用户名: 密码: 验证码:
计算化学在半导体和异相催化领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去十年中,随着计算机硬件的飞速发展和量子化学计算方法的不断完善,计算模拟手段为人们对新物质性质的预测、新材料及其工艺的设计等领域提供了全新的视角和强大的工具,目前已经被成功的应用于药物和材料设计等工业领域。本论文利用密度泛函理论模拟计算方法,分别研究了半导体表面的富勒烯功能薄膜材料和过渡金属团簇结构、物理性质及其氢催化能力,具体内容如下:
     一.半导体表面的富勒烯功能薄膜材料
     当前的大规模集成电路(ULSI)中主要应用的半导体材料是硅(Si)和砷化镓(GaAs)。当芯片集成度极高时,层间、线间的互连寄生电阻和电容导致的延迟、串扰和功耗就成为提升芯片性能的巨大阻碍,解决这些问题的关键在于发展介电常数合适的层间和线间充填材料。目前广泛使用的技术是利用PECVD等方法沉积SiOF等薄膜作为低介电常数材料,然而其工艺稳定性和薄膜的介电常数都难以满足芯片特征尺寸进一步降低(如从65nm或更小)的要求。富勒烯被认为是最有潜力的一种低介电常数材料,它们除具有良好的热稳定性和机械强度外,其球形多孔结构使膜的介电常数可以在一个较宽的范围内调节。富勒烯分子自身的曲率和高度离域化的π轨道等特性,使得它们可以与半导体重构表面上的悬挂健和二聚体发生化学作用,从而实现在Si或GaAs的表面可控生长。很显然,基底表面与薄膜层之间的相互作用将决定系统的物理化学性质和电子特性。因此,本文系统的计算了系列富勒烯分子C_n(n=28,32,36,40,44,48,60)在GaAs(001)-c(4×4)和Si(001)-c(2×1)重构表面的吸附,获得的主要结论有:
     1在GaAs(001)-c(4×4)和Si(001)-c(2×1)重构表面的表面上,富勒烯分子与基体之间都形成了稳定的共价键,电荷从基底向富勒烯分子转移,通常随着分子尺寸的增大,吸附能和电荷转移量均呈下降趋势。吸附过程中可以观察到基底的晶格和富勒烯分子的松弛,松弛的程度取决于吸附位和富勒烯分子的取向;
     2富勒烯分子以六元环朝下的方式吸附在富砷的GaAs(001)-c(4×4)表面的沟槽位置最为稳定,位于表面沟槽中的因配位数不饱和而具有悬挂键的砷原子对于富勒烯分子的吸附起着关键作用。表面的双二聚体位也可与富勒烯分子发生[2+2]或者[4+2]环加成反应,但吸附强度要低得多;
     3富勒烯分子在Si(001)-c(2×1)重构表面的吸附比在GaAs表面更加强烈。吸附方式主要通过富勒烯分子的-C=C-双键和硅表面的-Si=Si-之间的π键来发生环加成反应,表面的双二聚体位和沟槽位的吸附能相近,且稳定吸附结构的富勒烯分子取向无特定规律。与在GaAs表面类似,附能和电荷转移量随着富勒烯分子增大均呈下降趋势,较大的富勒烯分子更倾向于在表面双二聚体位吸附而在沟槽位吸附变得稍难,这主要是由于沟槽位空间不足的缘故;
     4在吸附位附近,富勒烯分子的曲率对其与表面之间的局部成键强度有重要影响,曲率越大,则成键越强,因此随着分子尺寸增大,吸附能逐渐降低。同时,富勒烯分子在气相中的稳定性及其对称性也起着重要作用,例如C_(32)的气相稳定性仅次于C_(60),因而其在两类表面上的吸附能相对于临近的富勒烯分子来说都要低;高对称性的分子可以用最优的取向与表面之间形成更多的化学键,因而吸附能会相对更高;
     5电子态密度分析表明,覆盖了富勒烯单分子层的硅和砷化镓表面,其电子特性会根据富勒烯分子的不同和两者之间相互作用方式的不同而呈现出不同的金属或半导体特征。由此可见,可以采用不同尺寸的富勒烯分子来实现对表面性质的改变,这种富勒烯功能薄膜将大大丰富半导体的表面特征。
     二.贵过渡金属团簇结构、物理性质和氢催化能力
     纳米级、亚纳米级过渡金属团簇在催化剂、半导体、传感器和磁存储材料等方面拥有巨大应用前景,是当前凝聚态物理等领域非常活跃和重要的研究课题。对过渡金属团簇的结构、生长演化、电子特性及结合能等方面的研究可以为其实际应用打下良好的基础,而最热点的研究则集中在团簇的催化能力方面。通常催化剂颗粒分散在氧化铝等载体表面,其催化活性主要来源于表面缺陷如台阶、梯级和拐折等位置。而团簇的尺寸小、比表面积大、表面缺陷丰富,为研究气相分子的催化裂解提供了一个很好的模型。传统方法模拟异相催化氢化反应通常只讨论少量气体分子覆盖的情形下的解离情况。而真实催化条件下,催化剂的表面总是完全被气相分子覆盖(即饱和状态)。因此,本文研究了铂(Pt)和钯(Pd)小团簇的结构、物理性质以及在氧化铝表面的吸附,并且研究了在氢饱和状态下的Pt和Pd小团簇的催化裂解氢的活性。获得的主要结论有:
     1 Pt_n和Pd_n(n=2-15)的小团簇结构:原子数相同的团簇通常都具有若干能量相近的同分异构体。尽管拓扑构型上可能会有较大差别,从热力学的角度,这些异构体能够共存;从动力学的角度,异构体之间的互相转变所需的能垒很低,这意味着即便在温和的条件下它们也能够互相转化。对于Pt_n和Pd_n团簇,其离子化势(IP)、电子亲和能(EA)和磁矩(μ)都与团簇的尺寸和结构有关。能量最低的结构由于其电子成对效应更强,因而其离子化势更高、电子亲和能更低、磁矩更小;
     2团簇的从小到大直至块体的生长演化中存在着紧密堆积、二十面体、面心立方等三种生长模式。在亚纳米尺度,无论是Pt还是Pd小团簇都将采取紧密三角形堆积模式;在n≥19时,Pt的生长模式更倾向于二十面体方式生长,而Pd的相变点则发生在n=13。在n≥38以后,Pt团簇将会采取面心立方形式生长,而对于Pd,由于本文所计算的尺寸所限,尚未找到从二十面体到面心立方模式的相变点;
     3对Pt单原子、Pt_n(n=2-5)小团簇和Pt单分子层在α-Al_2O_3(0001)表面的吸附反应的计算结果表明:无论以何种形式,Pt原子或小团簇在氧化铝表面的吸附都很稳定,其稳定吸附发生在表面的O_3位置。吸附过程同时对应着团簇结构和基底的松弛或解离,而且随着团簇变大,松弛程度变小。值得注意的是,n≥3的团簇更倾向于以其三角形的面朝向基底吸附,以充分利用表面的O_3提供的活性反应位。团簇在氧化铝表面的吸附作用主要源于Pt原子与表面O原子之间的电荷转移。由于Pt-Pt之间的相互作用强于Pt-O相互作用,在Pt催化剂担量较高的情况下,均匀铺展会相对较难,而团聚则很容易发生;
     4氢分子在Pt_n和Pd_n小团簇上的解离能垒非常低。随着氢覆盖度增加,团簇的结构通常会发生膨胀;尤其对于高对称的二十面体团簇来说,其结构甚至发生了重构。团簇结构的变化主要源于金属与氢之间的相互作用,氢覆盖度越高,电子从金属向氢流动的越多,因而降低了金属与金属之间的结合强度。对这些体系的电子态密度分析也表明,随着氢覆盖度增加,由于金属的d轨道与氢原子的1s轨道之间的强烈重叠,体系的禁带宽度逐渐减小,在达到氢饱和时降至最低,对于较大的团簇甚至体现出一定的金属性质;
     5氢分子在Pt_n和Pd_n团簇上的连续化学解离吸附能(△E_(CE))和氢原子从团簇上相继脱附的脱附能(△E_(DE))与氢覆盖度密切相关。当覆盖度增加时,二者都呈下降趋势。在饱和氢吸附态下,Pt_n(4≤n≤9)紧密堆积型团簇的氢分子连续化学解离吸附能极限值△E_(CE,Pt)~T在0.92-0.96 eV之间,而氢原子的相继脱附能极限值△E_(DE,Pt)~T在2.45-2.62 eV之间;对于Pd_n(4≤n≤9)紧密堆积型团簇,这两组数值的范围分别为0.6-0.9 eV和2.29-2.80 eV。进一步的,尽管高对称的二十面体团簇在连续吸附过程中会发生结构重构,在饱和氢吸附态下,Pt的两个极限值分别为0.90 eV和2.02 eV,NPd则为0.73eV和2.10eV,仍然在上述范围之内或附近。饱和吸附态时,Pt团簇的Pt:H比为1:4,而Pd团簇Pd:H比则为1:2。因此,氢饱和状态下氢分子在团簇上的连续化学解离吸附能(△E_(CE)~T)、氢原子相继脱附能(△E_(DE)~T)和金属与氢的比率等重要的性质与团簇的尺寸大小和形状是无关的;团簇的氢催化能力应该只与表面能够与氢发生反应的有效金属原子数有关。这种研究在气相饱和吸附状态下的关键性质的方法不仅仅适用于氢气,同样适用于O_2、CO和NO_x等气体,如研究燃料电池的异相催化环境或催化剂中毒等问题。这些研究工作将有助于从一个全新的角度去考虑设计和发展新型的廉价高效的过渡金属催化剂。
In the past decade, with the rapid development of computer hardware and quantum mechanics algorithm, computational modeling has become a powerful tool which can provide great insight in predicting properties of novel substances or designing substances and engineering processes before laboratory activities. To date, computational modeling are widely and successfully applied in both scientific field and industries such as drug design. In this thesis, we studied two industrial problems, the fullerene-functionalized films on important semiconductor surfaces and the structural and physicochemical properties of transition metal clusters.
     Ⅰ. Fullerene-Functionalized Films on Semiconductor Surfaces
     Currently, the most important semiconductor materials in ultra-large scale integration (ULSI) industry include Silicon (Si) and Gallium Arsenide (GaAs). With a ultra-high packing density of physical units inside the chips, the parasitic resistance, parasitic capacitance and the wire cross will cause severe RC delay, power consumption and wire cross talk, which are the major factors limiting device performance. The critical solution to these problems is to design and develop novel inter-wire and inter-layer insulator materials with proper dielectric constant (low-k). As the characteristic size of microchips evolves into 65nm era or even smaller, the present dielectric films, such as SiOF, coated via plasma-enhanced chemical vapor deposition (PECVD) technology, is no longer practical because of both the technical instability and their relatively high dielectric constants. Fullerenes, however, are regarded as one of the most potential low-k materials due to their excellent thermal and mechanic stability. The porosity of fullerenes allows one to tune the dielectric values of the films in a wide range. Furthermore, their intrinsic curvature and highly delocalizedπ-orbitals enables the interaction between fullerenes and the dangling bonds or dimers of semiconductor surfaces. As a consequence, fullerenes can be tightly anchored onto the substrates and the well-ordered, wellcontrolled molecular deposition can be realized. The properties of the fullerene films are of course dependent on the surface substrates, the fullerene molecules and their interplays. In this thesis, we have conducted extensive computational study on the chemisorption of a series of fullerene molecule C_n (n=28, 32, 36, 40, 44, 48, 60) on the c(4×4) reconstructed GaAs(001) surface and the c(2×1) Si(001) surface. The main conclusions are listed below:
     1 On both the reconstructed GaAs(001)-c(4×4) and Si(001)-c(2×1) surfaces, strong and stable chemical covalent bonds are formed between the fullerenes and the substrate. Charge transfers from the substrate to fullerenes molecules. With the fullerene size increases,both the adsorption energies and the amount of charge transfer display a decreasing trend. During the adsorption process, the relaxation of either the substrate lattice and the fullerene molecules are observed and the relaxation extent is according to specific adsorption sites, fullerene orientation and the fullerene-substrate interplays;
     2 On the arsenic-rich c(4×4) reconstructed GaAs(001) surface, the most favorable adsorption configuration occurs at the trench sites when the fullerene molecules facing down to the substrate with a hexagon. The As atoms in the second layer of the surface with a dangling bond (due to unsaturated coordination number) play a critical role in anchoring fullerenes by forming covalent bonds. However, although the top layer -As=As- dimers are capable of interact with fullerenes via cycloaddition process, the adsorption strengths are obviously smaller than at the trench sites;
     3 In contrast with the GaAs surface, fullerenes molecules are able to interact much more stronger on the c(2×1) reconstructed Si(001) surface via favorable cycloaddition reactions between theπ-bonds of -C=C- and -Si=Si- dimers. The trench and double-dimer sites were identified to be almost equivalent for fullerenes anchoring, however, without strong fullerene orientation preference. The adsorption energies and charge transfer obey the same decreasing trend as what was found on GaAs surface. Generally, it is increasingly difficult for fullerenes to be accommodated in the trench channel as their sizes increase;
     4 The curvature of fullerenes near the adsorption sites dictates the local bonding strength between molecules and the surface; a large curvature always gives rise to a stronger bonding by relaxing the stress of the carbon atoms imposed by the quasi-sp~2 hybridization. The stability of the fullerene molecules in the gas phase and the structural symmetry also play very important roles to determine the adhesion strength, i.e. C_(32) exhibits a much smaller adsorption on both the two surfaces comparing with the adjacent fullerenes mainly attributed to its unexpected stability which is almost comparable to C_(60). A highly symmetric molecule can adopt an optimal orientation to effectively interact with surface yielding high adsorption energies, while the adsorption of asymmetric molecules is usually accompanied by ill fit and substantial distortion of the interface.
     5 Electronic structure analysis indicate that the fullerene-functionalize GaAs(001)-c(4×4) and Si(001)-c(2×1) surfaces will exhibit considerable metallic or semiconductor characteristics according to different fullerene species and the fullerene-substrate interaction. Consequently, it can be envisaged that one can tune the the surface properties by selecting appropriately sized fullerene molecules and to deposit them onto specific surfaces. These functionalized fullerene derivatives can further enrich the properties of fullerene films on semiconductor surfaces and provide a great opportunity for developing a rich variety of materials.
     Ⅱ. Structural and Physicochemical Properties of Transition Metal Clusters
     Nano- and subnano-scale transition metal clusters are one of the most active and important subject in condensed-phase physics fields mainly due to their potential industrial application of serving as catalysts, semiconductors, sensors and magnetic memory storage. Understanding of the structural and physicochemical properties of those clusters are of fundamental importance for their realistic application. Among all the researches, the most attractive subject is about the catalytic performance of clusters. Generally, catalyst particles are well dispersed on support materials such as alumina, and the catalytic reactivity mainly originates from the surface defect sites (steps, kinks and corners). Since clusters own large specific surface area and rich defects, they provide a reasonable model for studying gas species dissociative chemisorption. Traditional reports always employed the model where just one or a few gas molecules reacting with the clusters were considered. However, in a real catalytic system, the catalyst surface are always closely surrounded by gas molecules which we named as the so-called "saturation state". In this thesis, we performed extensive computational study on the structural and physicochemical properties of small platinum (Pt) and palladium (Pd) clusters as well as the cluster-support interaction. Furthermore, we investigated the the catalytic hydrogenation reactions occur on Pt and Pd clusters under the hydrogen saturation state. Our main conclusions are listed below:
     1 The structures of Pt_n, and Pd_n (n=2-15) clusters: for a given size, computational search for energy minima on cluster potential energy surfaces always yields numerous isomers with degenerated energies. Although the topological configuration might be very different, these isomers can coexist thermodynamically. And kinetically, the estimated energy barriers of transforming structures from one one isomer to another, sampled by a few Pd isomers, were rather moderate, suggesting that these isomers may readily exchange their structures at ambient conditions. For both the Pt_nand Pd_n clusters, their ionization potential (IP), electron affinity (EA) and magnetic moment (μ) were found to be strongly sizeandstructural-dependent. Energetically the most favorable clusters tend to have higher IP, lower EA andμdue to their strong electron pairing;
     2 The cluster structural evolution from subnano/nano size to bulk includes three different growth patterns, the close-packed "irregular" structures, the icosahedral structures and fcc-like structures. At the subnanoscale, both Pt and Pd clusters essentially adopt a closepacked triangular growth pattern. Subsequently, at approximately n=19 for Pt and n=13 for Pd, the abrupt transition to the icosahedral structures occurs; at n=38 for Pt, the growth pattern transition from icosahedral to the fcc-like feature was observed. While for Pd, it is envisaged that the structural transition from icosahedral clusters to the fcc-like clusters will occur at a very large number;
     3 The calculate of a sing Pt atom, Pt_n (n=2-5) clusters and Pt monolayer adsorption on theα-Al_2O_3(0001) surface suggest that, in all cases, the Pt atoms can be stably anchored on the surface exhibiting as either cluster or dissociated fragments. The energetically the most favorable adsorption sites are identified to be the O_3 sites. Both the cluster shape distortion and the substrate lattice relaxation are observed, which decays as the cluster size increases. In particular, the n≥3 clusters prefer to interact with the substrate via their triangular faces to take advantage of the maximum interaction with the available O_3 sites. The driving force of the cluster anchoring largely arises from the charge transfer from Pt atoms to the O atoms of the substrate. Since the Pt-Pt interaction is stronger than Pt-O, metal clustering would be strongly preferred under high Pt loading, that's to say, the growth of metal films on theα-Al_2O_3(0001) surface is unlikely to be smooth and agglomeration could occur under certain conditions;
     4 The dissociation barriers of H_2 molecules on bare Pt_n and Pd_n (n=2-9, 13) clusters are considerably small. As the H coverage increases, the cluster structure expands, in particular, for the highly symmetric icosahedrons, structural rearrangement will occur. The clusterstructural change mainly due to the increasing hydrogen-metal bonding. A higher H loading pumps more electrons from the clusters which will definitely decrease the metalmetalbonding strength. Due to the strong overlap between the 1s-orbital of H atoms and the d-orbitals of metal atoms, the calculated band gaps of the metal hydrides gradually diminishand reach the minimum at full H saturation. With a large cluster size, the hydride systems even show a certain extent of metallic properties;
     5 The H_2 dissociative chemisorption energy (△E_(CE)) and the H desorption energy (△E_(DE)), a mathematical description to quantitatively or semi-quantitatively evaluate the catalytic performance for specific transition metal clusters, are strongly coverage-dependent. Although for different species, the most active adsorption sites and the H populating sequences are different, both△E_(CE) and△E_(DE) of either close-packed and highlysymmetric icosahedral clusters decay with the increasing H loading. At full coverage, the threshold△E_(CE,Pd)~T and△E_(DE,Pd)~T on close-packed Pt_n (4≤n≤9) clusters are identified to be in the range of 0.92-0.96 eV and 2.45-2.62 eV, respectively; while for close-packed Pd_n (4≤n≤9) clusters the two thresholds are 0.6-0.9 eV and 2.29-2.80 eV, respectively. Comparably, the data for icosahedral structures(△E_(CE,Pd)~T=0.90 eV,△E_(DE,Pd)~T=2.02 eV; △E_(CE,Pd)~T=0.73 eV,△E_(dE,Pd)~T=2.10 eV), are still neighboring the the narrow range found for small and sharp clusters despite the structural arrangement. Furthermore, the Pt:H and Pd:H ratio at full saturation was found to be 1:4 and 1:2, respectively. Consequently, it can be predicted that these important properties do not change significantly with respect to either cluster size or cluster shape but are dependent on the available surface atoms of metal which can be accessed by H atoms. The idea that investigating the key quantitiesat full saturation state provides a very powerful and useful model for studying other gas species, such as O_2, CO, and NO_x catalyzed by cluster to understand a real fuel-cell catalytic environment or catalyst poison. Such a model and the understanding on the underlying catalytic mechanism will be very helpful in design of novel catalysts for real industrial applications.
引文
1 Vilan A, Shanzer A, Cahen D. "Molecular Control Over Au/GaAs Diodes". Nature, 2000, 404:166-168.
    
    2 Seker F, Meeker K, Kuech T F, et al. "Surface Chemistry of Prototypical Bulk Ⅱ-Ⅵ and Ⅲ-Ⅴ Semiconductors and Implications for Chemical Sensing". Chem. Rev., 2000,100:2505-2536.
    
    3 Maier G. "Low Dielectric Constant Polymers for Microelectronics". Prog. Polym. Sci., 2001,26:3-65.
    
    4 Ma Y, Yang H, Guo J, et al. "Structural and Electronic Properties of Low Dielectric Constant Fluorinated Amorphous Carbon Films". Appl. Phys. Lett., 1998,72:3353-3355.
    
    5 Tsai M H, Whang W. T. "Low Dielectric Polyimide/Poly(silsesquioxane)-Like Nanocomposite Material". Polymer, 2002,42:4197-4207.
    
    6 Yang S, Mirau P A, Pai C S, et al. "Nanoporous Ultralow Dielectric Constant Organosilicates Templated by Triblock Copolymers". Chem. Mater., 2002,14:369-374.
    
    7 Hovis J, Lee S, Liu H, et al. "Controlled Formation of Organic Layers on Semiconductor Surfaces". J. Vac. Sci. Technol. B, 1997,15:1153-1158.
    
    8 Hamers R J, Hovis J S, Lee S, et al. "Formation of Ordered, Anisotropic Organic Monolayers on the Si(001) Surface". J. Phys. Chem. B, 1997,101:1489-1492.
    
    9 Hovis J S, Hamers R J. "Structure and bonding of ordered organic monolayers of 1,5-cyclooctadiene on the silicon(001) surface". J. Phys. Chem. B, 1997,101:9581-9585.
    
    10 Miller R D. "In Search of Low-k Dielectrics". Science, 1999,286:421 -423.
    
    11 Peters L. "Pursuing the Perfect Low-K Dielectric". Semicond. Int., 1998,21:64-67.
    
    12 Ohno T R, Chen Y, Harvey S E, et al. "C_(60) Bonding and Energy-Level Alignment on Metal and Semivconductor Surfaces". Phys. Rev. B, 1991,44:13747-13755.
    
    13 Wang Y. Nature "Photoconductivity of Fullerene-Doped Polymers". 1992,356:585-587 ().
    
    14 Kawazoe Y, Kamiyama H, Maruyama Y, et al. "Electronic Structures of Layered C_(60) and C_(70) on Si( 100) Surface". Jpn. J. Appl. Phys., 1993,32:1433-1437.
    
    15 Wang X D, Hashizume T, Shinohara H, et al. "Adsorption of C_(60) and C_(84) on the Si(100)2×1 surface studied by using the scanning tunneling microscope". Phys. Rev. B, 1993,47:15923-15930.
    
    16 Chen D, Sand D. "An STM Study of C_(60) Adsorption on Si( 100)-(2 ×1) Surfaces: from Physisorption to Chemisorption". Surf. Sci., 1995, 329:206-218.
    
    17 Klyachko D, Chen D M. "Ordering of C_(60) on Anisotropic Surfaces". Phys. Lett., 1995,75:3693-3696.
    
    18 Beardmore K, Smith R. "C_(60) Film Growth and The Interaction of Fullerenes with Bare and H TerminatedSi Surfaces, Studied by Molecular Dynamics". Nucl. Instrum. Methods Phys. Res. Sect. B, 1995, 106:74-79.
    
    19 Yao X, Ruskell T G, Workman R K, et al. "Scanning Tunneling Microscopy and Spectroscopy of IndividualC_(60) Molecules on Si(100)-(2×1) Surfaces". Surf. Sci., 1996,366:743-749.
    
    20 Suto S, Sakamoto K, Wakita T, et al. "Vibrational Properties and Charge Transfer of C_(60) Adsorbed on Si(111)-(7×7) and Si(100)-(2×1) Surfaces". Phys. Rev. B, 1997, 56:7439-7445.
    21 Tsuei K D, Yuh J Y, Tzeng C T, et al. "Photoemission and photoabsorption study of C_(60) adsorption on Cu(111) surfaces". Phys. Rev. B, 1997,56:15412-15420.
    22 Katircioglu S, Erkoc S. "Decomposition of C_(60) Molecules on Si(111) Surface". Surf. Sci., 1997, 383:775-778.
    23 Suto S, Sakamoto K, Wakita T, et al. "Interaction of C_(60) with Silicon Dangling Bonds on the Si(111)-(7×7) Surface" Surf. Sci., 1998, 402-404:523-526.
    24 Shachal D, Manassen Y. "Adsorption of 1,13-tetradecadiene on Si(111)7×7 Studied by STM: Possible Electrostatic Interactions Between the Aliphatic Chain and the Surface". Appl. Phys. A: Mater. Sci. & Processing, 1998,66:1229-1231.
    25 Sakamoto K, Harada M, Kondo D, et al. "Bonding State of the C_(60) Molecule Adsorbed on a Si(111)-(7×7) Surface". Phys. Rev. B, 1998,58:13951-13956.
    26 Hou J G, Yang J, Wang H, et al. "Identifying Molecular Orientation of Individual C_(60) on a Si( 111 )-(7×7) Surface". Phys. Rev. Lett., 1999,83:3001-3004.
    27 Wang H, Zeng C, Li Q, et al. "Scanning Tunneling Spectroscopy of Individual C_(60) Molecules Adsorbed on Si(111)-7×7 Surface".Surf. Sci., 1999,442:1024-1028.
    28 Suto S, Sakamoto K, Kondo D, et al. "Interaction of C_(60) with Si(111)7×7 and Si(100)2×1 Surfaces studied by STM, HREELS and PES". Surf. Sci., 1999,438:242-247.
    29 Suto S, Sakamoto K, Kondo D, et al. "Bonding Nature of C_(60) Adsorbed on Si(111)7× and Si(100)2×1 Surfaces Studied by HREELS and PES". Surf. Sci., 1999, 427-428:85-90.
    30 Sakamoto K, Kondo D, Harada M, et al. "Electronic Structures of C_(60) Adsorbed on Si(111)-(7×7) and Si(001)-(2×1) Surfaces". Surf. Sci., 1999,433-435:642-646.
    31 Iizumi K, Saiki K, Koma A. "Investigation of the Interaction Between a C_(60)× Epitaxial Film and a Si(111)-7×7 Surface by Electron Energy Loss Spectroscopy". Surf. Sci., 2002,518:126-132.
    32 Godwin P D, Kenny S D, Smith R. "The Bonding Sites and Structure of C_(60) on the Si(100) Surface". Surf. Sci., 2003,529:237-246.
    33 Yamaguchi T. "Electronic states of C_(60) molecules on Si(001)2× 1 and Si(111)7×7 surfaces". J. Vac. Sci. & Technol. B, 1994,12:1932-1935.
    34 Yajima A, Tsukada M. "Theoretical simulation of STM image of C_(60) molecules on Si(100)-(2×1) surface". Surf. Sci., 1996,355:715-718.
    35 Godwin P D, Kenny S D, Smith R. "The bonding sites and structure of C_(60) on the Si(100) surface". Surf. Sci. Surf. Sci., 2003, 529:237-246.
    36 Hobbs C, Kantorovich L, Gale J D. "An ab initio study of C_(60) adsorption on the Si(001) surface". Surf. Sci., 2005,591:45-55.
    37 Kunitsyn A E, Kozyrev S V, Novikov S V, et al. "Production of Fullerene Films on GaAs Semiconducting Substrates". Phys. Solid State, 1994, 36:2573-2579.
    38 Xue Q, Ling Y, Ogino T, et al. "C_(60) Single Crystal Films on GaAs(001) Surfaces". Thin Solid Films, 1996,281-282:618-623.
    39 Ohno K, Li Z Q, Kamiyama H, et al. "A Mechanism of 13% Lattice Expansion in C_(60) FCC( 110) Thin Films Grown on the GaAs(001) As-rich Surface". Sci. Rep. Res. Instit. Tohoku Uni. A - Phys. Chem. & Met., 1997,43:61-65.
    
    40 Yao J H, Zou Y J, Zhang X. W, et al. "The (111) Oriented Growth of C_(60) Films on GaAs(100) Substrates".Thin Solid Films, 1997,305:22-25.
    
    41 Dunphy J C, Klyachko D, Xu H, et al. "A Novel Bi-directional Step-flow Growth Mode:C_(60) on Ge(100)and GaAs(110)". Surf. Sci., 1997,383:760-765.
    
    42 Sakurai T, Xue Q K, Hashizume T, et al. "Extraordinary Growth of C_(60) on a GaAs(001) As-rich 2×4 Surface". J. Vac. Sci. Tech. B, 1997,15:1628-1632.
    
    43 Moriarty P, Upward M D, Ma Y R, et al. "Reconstruction Dependent Adsorption of C_(60) on GaAs(111)B". Surf. Sci., 1998,405:21-26.
    
    44 Colder A, Canut B, Levalois M, et al. "Latent Track Formation in GaAs Irradiated with 20, 30, and 40 MeV Fullerenes". J. Appl. Phys., 2002,91:5853-5857.
    
    45 Nishinaga J, Ogawa M, Horikoshi Y. "Selective Growth of C_(60) Layers on GaAs and Their Crystalline Characteristics". Thin Solid Films, 2004,464-465:323-326.
    
    46 Yao S J, Zhou C G, Ning L C, et al. "Chemisorption of C_(28) Fullerene on c(4×4) Reconstructed GaAs(001) Surface: A Density Functional Theory Study". Phys. Rev. B, 2005,71:195316-195322.
    
    47 Zhou C, Wu J, Han B, et al. "Adsorption of fullerenes C_n(n=32,36,40,44,48,60) on the GaAs(001)-c(4×4) reconstructed surface". Phys. Rev. B, 2006,73:195324.
    
    48 Su J S, Chen Y F, Chiu K C. "Dielectric Properties of Fullerene Films". Appl. Phys. Lett., 1999,74:439-441.
    
    49 Whitaker J F. "Optoelectronic applications of LTMBE Ⅲ -Ⅴ materials", ater. Sci. Eng. B, 1993,22:61-67.
    
    50 Yu M L, Delouise L A. "Surface chemistry on semiconductors studied by molecular-beam reactive scattering". Surf. Sci. Rep., 1994,19:285-380.
    
    51 Herfort J, Apostolopoulos G, Friedland K J, et al. "In Situ Controlled Growth of Low-Temperature GaAs and Its Application for Mode-Locking Devices". Jpn. J. Appl. Phys., 2000,39:2452-2456.
    
    52 Chen Q, Beyler C A, Dapkus P D, et al. "Use of Tertiarybutylarsine in Atomic Layer Epitaxy and Laser-assisted Atomic Layer Epitaxy of Device Quality GaAs". Appl. Phys. Lett., 1992,60:2418-2420.
    
    53 Chen C H, Larsen C A, Stringfellow G B. "Use of Tertiarybutylarsine for GaAs Growth". Appl. Phys. Lett., 1987,50:218-220.
    
    54 Larsen C L, Buchen N I, Li S H, et al. "Decomposition Mechanisms of Tertiarybutylarsine". J. Cryst. Growth, 1989,94:663-672.
    
    55 Bartos I, Strasser T, Schattke W. "Surfaces and Interfaces in Short-period GaAs/AlAs Superlattices". Prog. Surf. Sci., 2003, 74:293-303.
    
    56 Steslicka M, Kucharczyk R, Akjouj A, et al. "Localised electronic states in semiconductor superlattices". Surf. Sci. Rep., 2002,47:93-196.
    
    57 Tromp R M, Hamers K, Demuth J E. "Si(001) Dimer Structure Observed with Scanning Tunneling Microscopy". Phys. Rev. Lett., 1985,55:1303-1306.
    
    58 Wolkow R A. "Direct Observation of an Increase in Buckled Dimers on Si(001) at Low Temperature". Phys. Rev. Lett., 1992,68:2636-2639.
    
    59 Waltenburg HN,Yates J T Jr. "Surface-chemistry of Silicon". Chem. Rev, 1995,95:1589-1673.
    
    60 Tabata T,Aruga T,Murata Y. "Order-disorder Transition on Si(001): c(4×2)to(2×1)". Surf. Sci, 1987, 179:L63-L70.
    
    61 Ono M, Kamoshida A, Matsuura N, et al. "Arrangement of the dimer structure on the Si(001)2×1 surface observed by low-temperature scanning tunneling microscope". Physica B, 2003,329-333:1644-1646.
    
    62 Vosko S H, Wilk L, Nusair M. "Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis". Can. J. Phys. Chem. B, 1980,58:1200-1211.
    
    63 Perdew J P, Wang Y. "Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy". Phys. Rev. B, 1992,45:13244-13249.
    
    64 Perdew J P, Chevary J A, Vosko S H, et al. "Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation". Phys. Rev. B, 1992,46:6671-6687.
    
    65 Perdew J P, Burke K, Ernzerhof M. "Generalized Gradient Approximation Made Simple". Phys. Rev. Lett., 1996,77:3865-3868.
    
    66 Sanchez-Portal D, Ordejon P, Artacho E, et al. "Density-Functional Method for Very Large Systems with LCAO Basis Sets". Int. J. Quant. Chem., 1997,65:453-461.
    
    67 Artacho E, Sanchez-Portal D, Ordejon P, et al. "Linear-Scaling ab-initio Calculations for Large and Complex Systems". Phys. Status Solidi. B, 1999,215:809-817.
    
    68 Soler J M, Artacho E, Gale J D, et al. "The SIESTA Method for ab initio Order-N Materials Simulation". J. Phys.: Condens. Matter, 2002,14:2745-2779.
    
    69 Caron B, Derome L, Flaminio R, et al. "SIESTA, a Time Domain, General Purpose Simulation Program for the VIRGO Experiment". Astropart. Phys, 1999,10:369-386.
    
    70 Kohn W. "Nobel Lecture: Electronic Structure of Matter-Wave Functions and Density Functionals". Rev. Mod. Phys, 1999,71:1253-1266.
    
    71 Kleinman L, Bylander D M. "Spiral-Vortex Expansion Instability in Type-Ⅱ Superconductors". Phys. Rev. Lett., 1982,38:1425-1428.
    
    72 Troullier N, Martins J L. "Efficient Pseudopotentials for Plane-Wave Calculations". Phys. Rev. B, 1991, 43:1993-2006.
    
    73 Ordejon P, Artacho E, Cachau R, et al. "Linear Scaling DFT Calculations with Numerical Atomic Orbitals".Mat. Res. Soc. Symp. Proc, 2001,677:AA9.6.1-AA9.6.12.
    
    74 Kietzmann H, Rochow R, Gantefar G, et al. "Electronic Structure of Small Fullerenes: Evidence for the High Stability of C_(32)". Phy. Rev. Lett, 1998,81:5378-5381.
    
    75 Hawkins J M, Meyer A, Lewis T A, et al. "Crystal-Structure of Osmylated C_(60)-Confirmation of the Soccer Framework". Science, 1991,252:312-313.
    
    76 Liu S, Lu Y J, Kappes M M, et al. "The Structure of the C_(60) Molecule-X-ray Crystal-Structure Determinationof a Twin at 110K". Science, 1991,254 :408-410.
    
    77 Hedberg K, Hedberg L, Bethune D S, et al. "Bond Lengths in Free Molecules of Buckminsterfullerene, C_(60) from Gas-Phase Electron Diffraction". Science, 1991,254:410-412.
    
    1 团簇物理学,王广厚著,上海:上海科学技术出版社,2003.
    
    2 Cheng H, Wang L S. "Dimer Growth, Structural Transition, and Antiferromagnetic Ordering of Small Chromium Clusters". Phys. Rev. Lett., 1996,77:51-54.
    
    3 Wang L S, Wu H, Cheng, H. "Photoelectron spectroscopy of small chromium clusters: Observation of even-odd alternations and theoretical interpretation". Phys. Rev. B, 1997, 55:12884-12887.
    
    4 Pappas D P, Popov A P, Anisimov A N, et al. "Spin Configuration of Gd_(13) Clusters". Phys. Rev. Lett., 1996, 76:4332-4335.
    
    5 Lee K, Callaway J, Dhar S. "Electronic structure of small iron clusters". Phys. Rev. B, 1984, 30:1724-1730.
    
    6 Lee K, Callaway J, Dhar S. "Electronic structure of small clusters of nickel and iron ". Phys. Rev. B, 1985,31:1796-1803.
    
    7 Castro M, Salahub D R. "Density-functional calculations for small iron clusters: Fe_n Fe_n~+ and Fe_n~- for n≤5 ". Phys. Rev. B, 1994,49:11842-11852.
    
    8 Mirkin C A, Letsinger R L, Mucic R C, et al. "A DNA-based method for ratinally assembling nanoparticlesinto macroscopic materials". Nature, 1996,382:607-609.
    
    9 Hong B H, Bae S C, Lee C W, et al. "Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase". Science, 2001,294:348-351.
    
    10 Haruta M. "Size- and support-dependency in the cataylsis of gold". Catal. Today, 1997, 36:153-166.
    
    11 Hakkinen H, Abbet S, Sanchez A, et al. "Structural electronic and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters". Angew. Landman. Chem. Int. Ed., 2003,42:1297-1300.
    
    12 Futschek T, Marsman M, Hafner J. "Structural and magnetic isomers of small Pd and Rh clusters: an ab initio density functional study".J. Phys.: Condens. Matter 17:5927-5963 (2005).
    
    13 Futschek T, Hafner J, Marsman M. "Stable structural and magnetic isomers of small transition-metal clusters from the Ni group: an ab initio density-functional study". J. Phys.: Condens. Matter, 2006, 18:9703-9748.
    
    14 Karabacak M, Ozclik S, Guzvenc Z B. "Structures and energetics Of Pd_n (n=2-20) clusters using an embedded-atom model potential". Surf. Sci., 2002,507-510:636-642.
    
    15 Karabacak M, Ozclik S, Guzvenc Z B. "Structures and energetics of Pd21 - Pd55 clusters". Surf. Sci., 2003,532-535:306-311.
    
    16 郭向云.”钯团簇形成和增长机理的Monte Carlo研究”.物理化学学报,2003,19:174-176.
    
    17 Guvelioglu G H, Ma P, He X, et al. "Evolution of Small Copper Clusters and Dissociative Chemisorption of Hydrogen". Phys. Rev. Lett., 2005, 94:026103.
    
    18 Guvelioglu G H, Ma P, He X, et al. "First principles studies on the growth of small Cu clusters and the dissociative chemisorption of H_2". Phys. Rev. B, 2006,73:155436.
    
    19 Forrey R C, Guvelioglu G H, Ma P, et al. "Rate constants for dissociative chemisorption of hydrogen molecules on copper clusters". Phys. Rev. B, 2006, 73:155437.
    
    20 Nie A, Wu J, Zhou C, et al. "Structural Evolution of Subnano Platinum Clusters". Int. J. Quart. Chem., 2007,107:219-224.
    
    21 Cui Q, Musaev D G, Morokuma K J. "Molecular orbital study of H_2 and CH_4 activation on small metal clusters. I. Pt Pd Pt_2 and Pd_2". J. Chem. Phys., 1998,108:8418-8428.
    
    22 Efremenko I, Sheintuch M. "Quantum chemical study of neutral and single charged palladium clusters". J. Mol. Catal. A: Chem., 2000,160:445-451.
    
    23 Kumar V. "Recent theoretical progress on electronic and structural properties of clusters: Permanent electric dipoles magnetism novel caged structures and their assemblies". Comput. Mater. Sci., 2006, 35:375-381.
    
    24 Berlanga-Ramirez E O, Aguilera-Granja F, Diaz-Ortiz A, et al. "Magnetism in Small Rhodium Clusters under Structural Deformations". J. Alloys Compounds, 2004,369:81-83.
    
    25 Watari N, Ohnishi S. "Atomic and electronic structures of Pd_(13) and Pt_(13) clusters". Phys. Rev. B, 1998, 58:1665-1677.
    
    26 Che M, Bennett C O. "The influence of particle size on the catalytic properties of supported metals". Adv. Catal., 1989,36:55-172.
    
    27 Xiao Y, Yu G, Yuan J, et al. "Fabrication of Pd-Ni alloy nanowire arrays on HOPG surface by electrodeposition". Electrochim Acta, 2006, 51:4218-4227.
    
    28 Walter E C, Murray B J, Favier F, et al. "Noble and Coinage Metal Nanowires By Electrochemical Step Edge Decoration". J. Phys. Chem. B, 2002,106:11407-11411.
    
    29 Walter E C, Favier F, Penner R M. "Palladium Mesowire Arrays for Fast Hydrogen Sensors And Hydrogen-Actuated Switches". Anal. Chem., 2002,74:1546-1553.
    
    30 Yang B, Lu Q, Wang Y, et al. "Simple and Low-Cost Preparation Method for Highly Dispersed PtRu/C Catalysts". Chem. Mater., 2003,15:3552-3557.
    
    31 Santiago E I, Camara G A, Ticianelli E A. "CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method". Electrochimica Acta, 2003, 48:3527-3534.
    
    32 Petrow H G, Allen R J. Finely particulated colloidal platinum compound and sol for producing the same and method of preparation of fuel cell electrodes and the like employing the same. 1977.
    
    33 Wang X, Hsing I M. "Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells". Electrochimica Acta, 2002,47:2981-2987.
    
    34 Zhou Z, Wang S, Zhou W, et al. "Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell". Chem. Comm. ,2003, :394-395.
    
    35 Ervin K M, Ho J, Lineberger W C. "Electronic and vibrational structure of transition metal trimers: Photoelectron spectra of Ni_3~- Pd_3~- and Pt_3~-". J. Chem. Phys., 1988, 89:4514-4521.
    
    36 Scott T, George W L, Yoonmi H, et al. "Resonant two-photon ionization spectroscopy of jet-cooled Pt2". J. Chem. Phys., 1988, 89:5517-5523.
    
    37 Ho J, Polak M L, Ervin K M, et al. "Photoelectron spectroscopy of nickel group dimers: Ni_2~- Pd_2~- and Pt_2~-". J. Chem. Phys., 1993,99:8542-8551.
    
    38李公平,张梅玲.”铜团簇(n=55)结构及能量随温度演变的Monte Carlo模拟研究”.物理学报, 2005,54:2873-2876.
    
    39张梅玲,李公平,郭向云.”铜团簇Cu_n(n=2-60)的基态能量与几何结构的Monte Carlo模拟”.原 子与分子物理学报,2005,22:515-519.
    
    40谭凯,林梦海,王南钦,等.”计算机模拟铌原子簇的稳定构型和能量性质”.化学学报,2005, 63:23-26.
    
    41 毛华平,杨兰蓉,朱正和.”Y_n(n=228)小团簇的结构与稳定性研究”.四川师范大学学报(自然科 学版),2006,29:228-231.
    
    42毛华平,杨兰蓉,王红艳,等.”钇小团簇的结构和电离势的计算”.物理学报,2005,54:5126-5129.
    
    43 李喜波,王红艳,唐永建,等.”Ag_n(n=2-10)团簇的几何结构和电子特性”.原子与分子物理学报, 2004,21:388-394.
    
    44毛华平,王红艳,倪羽,等.”Au_n(n=2-9)团簇的几何结构和电子特性”.物理学报,2004,53:1766- 1771.
    
    45毛华平,杨兰蓉,朱正和.”Au_2、Au_3小团族分子的结构和势能函数”.化学研究与应用,2005, 17:417-420.
    
    46张蓓,段海明,张军.”用遗传算法研究Co_n(n=3-60)团簇的结构特性”.新疆大学学报(自然科学 版),2006,23:141-155.
    
    47张材荣,许广济,寇生中,等.”Ir_n(n=2-25)团簇基态结构的遗传算法研究”.原子与分子物理学 报,2006,23:122-126.
    
    48 Kootte A, Haas C, Groot R A d. "The electronic structure of ordered binary Co-Pt compounds". J. Phys. : Conden. Matter, 1991, 3:1133-1152.
    
    49 Futschek T, Hafner J, Marsman M. "Stable structural and magnetic isomers of small transition-metal clusters from the Ni group: an ab initio density-functional study". J. Phys.: Conden. Matter, 2006, 18:9703-9748.
    
    50 Sang H Y, David A D, James B A, et al. "Density functional studies of small platinum clusters". J. Phys. : Conden. Matter, 1997,9:L39-L45.
    
    51 Apra E, Fortunelli A. "Density-functional study of Pt_(13) and Pt_(55) cuboctahedral clusters". J. of Mol. Struct.: THEOCHEM, 2000,501-502:251-259.
    
    52 Apra E, Fortunelli A. "Density-Functional Calculations on Platinum Nanoclusters: Pt_(13) Pt_(38) and Pt_(55)". J. Phys. Chem. A, 2003,107:2934-2942.
    
    53 Tian W Q, Ge M, Sahu B R, et al. "Geometrical and Electronic Structure of the Pt_7 Cluster: A Density Functional Study". J. Phys. Chem. A, 2004,108:3806-3812.
    
    54 Xiao L. and Wang L. "Structures of Platinum Clusters: Planar or Spherical?" J. Phys. Chem. A, 2004, 108:8605-8614.
    
    55 Sebetci A, Guvenc Z B. "Energetics and structures of small clusters: PtN N=2-21". Surface Science, 2003, 525:66-84.
    
    56 Luo C, Zhou C, Wu J, et al. "First Principles Study of Small Palladium Cluster Growth and Isomeriza-tion". Int. J. Quan. Chem., 2007,107:1632-1641.
    
    57 Van Santen R A. World Scientific Lecture and Course Notes in Chemistry, Vol. 5, World Scientific: Singapore 1991.
    
    58 Balasubramanian K. "Electronic States of Pt_2". J. Chem. Phys., 1987, 84: 6573-6578.
    
    59 Dai D, Balasubramanian K. "Electronic-Structures of Pd_4 and Pt_4". J. Chem. Phys., 1995,103:648-655.
    
    60 Majumdar D, Dai D, Balasubramanian K. "Theoretical study of the electronic states of platinum trimer (Pt_3)". J. Chem. Phys., 2000,113: 7919-7927.
    
    61 Majumdar D, Dai D, Balasubramanian K. "Theoretical study of the electronic states of platinum pentamer(Pt_5)".J Chem. Phys., 2000,113: 7928-7938.
    
    62 Yang S H, Drabold D A, Adams J B, et al. "Density functional studies of small platinum clusters". J. Phys.: Condens. Matter, 1997, 9:L39-L45.
    
    63 Fortunelli A. "Density functional calculations on small platinum clusters: Pt_n~q (n=1-4 q=0+/-1)". J. Mol. Struct., 1999,493:233-240.
    
    64 Varga S, Fricke B, Nakamatsu H, et al. "Four-component relativistic density functional calculations of heavy diatomic molecules". J. Chem. Phys., 2000,112:3499-3506.
    
    65 Gronbeck H, Andreoni W. "Gold and platinum microclusters and their anions: comparison of structural and electronic properties". Chem Phys, 2000,262:1-14.
    
    66 Li T, Balbuena P B. "Computational Studies of the Interactions of Oxygen with Platinum Clusters". J. Phys. Chem. B, 2001,105:9943-9952.
    
    67 Tian W Q, Ge M, Sahu B R, et al. "Geometrical and Electronic Structure of Pt_7 Cluster: A Density Functional Study". J Phys Chem A, 2005,109:6620-6620.
    
    68 Xiao L, Wang L. "Structures of Platinum Clusters: Planar or Spherical?". J Phys Chem A,, 2004, 108:8605-8614.
    
    69 Taylor S, Lemire G W, Hamrick Y M, et al. "Resonant two-photon ionization spectroscopy of jet-cooled Pt_2". J. Chem. Phys., 1988, 89:5517-5523.
    
    70 Pontius N, Bechthold P S, Neeb M, et al. "Femtosecond multi-photon photoemission of small transition metal cluster anions". J. Electron Spec-. trosc. Relat. Phenom., 2000,106:107-116.
    
    71 Stanislsus S A, Cooper B H. "Aromatic Hydrogenation Catalysis: A Review". Catal. Rev., 1994,36:75-123.
    
    72 Nava P, Sierka M, Ahlrichs R. "Density functional study of palladium clusters". Phys. Chem. Chem. Phys., 2003,5:3372-3381.
    
    73 Aguilerea-Granja F, Momtejano-Carrizales J M, Vega A. "Magnetism in small Pd clusters". Phys Lett A, 2004,332:107-114.
    
    74 Aguilerea-Granja F, Momtejano-Carrizales J M, Vega A. "Twining effects in the magnetism of small Pd clusters". Solid State Commun., 2005,133:573-578.
    
    75 Giordano L, Pacchioni G. "Pd nanoclusters at the MgO(100) surface". Surf. Sci., 2005,575:197-209.
    
    76 Reifsnyder S N, Otten M M, Lamn H H. "Nucleation and growth of Pd clusters in mordenite". Catal. Today, 1998,39:317-328.
    
    77 Takeguchi M, Mitsuishi K, Tanaka M, et al. "UHV-HRTEM observation of Pd clusters on Pd adsorbed Si(111)1×1 surface". Surf. Sci., 2003,532-535:671-677.
    
    78 Chang Z, Thornton G. "Effect of Pd on the interaction of formic acid with TiO_2 (110)". Surf. Sci., 2000, 459:303-309.
    
    79 Koyasu K, Naono Y, Akutsu M, et al. "Photoelectron spectroscopy of binary Au cluster anions with doped metal of M=Pd Ni Zn Cu and Mg: Au_nM~- (n=2-7)". Chem. Phys. Lett., 2006,422:62-66.
    
    80 Hu H N, Chen H Y, Yu S Y, et al. "Fabrication and magnetic properties of Co Pd composite nanowire". J. Magn. Magn. Mater., 2006, 299:170-175.
    81 Colbert J, Zangwill A, Strongin M. "Evolution of a metal: A photoemission study of the growth of Pd clusters". Phys Rev B, 1983,27:1378-1381.
    82 Verdozzi C, Jennison D R, Schultz P A, et al. "Sapphire (0001) Surface Clean and with d-Metal Over-layers". Phys. Rev. Lett., 1999, 82:799.
    83 Gomes J R B, Illas F, Hernadez N C, et al. "Interaction of Pd with a-Al_2O_3(0001): A case study of modeling the metal-oxide interface on complex substrates". Physical Review B, 2002, 65:125414.
    84 Carrey J, Maurice J L, Petroff F, et al. "Growth of Au clusters on amorphous Al2O3: are small clusters more mobile than atoms?" Surf. Sci., 2002,504:75-82.
    85 Molina L M, Hammer B. "Active Role of Oxide Support during CO Oxidation at Au/MgO". Phys. Rev. Lett., 2003,90:206102.
    86 Gao H, He H, Feng Q, et al. "Theoretical and experimental study on formation and adsorption of eno-lic species on Ag-Pd/Al_2O_3 catalyst". Spectrochimica Acta Part A: Molecular and Biomolecular Spec-troscopy, 2005,61:3117-3123.
    87 Tzitzios V K, Georgakilas V. "Catalytic reduction of N_2O over Ag-Pd/Al_2O_3 bimetallic catalysts". Chemosphere 59:887-891(2005).
    88 Benam M R, Aliabad H A R, Hosseini S M. "Effect of substituted MB transition metals on the energy gap of a-Al_2O_3 by first-principle calculations", physica status solidi (a), 2006, 203:2223-2228.
    89 Comotti M, Li W C, Spliethoff B, et al. "Support Effect in High Activity Gold Catalysts for CO Oxidation". J. Am. Chem. Soc, 2006,128:917-924.
    90 Wu Q, Gao H, He H. "Conformational Analysis of Sulfate Species on Ag/Al_2O_3 by Means of Theoretical and Experimental Vibration Spectra". J. Phys. Chem. B, 2006,110:8320-8324.
    91 Montano M, Bratlie K, Salmeron M, et al. "Hydrogen and Deuterium Exchange on Pt(111) and Its Poisoning by Carbon Monoxide Studied by Surface Sensitive High-Pressure Techniques". J. Am. Chem. Soc, 2006,128:13229-13234.
    92 Palazov A, Bonev C, Shopov D, et al. "Adsorption and Hydrogenation of Ethylene 1-Hexene and Benzene and CO Adsorption on Pt/Al2O3 and Pt-Sn/Al2O3 Catalysts".J. Catal., 1987,103:249-260.
    93 Airman E I, Gorte R J. "Temperature-Programmed Desorption Study of NO on Pt Pariticles Supported on α-Al_2O_30001". J. Phys. Chem., 1989,93:1993-1997.
    94 Hensley D A, Kesmodel L L. "Application of HREELS to model catalysts: carbon monoxide and ethene adsorption on platinum/alumina". J. Phys. Chem., 1991,95:1368-1373.
    95 Asakura K, Tomishige K, Shirai M, et al. "In-situ asymmetric structure analysis of Pt clusters on α-Al_2O_30001 in H_2 reduction and NO adsorption". Physica B, 1995,208-209:637-640.
    96 Putna E S, Vohs J M, Gorte R J. "Oxygen desorption from α-Al_2O_3 (0001) supported Rh Pt and Pd particles". Surf. Sci., 1997,391:L1178-L1182.
    97 Yourdshahyan Y, Cooper V R, Kolpak A M, et al. In Catalytic behavior at the nanoscale: CO adsorption on Al_2O_3-supported Pt clusters 2003, Tianquan L., Hai-Lung D. Eds. SPIE: 2003, pp 223-231.
    98 DeJong V, Cieplik M K, Louw R. "Formation of Dioxins in the Catalytic Combustion of Chlorobenzene and a Micropollutant-like Mixture on Pt/α-Al_2O_3". Environ. Sci. Technol., 2004, 38:5217-5223.
    99 Gonzalez-Marcos M P, Inarra B, Guil J M, et al. "Use of test reactions for the characterisation of bimetallic Pt-Sn/Al_2O_3 catalysts". Appl. Catal. A, 2004,273:259-268.
    
    100 Szyja B, Szczygiel J, Tymkow I. "Effect of Pt and Sn on the adsorption of n-heptane in γ-Al_2O_3 catalyst models". J. Mol. Modeling, 2005,11:370-379.
    
    101 Alexeev O S, Li F, Amiridis M D, et al. "Effects of Adsorbates on Supported Platinum and Iridium Clusters: Characterization in Reactive Atmospheres and during Alkene Hydrogenation Catalysis by XrayAbsorption Spectroscopy". J. Phys. Chem. B, 2005,109:2338-2349.
    
    102 Cooper V R, Kolpak A M, Yourdshahyan Y, et al. "Supported metal electronic structure:Implications for molecular adsorption". Physical Review B, 2005,72:081409.
    
    103 Gonzalez-Marcos M P, Inarra B, Guil J M, Gutierrez-Ortiz M A. "Development of an industrial characterisation method for naphtha reforming bimetallic Pt-Sn/Al_2O_3 catalysts through n-heptane reforming test reactions". Catal. Today, 2005,107-08:685-692.
    
    104 Alexeev O S, Siani A, Lafaye G, et al. "EXAFS Characterization of Dendrimer-Pt Nanocomposites Used for the Preparation of Pt/γ-Al_2O_3 Catalysts". J. Phys. Chem. B, 2006,110:24903-24914.
    
    105 Atalik B, Uner D. "Structure sensitivity of selective CO oxidation over Pt/α-Al_2O_3".J. Catal, 2006, 241:268-275.
    
    106 Ishimoto R, Jung C, Tsuboi H, et al. "Periodic density functional and tight-binding quantum chemical molecular dynamics study of catalytic properties on γ-Al_2O_3 supported Pt catalysts". Appl. Catal. A: General, 2006,305:64-69.
    
    107 Minemura Y, Kuriyama M, Ito S -i, et al. "Additive effect of alkali metal ions on preferential CO oxidation over Pt/Al_2O_3". Catal. Comm., 2006,7:623-626.
    
    108 Wootsch A, Paal Z, Gyorffy N, et al. "Characterization and catalytic study of Pt-Ge/Al_2O_3 catalysts prepared by organometallic grafting". J. Catal., 2006,238:67-78.
    
    109 Sartale S D, Shiu H W, Ten M H, et al. "Scanning tunneling microscopy study of growth of Pt nanoclusterson thin film Al_2O_3/NiAl(100)". Surf. Sci., 2006, 600:4978-4985.
    
    110 Perdew J P, Wang Y. "Accurate and simple analytic representation of the electron-gas correlation energy".Phys. Rev. B, 1992, 45:13244-13249.
    
    111 Delley B. "An all-electron numerical method for solving the local density functional for polyatomic molecules". J. Chem. Phys., 1990, 92:508-517.
    
    112 Delley B. "Fast Calculation of Electrostatics in Crystals and Large Molecules". J. Phys. Chem., 1996, 100:6107-6110.
    
    113 Delley B. "A Scattering Theoretic Approach to Scalar Relativistic Corrections on Bonding". Int. J. Quantum Chem., 1998,69:423-433.
    
    114 Delley B. "From molecules to solids with the DMol~3 approach". J. Chem. Phys., 2000,113:7756-7764.
    
    115 Delley B. "DMol~3 DFT studies: from molecules and molecular environments to surfaces and solids". Compu. Mat. Sci., 2000,17:122-126.
    
    116 Kresse G, Hafner J. "Ab initio molecular dynamics for liquid metals". Phys. Rev. B 47:558-561(1993).
    
    117 Kresse G, Hafner J. "Ab initio molecular-dynamics simulation of the liquid-metal - amorphous-semiconductor transition in germanium". Phys. Rev. B, 1994,49:14251-14269.
    
    118 Kresse G, Furthmuller J. "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set". Phys. Rev. B, 1996,54:11169-11186.
    
    119 Kresse G, Furthmuller J. "Efficiency of ab-initio total energy calculations for metals and semiconductorsusing a plane-wave basis set". Comput. Mater. Sci., 1996,6:15-50.
    120 Blochl P E. "Projector augmented-wave method". Phys. Rev. B, 1994, 50:17953-17979.
    121 Kresse G, Joubert D. "From ultrasoft pseudopotentials to the projector augmented-wave method". Phys. Rev. B, 1999,59:1758-1775.
    122 Kittel C. Introduction to Solid State Physics, 7th ed., John Wiley Sons: New York 1996.
    123 Knozinger H, Ratnasamy P. "Catalytic Aluminas - Surface Models and Characterization of Surface Sites". Catalysis Reviews-Science and Engineering, 1978,17:31-70.
    124 Tsyganenko A A, Mardilovich P P. "Structure of alumina surfaces". J. Chem. Soc.-Faraday Transactions, 1996, 92:4843-4852.
    125 Hass K C, Schneider W F, Curioni A, et al. "The Chemistry of Water on Alumina Surfaces: Reaction Dynamics from First Principles". Science, 1998, 282:265-268.
    126 Lin S, Straus B, Kant A. "Dissociation Energy of Pd_2". J. Chem. Phys., 1969, 51:2282-2283.
    127 Lide D R. Ed. "Handbook of Chemistry and Physics". CRC Press: Boca Raton FL 1995.
    128 Herzberg G. "Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules". New York: Van Nostrand Reinhold 1979.
    129 Barretau C, Guirado-Lopez R, Spanjaard D, et al. "spd tight-binding model of magnetism in transition metals: Application to Rh and Pd clusters and slabs". Phys. Rev. B, 2000, 61:7781-7794.
    130 Rey C, Gallego L J, Garcia-Rodeja J, et al. "Molecular-dynamics study of the binding energy and melting of transition-metal clusters". Phys. Rev. B, 199348:8253-8262.
    131 Cox A J, Louderback J G, Bloomfleld L A. "Experimental observation of magnetism in rhodium clusters". Phys. Rev. Lett., 1993,71:923-926.
    132 Cox A J, Louderback J G, Apsel S E, et al. "Magnetism in 4d-transition metal clusters". Phys. Rev. B, 1994,49:12295-12298.
    133 Douglass D C, Bucher J P, Bloomfield L A. "Magnetic studies of free nonferromagnetic clusters". Phys. Rev. B, 1992, 45:6341-6344.
    134 Cantefor G, Everhardt W. "Localization of 3d and Ad Electrons in Small Clusters: The 'Roots' of Magnetism". Phys. Rev. Lett., 1996,76:4975-4978.
    135 Zhao J J, Chen X S, Sun Q, et al. "Critical Size for Magnetic-Non-magnetic Transition in Transition Metal Clusters". Europhys. Lett., 1995,32:113-117.
    136 Dunlap B I. "Symmetry and cluster magnetism". Phys. Rev. A, 1990,41:5691-5694.
    137 Reddy B V, Khanna S N, Dunlap B I. "Giant magnetic moments in 4d clusters". Phys. Rev. Lett, 1993, 70:3323-3326.
    138 Kumar V, Kawazoe Y. "Icosahedral growth magnetic behavior and adsorbate-induced metal-nonmetal transition in palladium clusters". Phys. Rev. B, 2002, 66:144413.
    1 Nakatsuji H, Matsuzaki Y, Yonezawa T. "Ab initio theoretical study on the reactions of a hydrogen molecule with small platinum clusters: A model for chemisorption on a Pt surface". J. Chem. Phys., 1988, 88:5759-5769.
    2 Yang B, Lu Q, Wang Y, et al. "Simple and Low-Cost Preparation Method for Highly Dispersed PtRu/C Catalysts". Chem. Mater., 2003,15:3552-3557.
    3 Qun T Z, Yan X F, Kang S P. "Preparation of high loading Pt supported on carbon by on-site reduction". / Mater. Sci., 2004,39:1507-1509.
    4 Qiang C, Djamaladdin G M, Keiji M. "Molecular orbital study of H_2 and CH_4 activation on small metal clusters. I. Pt Pd Pt_2 and Pd_2". J. Chem. Phys., 1998,108:8418-8428.
    5 Poulain E, Benitez J I, Castillo S, et al. "A comparative theoretical study of the C_(2v) and C_(3v) reaction of H_2 with a Pt_4 cluster". J. Mol. Struct: THEOCHEM, 2004,709:67-72.
    6 Cruz A, Benin V, Poulain E, et al. "Theoretical study of the H_2 reaction with a Pt_4(111) cluster". J. Chem. Phys., 2004,120:6222-6228.
    7 Guvelioglu G H, Ma P, He X, et al. "Evolution of Small Copper Clusters and Dissociative Chemisorption of Hydrogen". Phys. Rev. Lett., 2005, 94:026103.
    8 Guvelioglu G H, Ma P, He X, et al. "First principles studies on the growth of small Cu clusters and the dissociative chemisorption of H_2". Phys. Rev. B, 2006, 73:155436.
    9 Forrey R C, Guvelioglu G H, Ma P, et al. "Rate constants for dissociative chemisorption of hydrogen molecules on copper clusters". Phys. Rev. B, 2006,73:155437.
    10 Saenz L R, Balbuena P B, Seminario J M. "Platin, 2006,110:11968-11974.
    11 Wang Y, Balbuena P B. "Potential Energy Surface Profile of the Oxygen Reduction Reaction on a Pt Cluster: Adsorption and Decomposition of OOH and H_2O_2". J. Chem. Theory Comput., 2005, 1:935-943.
    12 Li T, Balbuena P B. "Computational Studies of the Interactions of Oxygen with Platinum Clusters". J. Phys. Chem. B, 2001,105:9943-9952.
    13 Shimodaira Y, Tanaka T, Miura T, et al. "Density Functional Theory Study of Anode Reactions on Pt-Based Alloy Electrodes". J. Phys. Chem. C, 2007,111:272-279.
    14 Heiz U, Sanchez A, Abbet S, et al. "Catalytic Oxidation of Carbon Monoxide on Monodispersed Platinum Clusters: Each Atom Counts". J. Am. Chem. Soc., 1999,121:3214-3217.
    15 Bertin V, Agacino E, Lopez-Rendon R, et al. "The CO chemisorption on some active sites of Pd clusters: A DFT study". Journal of Molecular Structure: THEOCHEM, 2006, 769:243-248.
    16 Song C, Ge Q, Wang L. "DFT Studies of Pt/Au Bimetallic Clusters and Their Interactions with the CO Molecule". J. Phys. Chem. B, 2005,109:22341-22350.
    17 Ge Q, Song C, Wang L. "A density functional theory study of CO adsorption on Pt-Au nanoparticles". Comput. Mater. Sci., 2006,35:247-253.
    
    18 Sadek M M, Wang L. "Effect of Adsorption Site Size and Composition of Pt/Au Bimetallic Clusters on the CO Frequency: A Density Functional Theory Study". J. Phys. Chem. A, 2006,110:14036-14042.
    
    19 Hanmura T, Ichihashi M, Watanabe Y, et al. "Reactions of Nitrogen Monoxide on Cobalt Cluster Ions: Reaction Enhancement by Introduction of Hydrogen". J. Phys. Chem. A, 2007,111:422-428.
    
    20 Chen B, Castleman J A W, Ashman C, et al. "NH_3 adsorption around Ni_n (n≤4) clusters". Int. J. Mass Spectro., 2002,220:171-182.
    
    21 Balbuena P B, Calvo S R, Lamas E J, et al. "Adsorption and Dissociation of H_2O_2 on Pt and Pt-Alloy Clusters and Surfaces". J. Phys. Chem. B, 2006,110:17452-17459.
    
    22 Khoobiar S. J. Phys. Chem. "Particle to Particle Migration of Hydrogen Atoms on Platinum-Alumina Catalysts from Particle to Neighboring Particles"., 1964,68:411-412.
    
    23 Hoang-Van C, Zegaoui O. "Studies of high surface area Pt/MoO_3 and Pt/WO_3 catalysts for selective hydrogenation reactions I. Preparation and characterization of catalysts by X-ray diffraction, transmission electron microscopy, hydrogen consumption and carbon monoxide chemisorption". Appl. Catal. A: Gen., 1995,130:89-103.
    
    24 Hoang-Van C, Zegaoui O. "Studies of high surface area Pt/MoO_3 and Pt/WO_3 catalysts for selective hydrogenation reactions. II. Reactions of acrolein and allyl alcohol". Appl. Catal. A: Gen., 1997,164:91-103.
    
    25 Sakagami H, Asano Y, Takahashi N, et al. "H_2 reduction of hydrogen molybdenum bronze to porous molybdenum oxide and its catalytic properties for the conversions of pentane and propan-2-ol". Appl. Catal. A: Gen., 2005,284:123-130.
    
    26 Sakagami H, Asano Y, Ohno T, et al. "Reduction of H_xMoO_3 with different amounts of hydrogen to high surface area molybdenum oxides". Appl. Catal. A: Gen., 2006,297:189-197.
    
    27 Lueking A D, Yang R T. "Hydrogen spillover to enhance hydrogen storage-study of the effect of carbon physicochemical properties". Appl. Catal. A: Gen., 2004,265:259-268.
    
    28 Lueking A D, Yang R T, Rodriguez N M, et al. "Hydrogen Storage in Graphite Nanofibers: Effect of Synthesis Catalyst and Pretreatment Conditions". Langmuir, 2004,20:714-721.
    
    29 Lachawiec A J Jr, Qi G, Yang R T. "Hydrogen Storage in Nanostructured Carbons by Spillover: Bridge-Building Enhancement". Langmuir, 2005,21:11418-11424.
    
    30 Yang F H, Lachawiec A J Jr, Yang R T. "Adsorption of Spillover Hydrogen Atoms on Single-Wall Carbon Nanotubes". J. Phys. Chem. B, 2006,110:6236-6244.
    
    31 Sha X, Jackson B. "First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface". Surf. Sci., 2002,496:318-330.
    
    32 Hornekar L, Sljivancanin Z, Xu W, et al. "Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite (0001) Surface". Phys. Rev. Lett., 2006,96:156104.
    
    33 Wang Q, Johnson J K. "Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption". J. Phys. Chem. B, 1999,103:4809-4813.
    
    34 Wang Q, Johnson J K. "Hydrogen adsorption on graphite and in carbon slit pores from path integral simulations". Mol. Phys., 1998,95:299-309.
    
    35 Papoian G, Norskov J K, Hoffmann R. "A Comparative Theoretical Study of the Hydrogen, Methyl, and Ethyl Chemisorption on the Pt(111) Surface". J. Am. Chem. Soc, 2000,122:4129-4144.
    
    36 Gland J L, Baron K, Somorjai G A. "LEED, Work Function Change, and Mass Spectrometric Studies of Chemisorption and Dehydrogenation of Cyclohexane, Cyclohexene, and 1,3 Cyclohexadiene on the Pt(111) Surface". J. Catal, 1975,36:305-312.
    
    37 Godbey D J, Somorjai G A. "The adsorption and desorption of hydrogen and carbon monoxide on bimetallic Re-Pt(111) surfaces". Surf. Sci., 1988,204:301-318.
    
    38 Ankudinov A L, Rehr J J, Low J, et al. "Effect of Hydrogen Adsorption on the X-Ray Absorption Spectra of Small Pt Clusters". Phys. Rev. Lett., 2001,86:1642-1645.
    
    39 Newuwenhuys B E. "Influence of the surface structure on the adsorption of hydrogen on platinum, as studied by field emission probe-hole microscopy". Surf. Sci., 1976,59:430-446.
    
    40 Christmann K R, Palczewska W. Hydrogen Effects in Catalysis. Marcel Dekker, New York. 1988.
    
    41 Verheij L K, Hugenschmidt M B, Anton A B, et al." A molecular beam study of the interaction between hydrogen and the Pt(111) surface". Surf. Sci., 1989,210:1-26.
    
    42 Verheij L K, Hugenschmidt M B. "Hydrogen adsorption on oxygen covered Pt(111)". Surf. Sci., 1995, 324:185-201.
    
    43 Liu X, Dilger H, Eichel R A, et al. "A Small Paramagnetic Platinum Cluster in an NaY Zeolite: Characterization and Hydrogen Adsorption and Desorption". J. Phys. Chem. B, 2006,110:2013-2023.
    
    44 Parker S F, Frost C D, Telling M, et al. "Characterisation of the adsorption sites of hydrogen on Pt/C fuel cell catalysts". Catal. Today, 2006,114:418-421.
    
    45 Vincent J K, Olsen R A, Kroes G J, et al. "Dissociative chemisorption of H_2 on Pt(111): isotope effect and effects of the rotational distribution and energy dispersion". Surf. Sci., 2004,573:433-445.
    
    46 Pijper E, Kroes G J, Olsen R A, et al. "Reactive and diffractive scattering of H_2 from Pt( 111) studied using a six-dimensional wave packet method". J. Chem. Phys., 2002,117:5885-5898.
    
    47 Olsen R A, Kroes G J, Baerends E J. "Atomic and molecular hydrogen interacting with Pt(111)". J. Chem. Phys., 1999,111:11155-11163.
    
    48 Watson G W, Wells R P K, Willock D J, et al. "A Comparison of the Adsorption and Diffusion of Hydrogen on the 111 Surfaces of Ni, Pd, and Pt from Density Functional Theory Calculations". J. Phys. Chem. B, 2001,105:4889-4894.
    
    49 Nobuhara K, Kasai H, Nakanishi H, et al. "Coverage dependence of hydrogen absorption into Pd( 111)". J. Appl. Phys., 2002,92:5704-5706.
    
    50 Nobuhara K, Kasai H, Dino W A, et al. "H_2 dissociative adsorption on Mg, Ti, Ni, Pd and La Surfaces". Surf. Sci., 2004,566-568:703-707.
    
    51 Dong W, Hafner J. "H_2 dissociative adsorption on Pd( 111)". Phys. Rev. B 56:15396 (1997).
    
    52 Gu Z, Balbuena P B. "Absorption of Atomic Oxygen into Subsurfaces of Pt(100) and Pt(111): Density Functional Theory Study". J. Phys. Chem. C, 2007,111:9877-9883.
    
    53 Dai D, Liao D W, Balasubramanian K. "Potential energy surfaces for Pt_3+H_2 and Pd_3+H_2reaction". J. Chem. Phys., 1995,102:7530-7439.
    
    54 Balasubramanian K. "Potential energy surfaces for the Pt_2+H_2 systems".J. Chem. Phys., 1991,94:1253-1263.
    
    55 Okamoto Y. "Comparison of hydrogen atom adsorption on Pt clusters with that on Pt surfaces: A study from density-functional calculations". Chem. Phys. Lett, 2006,429:209-213.
    
    56 Cruz A, Bertin V, Poulain E, et al. "Theoretical study of the H_2 reaction with a Pt_4(111) cluster". J Chem. Phys., 2004,120:6222-6228.
    
    57 Gdowski G E., Fair J A, Madix R J. "Reactive scattering of small molecules from platinum crystal surfaces: D_2CO, CH_3OH, HCOOH, and the nonanomalous kinetics of hydrogen atom recombination". Surf. Sci., 1983,127:541-554.
    
    58 Richter L J, Ho W. "Vibrational spectroscopy of H on Pt(111): Evidence for universally soft parallel modes". Phys. Rev. B, 1987,36:9797-9800.
    
    59 Au C T, Zhou T J, Lai W J. "Theoretical studies of CO hydrogenation to methanol over Cu, Pd, and Pt metals". Catal. Lett., 1999,62:147-151.
    
    60 Watari N, Ohnishi S. "Electronic structure of H adsorbed on Pt_(13) clusters".J. Chem. Phys., 1997, 106:7531-7540.
    
    61 Chen L, Cooper A C, Pez G P, et al. " Density Functional Study of Sequential H_2 Dissociative Chemisorption on a Pt_6 Cluster". J. Phys. Chem. C, 2007,111:5514-5519.
    
    62 Zhou C, Wu J, Nie A, et al. "On the Sequential Hydrogen Dissociative Chemisorption on Small Platinum Clusters: A Density Functional Theory Study". J. Phys. Chem. C, 2007,111:13768-13793.
    
    63 Perdew J P, Chevary J A, Vosko S H, et al. "Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation". Phys. Rev. B, 1992,46:6671-6687.
    
    64 Perdew J P, Burke K, Ernzerhof M. "Generalized Gradient Approximation Made Simple". Phys. Rev. Lett., 1996,77:3865-3868.
    
    65 Hirschfeld F L. "Bonded-atom fragments for describing molecular charge-densities". Theor. Chim. Acta B, 1977,44:129-138.
    
    66 Halgren T A, Lipscomb W N. "The synchronous-transit method for determining reaction pathways and locating molecular transition states". Chem. Phys. Lett., 1977,49:225-232.
    
    67 Nose S. "A molecular dynamics method for simulations in the canonical ensemble". Mol. Phys., 1984, 52:255-268.
    
    68 Martyna G J, Tuckerman M E, Tobias M E, et al. "Explicit reversible integrators for extended systems dynamics". Mol. Phys., 1996,87:1117-1157.
    
    69 Perdew J P, Wang Y. "Accurate and simple analytic representation of the electron-gas correlation energy".Phys. Rev. B, 1992,45:13244-13249.
    
    70 Delley B. "An all-electron numerical method for solving the local density functional for polyatomic molecules". J. Chem. Phys., 1990, 92:508-517.
    
    71 Delley B. "Fast Calculation of Electrostatics in Crystals and Large Molecules". J. Phys. Chem., 1996, 100:6107-6110.
    
    72 Delley B. "A Scattering Theoretic Approach to Scalar Relativistic Corrections on Bonding". Int. J. Quantum Chem., 1998, 69:423-433.
    
    73 Delley B. "From molecules to solids with the DMol~3 approach". J. Chem. Phys., 2000,113:7756-7764.
    
    74 Delley B. "DMol3 DFT studies: from molecules and molecular environments to surfaces and solids". Compu. Mat. ScL, 2000,17:122-126.
    
    75 Legare P. "A theoretical study of H surface and subsurface species on Pt( 111)". Surf. Sci., 2004,559:169-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700