Luguang Y, et al. Optimal reliability of composite power systems using genetic algorithms [C]. International Conference on Power System Technology,2002.
    [48]宋云亭,周双喜,鲁宗相,等.基于GA的发输电合成系统最优可靠性计算新方法[J].电网技术,2004,28(15):25-30.
    [49]吴开贵,王韶,张安邦.基于RBF神经网络的电网可靠性评估模型研究[J].中国电机工程学报,2000,20(6):9-12.
    [50]谢开贵,周家启.基于ANN削减负荷的发输电组合系统可靠性评估[J].电 力系统自动化,2002,26(22):31-33.
    [51]石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J].中国电机工程学报,2008,28(4):9-15.
    [52]刘森森,陈为化,江全元.基于并行计算的电力系统风险评估[J].浙江大学学报:工学版,2009,43(3):589-595.
    [53]WANG H. A survey of maintenance policies of deteriorating systems [J]. European Journal of Operational Research,2002,139(3):469-489.
    [54]Block H W, Langberg N A, Savits T H. Repair replacement policies [J]. Journal of Applied Probability,1993,30:194-206.
    [55]Bruns P. Optimal maintenance strategies for systems with partial repair options and without assuming bounded costs [J]. European Journal of Operational Research,2002,139(1):146-165.
    [56]CHEN M, Feldman R M. Optimal replacement policies with minimal repair and age-dependent costs [J]. European Journal of Operational Research,1997, 98(1):75-84.
    [57]CHUN Y. Optimal number of periodic preventive maintenance operations under warranty [J]. Reliability Engineering & System Safety,1992,37(3):223-225.
    [58]Borgonovo E, Marseguerra M, Zio E. A Monte Carlo methodological approach to plant availability modeling with maintenance, aging and obsolescence [J]. Reliability Engineering & System Safety,2000,67(1):61-73.
    [59]Hosseini M M, Kerr R M, Randall R B. An inspection model with minimal and major maintenance for a system with deterioration and Poisson failures [J]. IEEE Transactions on Reliability,2000,49(1):88-98.
    [60]Dekker R, Wildeman R E, Van Der Duyn Schouten F A. A review of multi-component maintenance models with economic dependence [J]. Mathematical Methods of Operations Research,1997,45(3):411-435.
    [61]Ohnishi M, Kawai H, Mine H. An optimal inspection and replacement policy for a deteriorating system [J]. Journal of Applied Probability,1986,23:973-988.
    [62]Marseguerra M, Zio E, Podofillini L. Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation [J]. Reliability Engineering & System Safety,2002,77(2):151-165.
    [63]Dieulle L, Berenguer C, Grall A, et al. Sequential condition-based maintenance scheduling for a deteriorating system [J]. European Journal of Operational Research,2003,150(2):451-461.
    [64]CHEN D, Trivedi K S. Optimization for condition-based maintenance with semi-Markov decision process [J]. Reliability Engineering & System Safety, 2005,90(1):25-29.
    [65]Barbera F, Schneider H, Watson E. A condition based maintenance model for a two-unit series system [J]. European Journal of Operational Research,1999, 116(2):281-290.
    [66]Castanier B, Grall A, Berenguer C. A condition-based maintenance policy with non-periodic inspections for a two-unit series system [J]. Reliability Engineering & System Safety,2005,87(1):109-120.
    [67]YANG Z M, Djurdjanovic D, NI J. Maintenance scheduling in manufacturing systems based on predicted machine degradation [J]. Journal of Intelligent Manufacturing,2008,19(1):87-98.
    [68]Camci F. System maintenance scheduling with prognostics information using genetic algorithm [J]. IEEE Transactions on Reliability,2009,58(3):539-552.
    [69]Levitin G, Lisnianski A. Optimization of imperfect preventive maintenance for multi-state systems [J]. Reliability Engineering & System Safety,2000,67(2): 193-203.
    [70]Ming Tan C, Raghavan N. A framework to practical predictive maintenance modeling for multi-state systems [J]. Reliability Engineering & System Safety, 2008,93(8):1138-1150.
    [71]Berdinyazov A, Camci F, Sevkli M, et al. Economic analysis of maintenance policies for a system [C]. Diagnostics for Electric Machnies, Power Electronics and Drives,2009.
    [72]Huynh K, Barros A, Berenguer C, et al. A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events [J]. Reliability Engineering & System Safety,2011,96(4): 497-508.
    [73]束洪春.电力系统以可靠性为中心的维修[M].机械工业出版社,2009.
    [74]陈丽娟,贾立雄,胡小正.2007年全国输变电设施和城市用户供电可靠性分析[J].中国电力,2008,41(5):1-8.
    [75]LI W, Korczynski J. A reliability-based approach to transmission maintenance planning and its application in BC hydro system [J]. IEEE Transactions on Power Delivery,2004,19(1):303-308.
    [76]魏少岩,徐飞,闵勇.输电线路检修计划模型[J].电力系统自动化,2006,30(17): 41-44.
    [77]冯永青,吴文传,张伯明,等.基于可信性理论的输电网短期线路检修计划[J].中国电机工程学报,2007,27(4):65-71.
    [78]许旭锋,黄民翔,王婷婷,等.基于机会约束2层规划的输电线路检修计划优化[J].电力系统自动化,2009,33(2):25-29.
    [79]王瑞祥,夏莹,熊小伏.计及气象因素的输电线路维修风险分析[J].电网技术,2010,34(1):219-222.
    [80]丁明,冯永青.发输电设备联合检修安排模型及算法研究[J].中国电机工程学报,2004,24(5):18-23.
    [81]Billinton R, Mo R. Composite system maintenance coordination in a deregulated environment [J]. IEEE Transactions on Power Systems,2005,20(1):485-492.
    [82]舒隽,张粒子,黄弦超.市场环境下中长期发输电协调检修计划优化[J].电力系统自动化,2007,31(2):27-31.
    [83]方陈,夏清,胡朝阳,等.月度发输电检修一体优化方法[J].电力系统自动化,2011,35(11):50-54.
    [84]FU Y, Shahidehpour M, LI Z. Security-constrained optimal coordination of generation and transmission maintenance outage scheduling [J]. IEEE Transactions on Power Systems,2007,22(3):1302-1313.
    [85]WU L, Shahidehpour M, LI T. GENCO's risk-based maintenance outage scheduling [J]. IEEE Transactions on Power Systems,2008,23(1):127-136.
    [86]FU Y, LI Z, Shahidehpour M, et al. Coordination of midterm outage scheduling with short-term security-constrained unit commitment [J]. IEEE Transactions on Power Systems,2009,24(4):1818-1830.
    [87]WU L, Shahidehpour M, FU Y. Security-constrained generation and transmission outage scheduling with uncertainties [J]. IEEE Transactions on Power Systems,2010,25(3):1674-1685.
    [88]许婧,王晶,高峰,等.电力设备状态检修技术研究综述[J].电网技术,2000,24(8): 48-52.
    [89]黄建华,全零三.变电站高压电气设备状态检修的现状及其发展[J].电力系统自动化,2001,25(16):56-61.
    [90]张怀宇,朱松林,张扬,等.输变电设备状态检修技术体系研究与实施[J].电网技术,2009,33(13):70-73.
    [91]陈安伟.输变电设备状态检修的应用[J].电网技术,2009,33(20):215-218.
    [92]Brauer D C, Brauer G D. Reliability-centered maintenance [J]. IEEE Transactions on Reliability,1987,36(1):17-24.
    [93]吕一农.以可靠性为中心的维修(RCM)在电力系统中的应用研究[D].浙江大学,2005.
    [94]Anders G, Endrenyi J, Yung C. Risk-based planner for asset management [J]. IEEE Computer Applications in Power,2001,14(4):20-26.
    [95]Kuntz P A, Christie R D, Venkata S S. A reliability centered optimal visual inspection model for distribution feeders [J]. IEEE Transactions on Power Delivery,2001,16(4):718-723.
    [96]Kuntz P A, Christie R D, Venkata S S. Optimal vegetation maintenance scheduling of overhead electric power distribution systems [J]. IEEE Transactions on Power Delivery,2002,17(4):1164-1169.
    [97]LI F, Brown R E. A cost-effective approach of prioritizing distribution maintenance based on system reliability [J]. IEEE Transactions on Power Delivery,2004,19(1):439-441.
    [98]Bertling L, Eriksson R, Allan R. Relation between preventive maintenance and reliability for a cost-effective distribution system [C].2001 IEEE Porto Power Tech Proceedings.
    [99]Bertling L, Allan R, Eriksson R. A reliability-centered asset maintenance method for assessing the impact of maintenance in power distribution systems [J]. IEEE Transactions on Power Systems,2005,20(1):75-82.
    [100]于尔铿.电力市场[M].中国电力出版社,1998.
    [101]孟凡强,许克明,王亮,等.电力市场下的发电机组状态检修[J].电力系统自动化,2004,28(17):41-44.
    [102]刘长胜,葛嘉,沈勇环.基于马尔可夫链的发电机状态检修决策[J].电力系统及其自动化学报,2006,18(2):82-85.
    [103]Jiang Y, Mccalley J D, Van Voorhis T. Risk-based resource optimization for transmission system maintenance[J]. IEEE Transactions on Power Systems, 2006,21(3):1191-1200.
    [104]Jiang Y, Ni M, Mccalley J D, et al. Risk-based maintenance allocation and scheduling for bulk electric power transmission system equipment [C]. Proceedings of the 15th International Confeence on Systems Engineering, 2002.
    [105]Yang F, Chang C. Multiobjective Evolutionary Optimization of Maintenance Schedules and Extents for Composite Power Systems [J]. IEEE Transactions on Power Systems,2009,24(4):1694-1702.
    [106]Yang F, Kwan C M, Chang C. Multiobjective evolutionary optimization of substation maintenance using decision-varying Markov model [J]. IEEE Transactions on Power Systems,2008,23(3):1328-1335.
    [107]Abiri-Jahromi A, Fotuhi-Firuzabad M, Abbasi E. An efficient mixed-integer linear formulation for long-term overhead lines maintenance scheduling in power distribution systems [J]. IEEE Transactions on Power Delivery,2009, 24(4):2043-2053.
    [108]赵明欣,鲁宗相,吴林林,等.基于风险评估的输变电设备维修技术[J].电力系统自动化,2009,33(19):30-35.
    [109]潘乐真,鲁国起,张焰,等.基于风险综合评判的设备状态检修决策优化[J].电力系统自动化,2010,34(11):28-32.
    [110]Harker K. Power system commissioning and maintenance practice [M]. Inspec/Iee,1998.
    [111]张建中,许绍吉.线性规划丛书[M].科学出版社,1990.
    [112]Subcommittee P. IEEE reliability test system [J]. IEEE Transactions on Power Apparatus and Systems,1979, PAS-98(6):2047-2054.
    [113]Billinton R, Kumar S, Chowdhury N, et al. A reliability test system for educational purposes-basic data [J]. IEEE Transactions on Power Systems, 1989,4(3):1238-1244.
    [114]朱承治.输变电设备优化检修(OM)若干关键技术研究[D].杭州:浙江大学,2008.
    [115]玄光男,程润伟.遗传算法与工程优化[M].清华大学出版社,2004.
    [116]费胜巍,孙宇.融合粗糙集与灰色理论的电力变压器故障预测[J].中国电机工程学报,2008,28(16):154-160.
    [117]黄建,胡晓光,巩玉楠.基于经验模态分解的高压断路器机械故障诊断方法[J].中国电机工程学报,2011,31(12):108-113.
    [118]杨良军,熊小伏,张媛.基于灰色关联度和理想解法的电力设备状态维修策略[J].电力系统保护与控制,2009,37(18):74-78.
    [119]Jirutitijaroen P, Singh C. The effect of transformer maintenance parameters on reliability and cost:A probabilistic model [J]. Electric Power Systems Research, 2004,72(3):213-224.
    [120]李文沅,周家启,卢继平,等.电力系统风险评估:模型,方法和应用[M].科学出版社,2006.
    [121]陈学楚.维修基础理论[M].科学出版社,1998.
    [122]宁辽逸,吴文传,张伯明.电力系统运行风险评估中元件时变停运模型分析[J].电力系统自动化,2009,33(16):7-12.
    [123]Vega M, Sarmiento H G. Algorithm to evaluate substations reliability with cut and path sets [C].39th IAS Annual Meeting,2004.
    [124]Heo J H, Kim M K, Park G P, et al. A Reliability-Centered Approach to an Optimal Maintenance Strategy in Transmission Systems Using a Genetic Algorithm [J]. IEEE Transactions on Power Delivery,2011,26(4):2171-2179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700