用户名: 密码: 验证码:
双转子永磁同步风力发电机控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着不可再生资源的日益枯竭,风力发电作为一项可再生能源技术,在全球范围内得到了高度重视。提高风能利用率是风力发电技术研究的热点之一。以往的研究工作主要集中于通过改良控制方法来实现最大功率跟踪,但是该类方法受到风能利用系数上限的限制。本文提出了一种新型的风力发电机—双转子永磁同步风力发电机,其电枢绕组与永磁转子均可自由旋转,实现风能的二次利用,从而提高了系统的风能利用率。在理想条件下,该类电机的相对转速比普通永磁同步电机增加了一倍,提高了发电机的输出电压和输出功率。而且该类电机的最低工作风速仅为普通永磁同步风力发电机的一半,最高工作风速与普通永磁同步风力发电机一样,从而加宽了发电机的工作范围。因此,双转子永磁同步风力发电机在风力发电领域具有独特的优势。
     由于双转子永磁同步风力发电机与普通永磁同步风力发电机在结构上有很大不同,因此研究其最大功率跟踪控制和变桨距控制有着重要的理论和实际意义。针对不同的风况,本文分别对双转子永磁同步风力发电机设计了不同的控制策略,以满足发电机在不同工况下的运行要求。根据双转子永磁同步发电机的特点,本文提出了一种新颖的前后风力机风轮半径的设计方法,以实现发电系统的最大功率跟踪。同时,本文也全面分析了其全风况运行的控制策略。
     首先介绍了双转子永磁风力发电机的结构、工作原理,并根据相对运动原理推导出双转子永磁同步风力发电机的三相静止和dq旋转坐标系下的数学模型。利用矢量控制和空间矢量控制对双转子永磁同步电机进行了仿真,验证了双转子永磁同步电机数学模型的正确性。
     其次,本文回顾了永磁同步风力发电系统的数学模型,并对永磁同步风力发电机的最大功率跟踪控制策略进行了总结,并介绍了网侧变换器的控制方法。这些控制方法对双转子永磁同步风力发电机的控制具有重要参考价值。
     根据双转子永磁同步发电机的结构特点,本文通过分析前后风力机的数学模型和机械运动方程,提出了一种新颖的前后风力机风轮半径的设计方法。利用该方法进行前后风轮半径的设计,双转子永磁同步风力发电机的最大功率跟踪可采用传统的永磁同步风力发电机最大功率跟踪控制方法,分别对前后两个风轮进行最大功率跟踪控制从得以实现。同时,本文分析了后风力机可能出现的工作模式,提出了风力机风轮半径设计应注意的问题。
     由于双转子永磁同步发电机的内、外转子相对运动可提高发电机的输出功率,因此即便在低于额定风速运行时,双转子永磁同步风力发电机的输出功率也可能会高于额定功率。针对这一特殊工作模式,提出了一种将输出功率限定在额定功率的控制策略:前风力机仍采取最大功率跟踪控制,由额定功率、前后风力机的转速和绕组铜耗等信号得到后风力机的给定转速信号,与后风力机的即时转速形成闭环的变桨距控制,调节后风力机的桨距节距角,控制后风力机的转速,限制后风力机的输出机械功率,将双转子永磁同步风力发电机的输出功率限制在额定点附近。高于额定风速时,需控制后风力机停转,双转子永磁同步风力发电机为一台普通的永磁同步风力发电机,前风力机采取变桨距控制,便可限定发电机的输出功率
     在Matlab/Simulink仿真软件中搭建了系统仿真模型。仿真结果表明,文章所提出的最大功率跟踪控制和变桨距控制策略的正确性;双转子永磁同步风力发电机因后风力机可二次利用风能,提高了系统的风能利用率,具有一定的应用和理论研究意义。
With the increasingly exhausted energy resources, wind power generation, as a renewableenergy, has caused more and more attention recently. Along with the development of windpower generation, improving the utilization rate of wind power has become a hot spot.Previous research always concerned the controlling methods to improve the utilization ratio,but there is an upper limit on wind energy utilization coefficient. In this paper, a novel windpower generator, the dual-rotor permanent-magnet wind generator, whose armature part andpermanent-magnet rotor rotate at the opposite directions, was proposed. In an ideal condition,the relative speed and power output of generator double, enhancing the output voltage andgreatly improving the wind energy utilization. Furthermore, the lowest working wind speed isjust the half of traditional permanent-magnet generators while the highest keeps the same,thus widening the range of the working wind speed. So there is a unique advantage in windpower field.
     However, the structure design of the dual-rotor permanent-magnet wind generator isvery different from that of the traditional permanent-magnet synchronous wind powergenerator. Thus the research of its maximum power point tracking and pitch control has animportant theoretical and practical significance. So aiming at the dual-rotorpermanent-magnet synchronous wind power generator, this paper comprehensively analysesthe control strategy of the whole wind conditions.
     Firstly, a brief introduction about the physical construction and working principle of thedual-rotor permanent-magnet synchronous wind power generator is presented, and themathematical model of the dual-rotor permanent-magnet synchronous wind power generatorunder the three-phase static and dq rotating coordinate is deduced according to the principleof the opposite movement. As the electromagnetic relation of the dual-rotorpermanent-magnet wind generator is the same as that of traditional permanent-magnetsynchronous wind power generator, the dual-rotor permanent-magnet synchronous windpower generator used vector control and space vector PWM control is simulated byMATLAB software, which verifies the validity of the mathematical model of the dual-rotorpermanent-magnet synchronous wind power generator.
     Aiming at the dual-rotor permanent-magnet synchronous wind power generator andtraditional permanent-magnet synchronous wind power generator having equal properties inmany principle, the mathematical model of the dual-rotor permanent-magnet synchronouswind power generator system, including the wind turbine, permanent-magnet synchronouswind power generator and grid-side converter, is analyzed firstly. Then all kinds of themaximum power point tracking control strategies of permanent-magnet synchronous windpower generator are summarized and the control method of the grid-side converter isintroduced. All in all, what have done above pave a solid way for finding a appropriatecontrol strategy of the dual-rotor permanent-magnet synchronous wind power generator.
     The dual-rotor permanent-magnet synchronous wind power generator as a novel motorwhose the greatest innovation is are that its outer and inner rotor can rotate freely and it canutilize wind energy secondly will improve wind utilization coefficient. Through analyzing themathematical model of the front and back wind turbine and mechanical motion equation ofgenerator, a design method about the rotor radius of the wind turbine is obtained. Accordingto the mechanical motion equation, combined with the maximum power tracking controlmethod of the traditional permanent-magnet synchronous wind power generator, themaximum power control method without detection wind speed is presented. Besides, theissues to be cared in the rotor radius design of the wind turbine, based on the research of allpossible work modes of the back wind turbine, is proposed.
     When dual-rotor permanent-magnet synchronous wind turbine at lower than the ratedwind speed operation, the relative movement between inside rotor and outside rotor improvethe output voltage and the power output of generator. Operating at the lower than the ratedwind speed, because the back wind turbine utilize wind energy twice, dual-rotorpermanent-magnet synchronous wind power generator will make the output power ofgenerator may be higher than the rated power. Aiming at the dual-rotor permanent-magnetsynchronous wind power generator of this special working mode, it propose a control strategywhich make output power of generator near the rated power. The front wind turbine still keepthe maximum power tracing control, thus it can get the given speed signal of back windturbine combining the rated power, the speed of generator, the winding copper loss and otherconditions. the signal and the real-time speed of back wind turbine forming closed loop control, it can adjust pitch angles of back wind turbine which can control the speed andrestrict the output power of the back wind turbine. It will restrict the power output near therated power. Higher than the rated wind speed operation, the back wind turbine must stop bymechanical control, thus dual-rotor permanent-magnet synchronous wind generator regard asordinary permanent-magnet synchronous wind generator. It take pitch control method toadjust front wind turbine to keep output power near the rated power of generator.
     Simulation model of dual-rotor permanent-magnet synchronous wind power generationsystem was built in Matlab/simulink software.The simulation results show that the correctnessof the maximum power tracing control and the pitch control strategy. It has certain theoreticalresearch significance because the back wind turbine can utilize wind energy twice and greatlyimprove wind energy utilization of the system.
引文
[1]世界可再生能源政策委员会,《世界可再生能源发展展望2010》,2010
    [2]国家能源局,《中国能源发展白皮书2009》,2010
    [3]全球风能理事会,《全球风电发展展望2010》,2010
    [4]李俊峰,施鹏飞,高虎.中国风电发展报告,2010
    [5]中国气象局,《中国风能资源评估》,2009
    [6]国家能源局,《中国能源发展白皮书2009》,2010
    [7]王仲颖等,《中国可再生能源产业发展报告2009》,中国化工出版社
    [8]Katsumi Nishida, Tarek Ahmed and Mutsuo Nakaoka. A Cost-Effective High-Efficiency Power Conditioner With Simple MPPT Control Algorithm for Wind-Power Grid Integration[J]. IEEE Transactions On Industry Applications, Vol.47, No.2, pp.893-900, Mar.2011.
    [9]Ching-Tsai Pan, Yu-Ling Juan. A Novel Sensorless MPPT Controller for a High-Efficiency Microscale Wind Power Generation System[J]. IEEE Transactions On Energy Conversion, Vol.25, No.1, pp.207-216, Mar,2010.
    [10]M. Singh, V. Khadkikar A,Chandra. Grid synchronisation with harmonics and reactive power compensation capability of a permanent-magnet synchronous generator-based variable speed wind energy conversion system[J]. IET Power Electron., Vol.4, pp.122-130, May,2009.
    [11]曹江华,杨向宇,姚佳双转子永磁同步风力发电机设计与应用[J].微电机,2008,41(2):65-66,68.
    [12]余海阔,陈世元,王耀南.双转子电机及其应用的分析[J].电机技术,2009,5:1-4.
    [13]DONALD H. KELLY. Double-Rotor Induction Motor[J]. IEEE Transactions on Power Apparatus and Systems,1969,88,(7):1086-1092.
    [14]Zhang Fengge, Neuberger N., Nolle E., etal. A new type of induction machine with inner and outer double rotors[C]. Proceedings of IEEE Conference on Power Electronics and Motion Control, Xi'an, China,2004(1):286-289
    [15]Zhang Fengge, Liu Guangwei and Wang Xin. Characteristic simulation of a novel PMSM with opposite-rotation dual rotors[C]. Proceedings of IEEE Conference on Industrial Electronics and Applications, Harbin, China,2007:618-621
    [16]罗玉涛,周斯加,邓志君.基于双转子电动机的混合四轮驱动系统[J].机械工程学报,2007,43(8):123-128
    [17]周斯加,罗玉涛,黄向东.双转子电机混合动力汽车驱动特性研究[J].中国机械工程,2008,19(16):2011-2015
    [18]李练兵,,陈鹏,史广奎等.混合动力汽车用双转子电机的建模与仿真[J].电机与控制学报,2008,12(4):403-409
    [19]罗玉涛,旷鹏,刘延伟.对转双转子电机在电动汽车上的驱动特性[J].华南理工大学学报(自然科学版),2008,36(2):7-12
    [20]Atsuo Kawamura, Nobukazu Hoshi. Analysis of Anti-Directional-Twin-Rotary Motor Drive Characteristics for Electric Vehicles [J]. IEEE Transactions on Industrial Electronics,1997,44(1):64-70
    [21]Nobukazu Hoshi, Kantaro Yoshimoto, Atsuo Kawamura. Driving Characteristics of Anti-Directional-Twin-Rotary Motor on Electric Vehicle Simulator[C]. Proceedings of the IEEE Conference on Power Conversion, Nagaoka, PCC, Japan,1997:19-24
    [22]Hoshi Nobukazu, Kawamura Atsuo. Experimental discussion on the permanent magnet type anti-directional-twin-rotary motor drive for electric vehicle[C]. Proceedings of the4th International Workshop on Advanced Motion Control, Tsu, Japan,1996:425-429
    [23]Kawamura Atsuo, Hoshi Nobukazu,. Survey of anti-directional-twin-rotary motor drive characteristics for electric vehicles[C]. Proceedings of the IEEE Conference on Industrial Electronics, Control, and Instrumentation. Taipei, Taiwan,1996:41-46.
    [24]Riadh W. Y. Habash and Voicu Groza. Performance Optimization of a Dual-Rotor Wind Turbine System[C]. Proceedings of IEEE Conference on Electric Power and Energy Conference (EPEC), Halifax, NS, Canada,2010:1-6.
    [25]史朝晖,刘玉庆,张式勤等.双转式永磁无刷直流电动机的建模与仿真[J].微电机,2004,37(1):10-12
    [26]葛明,邱建琪,储俊杰等.双转式永磁直流无刷电动机控制系统的仿真研究[J].中小型电机,2004,31(6):24-28
    [27]李宏,徐德民,焦振宏等.采用PMBLDC的AUV对转螺旋桨推进系统建模与仿真[J].系统仿真学报,2007,19(13):3085-3090
    [28]张式勤,邱建琪,储俊杰,等.双转式永磁无刷直流电动机的建模与仿真[J].中国电机工程学报,2004,24(12):176-181
    [29]金元敏明,服部裕司,武田秀夫等.多重翼列整体解析研究(正反转叶轮及涡轮机械)[J].涡轮机械,2000,28(1):49-55
    [30]韩凤琴,金元敏明.正反转双转轮水轮机水力性能研究[J].水电能源科学,2006,24(5):37-40
    [31]Higuchi Yoshikazu, Yamamura Naok, Ishida Muneaki. An improvement of performance for small-scaled wind power generating system with permanent magnet type synchronous generator[C]. The IEEE Conference on Electronics Society, Nagoya, Japan,2000:1037-1043
    [32]Amei K, Takayasu Y, Ohji T. A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit[C]. The IEEE Conference on Power Conversion Conference, Osaka Japan,2002:1447-1452.
    [33]Naoki Yamamura, Muneaki Ishida, Takamasa Hori. A Simple Wind Power Generating System with Permanent Magnet Type Synchronous Generator[C]. The IEEE Conference on Power Electronics and Drive Systems, Kowloon, Hong Kong,1999:849-854.
    [34]徐科,胡敏强,郑建勇等.风力发电机无速度传感器网侧功率直接控制[J].电力系统自动化,2006,30(23):43-47
    [35]闫耀民,范瑜,汪至中.永磁同步电机风力发电系统的自寻优控制[J].电工技术学报,2002,17(6):82-86
    [36]R.J. Wai, C.Y. Lin, Y.R. Chang. Novel maximum-power-extraction algorithm for PMSG wind generation system[J]. IET Electric Power Applications,2007,1(2):275-283
    [37]Rong-Jong Wai, Chung-You Lin. Implementation of Novel Maximum-Power-Extraction Algorithm for PMSG Wind Generation System without Mechanical Sensors[C]. IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand,2006:1-6
    [38]Chinchilla M, Arnaltes S, Burgos J C. Control of Permanent-magnet Generators Applied to Variable-speed Wind-energy Systems Connected to the Grid[J]. IEEE TRANSACTIONS ON ENERGY CONVERSION,2006,21(1):130-135.
    [39]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率跟踪控制[J].中 国电机工程学报,2009,29(27):106-111.
    [40]廖勇,庄凯,姚俊等.直驱式永磁同步风力发电机双模功率控制策略的仿真研究[J].中国电机工程学报,2009,29(33):76-81.
    [41]辜承林,陈乔夫,熊永前.电机学[M].华中科技大学出版社,2005
    [42]曹江华.基于有限元分析的双转子永磁风力发电机设计及研究[D].广州:华南理工大学,2009.
    [43]王成元,夏加宽,杨俊友等.电机现代控制[M].北京:机械工业出版社,2006
    [44]杨顺昌.电机的矩阵分析[M].重庆:重庆大学出版社,1988.
    [45]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2004.
    [46]洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M].北京:机械工业出版社,2006.
    [47]Anders Grauers. Design of direct-driven permanent-magnet generators for wind turbines[D]. Goteborg:Chalmers University of Technology,1996.
    [48]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学,2008.
    [49]Wang Q, Chang L. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems[J]. IEEE Trans on Power Electronics,2004,19(5):1242-1249.
    [50]Youssef, K.H, Wahba, M.A, Yousef, H.A. A new method for voltage and frequency control of stand-alone self-excited induction generator using PWM converter with variable DC link voltage[C]. American Control Conference, American,2008:2486-2491
    [51]Amei K, Takayasu Y, Ohji T, et al. A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit[C]. Power Conversion Conference, Osaka, Japan,2002.
    [52]许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制[J].太阳能学报,1998,19(1):30-35.
    [53]王宇.永磁直驱风力发电系统的控制研究[D].山西:太原理工大学,2010.
    [54]T.Tafticht, K.Agbossou, A.Cheriti. Output Power Maximization of a Permanent Magnet Synchronous Generator Based Stand-alone Wind Turbine[C]. Industrial Electronics Conference of IEEE. Montreal, QC, Canada,2006,3(3):2412-2416.
    [55]姚绪梁.现代交流调速技术[M].黑龙江:哈尔滨工业大学出版社,2009
    [56]解仑,杜沧.异步电动机矢量控制原理[M].北京:机械工业出版社,2010.
    [57]陈建伟.基于双PWM变换器的直驱永磁同步风力发电机系统建模与控制策略研究[D].新疆:新疆大学,2010.
    [58]Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Transactions on Energy Conversion,2006,21(1):130-135.
    [59]Tan K, Islam S. Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors[J]. IEEE Transactions on Energy Conversion,2004,19(2):392-399.
    [60]Polinder H, Bang D, van Rooij rpjom, et al.10MW wind turbine direct-drive generator design with pitch or active speed stall control[C]. Electric Machines and Drives Conference, Antalya, Turkey,2007.1390-1395
    [61]汪令祥,张兴,张崇巍.兆瓦级永磁同步风力发电机矢量控制策略[J].合肥工业大学学报(自然科学版),2010,33(3):379-383.
    [62]Cardenas, Roberto. Pena, Ruben. Sensorless vector control of induction machines for variable-speed wind energy applications[J]. IEEE Transactions on Energy Conversion,2004,19(1):196-205.
    [63]Ahmed, Tarek. Nishida, Katsumi. Nakaoka, Mutsuo. MPPT control algorithm for grid integration of variable speed wind energy conversion system[C]. IECON of the IEEE Industrial Electronics Society, Porto, Portugal,2009:645-650.
    [64]Hu, Zurong, Wang, Junqi, Ma, Yundong. Research on speed control system for fixed-pitch wind turbine based on disturbance observer[C]. World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China,2009:221-225.
    [65]赵辉,李斌,朱利强等.基于模糊PID的风电系统转速控制仿真研究[J].电网与清洁能源,2011,27(5):63-65,72.
    [66]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2009.
    [67]张坤.毛承雄.陆继明等.基于储能的直驱风力发电系统的功率控制[J].电工技术学报,2011,26(7):7-14,43.
    [68]唐爱红,卢俊,周新民等.基于UPFC的风力发电功率控制研究[J].武汉理工大学学 报,2011,33(7):129-132,156.
    [69]姚俊,廖勇,瞿兴鸿等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,10(32):11-16.
    [70]Liao, Mingfu, Dong, Li, Jin, Lu. Study on rotational speed feedback torque control for wind turbine generator system[C]. International Conference on Energy and Environment Technology, Guilin, China,2009:853-856.
    [71]Lim, Chae-Wook, Seo, Kang-Yoon.A comparative study on responses in the optimal region according to torque control methods for wind turbines [C]. International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, Republic of,2010:1066-1069.
    [72]金石.变速恒频无刷双馈风力发电机的直接转矩控制技术研究[D].沈阳:沈阳工业大学,2011.
    [73]Pimple, B.B. Vekhande, V.Y. Fernandes, B.G. A new direct torque control of doubly fed induction generator for wind power generation[C]. International Conference on Power Electronics, New Delhi, India,2011.
    [74]Inoue, Yukinori. Morimoto, Shigeo. Sanada, Masayuki. Control method for direct torque controlled PMSG in wind power generation system[C]. IEEE International Electric Machines and Drives Conference, Miami, FL, United states,2009:1231-1238.
    [75]Xu, Z. Pang, T. Xu, Dianguo. Instantaneous torque control of a permanent magnet wind power generator without a position sensor[C]. Proceedings of the11th International Conference on Electrical Machines and Systems, Wuhan, China,2008:1343-1347.
    [76]杨恩星,仇志凌,陈国柱.并联双PWM变流器在低速永磁直驱风力发电系统中的应用[J].电力系统自动化,2009,33(10):95-98,103.
    [77]叶傅华,王永.双PWM直驱同步风力发电机最大风能捕获[J].计算机仿真2010,27(2):260-263.
    [78]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学,2008.
    [79]张梅.直驱永磁同步风力机组建模及其控制系统仿真研究[D].西安:西安理工大学,2008.
    [80]Hu, Jiabing. He, Yikang. Modeling and control of grid-connected voltage-sourced converters under generalized unbalanced operation conditions[J].IEEE Transactions on Energy Conversion,2008,23(3):903-913.
    [81]于宏溪.永磁同步电机控制系统的研究[D].辽宁:辽宁工程技术大学,2009.
    [82]吴凯,张秀梅.造风发电的构想[J].发明与创新,2005,8,22.
    [83]戴文进,黄厚宪,朱世林等.电机学[M[.北京:航空工业出版社,1996.
    [84]Liao, Mingfu. Dong, Li. Jin, Lu. Study on rotational speed feedback torque control for wind turbine generator system[C]. International Conference on Energy and Environment Technology, Guilin, China,2009:853-856.
    [85]Merabet, Adel. Thongam, Jogendra. Gu, Jason. Torque and pitch angle control for variable speed wind turbines in all operating regimes[C]. International Conference on Environment and Electrical Engineering, Rome, Italy,2011.
    [86]Lee, Sung-Hun. Joo, Young-Jun. Back, Juhoon. Sliding mode controller for torque and pitch control of wind power system based on PMSG[C]. International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, Republic of,2010:1079-1084.
    [87]Inoue, Yukinori. Morimoto, Shigeo. Sanada, Masayuki. Output maximization using direct torque control for sensorless variable wind generation system employing IPMSG[C]. International Power Electronics and Motion Control Conference Poznan, Poland,2008:1859-1865.
    [88]廖勇,何金波,姚骏.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.
    [89]林志明,潘东浩,王贵子等.双馈式变速变桨风力发电机组的转矩控制[J].中国电机工程学报,2009,29(32):118-124.
    [90]邢钢,郭威.风力发电机组变桨距控制方法研究[J].农业工程学报,2008,24(5):181-186.
    [91]Senjyu, Tomonobu. Sakamoto, Ryosei. Urasaki, Naomitsu. Output power leveling of wind turbine generator for all operating regions by pitch angle control[J]. IEEE Transactions on Energy Conversion,2006,21(2):467-475.
    [92]Senjyu, Tomonobu. Sakamoto, Ryosei. Urasaki, Naomitsu. Output power control of wind turbine generator by pitch angle control using minimum variance control[J]. Electrical Engineering,2006,154(2):10-18.
    [93]耿华,杨耕.变速变桨距风电系统的功率水平控制[J].中国电机工程学报,2008,28(5):130-137.
    [94]Hossain, M. Jahangirl, Pota, Hemanshu R, Ugrinovskii, Valeri A. Simultaneous STATCOM and pitch angle control for improved LVRT capability of fixed-speed wind turbines[J]. IEEE Transactions on Sustainable Energy,2010,1(3):142-151.
    [95]Hinrichsen, E.N. Controls for Variable Pitch Wind Turbine Generators[C]. IEEE Power Engineering Society Meeting Los Angeles, CA, USA,1983.
    [96]卢晓光.变桨距风机风轮建模与控制分析[D].兰州:兰州理工大学,2009.
    [97]Muljadi, Eduard. Pitch-controlled variable-speed wind turbine generation[J]. IEEE Transactions on Industry Applications,2001,37(1):240-246.
    [98]施琴.小型独立风力发电系统的研究[D].江苏:江苏大学,2010.
    [99]郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制[J].中国电机工程学报,2010,30(8):123-128
    [100]王斌,吴焱,丁宏等.变速变桨距风电机组的高风速变桨距控制[J].电力自动化设备,2010,30(8):81-83.
    [101]林勇刚,李伟,叶杭冶等.变速恒频风力机组变桨距控制系统[J].农业机械学报,2004,35(4):110-114.
    [102]Dou, Z.L. Cheng, M.Z. Ling, Z.B. An adjustable pitch control system in a large wind turbine based on a fuzzy-PID controller[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy,2010:391-395.
    [103]Cheng, Xiao. Lei, Zhang. Junqiu, Yan. Fuzzy PID controller for wind turbines[C]. Proceedings of the2nd International Conference on Intelligent Networks and Intelligent Systems, Tianjin, China,2009:74-77.
    [104]宋新甫,梁波.基于模糊自适应PID的风力发电系统变桨距控制[J].电力系统保护与控制2009,37(16):54-58.
    [105]陈彦,李月明.基于动态模糊神经网络的变桨距系统辨识[J].电气技术,2010,(1):18-20,28.
    [106]曾东.基于神经网络的风力发电机组变速变距控制器研究[D].沈阳:沈阳工业大学,2008.
    [107]Lin, Whei-Min. Hong, Chih-Ming. A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems[J]. IEEE Trans Power Electron,2011,26(2):473-481.
    [108]Takaai, Hitoshi. Chida, Yuichi. Sakurai, Kimi. Pitch angle control of wind turbine generator using less conservative robust control[C].Proceedings of the IEEE International Conference on Control Applications, Saint Petersburg, Russia,2009:542-547.
    [109]耿华,周伟松,杨耕.变桨距风电系统功率控制的逆系统鲁棒方法[J].清华大学学报(自然科学版),2010,50(5):718-723.
    [110]许凌峰.变桨距风力发电机组智能控制研究[D].北京:华北电力大学,2009.
    [111]Chedid, R. Mrad, F. Basma, M. Intelligent control of a class of wind energy conversion systems[J]. IEEE Transactions on Energy Conversion,1999,14(4):1597-1604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700