用户名: 密码: 验证码:
金属/SiC界面势反演和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属/SiC界面广泛存在于SiC器件中,对其性质有决定性的影响,是SiC材料应用过程中需要研究的重要课题。现有的理论工作主要集中于第一原理计算,受计算量限制,只能对简单界面模型进行研究。另外,相关界面势的缺乏导致金属/SiC界面上的原子级模拟无法开展,使得理论对于这类界面的复杂结构性质了解甚为有限。
     针对这种情况,本文寻求一种系统的方法来获取金属/SiC体系的界面势。出于简单方便的考虑,首先选用了对势模型。利用晶格反演方法,可以直接从共格界面构型的粘合能曲线中反演界面对势。应用于受限的相空间时,对势是一种简单有效的模型。但如果模拟时需要同时描述所有高对称性的共格界面构型,则其可移植性需要改善。从金属/SiC体系的电荷密度分布即可看出,界面上金属和SiC之间的键存在着共价的特征,这是导致对势模型在这类界面上可移植性差的主要原因。由此引入MSW三体相互作用对界面势的可移植性作了有效的改进。这种方法在Al/SiC(111)界面上获得了成功。
     利用反演获得的界面势,本文研究了金属/SiC界面在纳米和亚微米尺度的结构性质。对金属层覆盖率较低时的界面结构,直接通过模拟沉积过程来得到,其结果与已有的实验相一致。对金属层覆盖率较高时的情况,引入了失配位错位置的概念,提出了包含共格过渡层的失配位错模型。这些结果能够为今后的实验和第一原理计算提供一些结构信息。
     界面势也被用于对界面力学性质的研究。对金属/SiC的拉伸模拟发现,由于金属和SiC之间的粘合通常都很强,断裂容易发生在金属层中,这使得整个界面的力学强度被削弱。
     作为对功能性质的探索,本文还用第一原理方法研究了合金/SiC界面的结构、粘合性质和肖特基势垒。这个研究从理论上揭示了不同金属共存于半导体表面时的一些有趣的物理现象。
Metal/SiC interface is an interesting and important issue for SiC devices applications. Theoretical studies in this field are mainly concentrated on ab initio calculations with simple interface models, while atomistic simulations are rather rare, which is due to the lack of related potentials.
     In this situation, we pay an effort to look for a systematic way to get interfacial potentials for metal/SiC system. First a pair-potential model is employed. By using a lattice inversion method, the interfacial pair potentials can be directly derived from ab initio adhesive energyies of some interfacial configurations. The obtained pontentials are parameter-free ones which are effective in a given phase space.However, they have limitations on transferability in modeling some other possible interface structures. In the view of charge distribution, the bonds between metal and SiC in the interface region have typical covalent character, which is responsible for the poor transferability of pair potentials. To improve it, SW three-body interactions are introduced as a modification, leading to a significantly better result than the pure two-body case.
     Based on the resultant interfacial potentials, atomistic simulations on interface structures and mechanical properties are carried out. For low metal coverage on SiC, deposition simulation is applied and the obtained patterns are quite consistent with experiments. And for high metal coverage, an atomic model with misfit dislocation is introduced. We find that there is a coherent interlayer on metal/SiC interface, and dislocation is above this layer. This is quite valuable for experimental check and first principle calculations. In addition, tensile test simulation is performed to study the mechanical properties of the interface. Since there is a strong adhesion between metal and SiC, the fracture takes place in the metal side, which may decrease the total tensile strength of the interface.
     Futher more, to gain insight in to the functional properties, an ab initio task is performed on alloy/SiC interfaces. It shows some interesting results on Schottky barrier height and interfacial adhesion, etc.
引文
[1]郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术,科学出版社, 2000.
    [2]贺春林,才庆魁. SiCp/Al基复合材料的结构、力学与腐蚀性能,东北大学出版社, 2008.
    [3] Renaud G, Guenard P, Barbier A. Misfit dislocation network at the Ag/MgO(001) interface: a grazing-incidence x-ray-scattering study. Phys. Rev. B, 1998, 58: 7310~7318.
    [4] Henry C R, Meunier M. Helium diffraction study of the nucleation and growth of supported metal clusters. Mater. Sci. Eng., 1996, A217/218: 239~243.
    [5] Haas G, Menck A, Al H B E. Nucleation and growth of supported clusters at defect sites: Pd/MgO(001). Phys. Rev. B, 2000, 61: 11105~11108.
    [6]刘利民.金属-碳、氮、氧化物异质界面的第一原理研究: [博士论文].沈阳:中国科学院金属研究所, 2005.
    [7] Tanaka S, Kohyama M. Ab initio calculations of the 3C-SiC(111)/Ti polar interfaces. Phys. Rev. B, 2001, 64: 235308.
    [8] Tanaka S, Kohyama M. Ab initio study of 3C-SiC/M (M = Ti or Al) nano-hetero interfaces. Appl. Surf. Sci., 2003, 216: 471~477.
    [9] Profeta G, Blasetti A, Picozzi S, et al. Termination effects at metal/ceramic junctions: Schottky barrier heights and interface properties of the beta-SiC(001)/Ni systems. Phys. Rev. B, 2001, 64: 235312.
    [10] Profeta G, Continenza A, Freeman A J. Energetics and bonding properties of the Ni/beta-SiC (001) interface: An ab initio study. Phys. Rev. B, 2001, 64: 045303.
    [11] Haftel M I, Rosen M. Molecular-dynamics description of early film deposition of Au on Ag(110). Phys. Rev. B, 1995, 51: 4426~4434.
    [12] Jiménez-Sáez J C, Pérez-MartińA M C and Jiménez-Rodríguez J J. Molecular dynamics simulation of Cu cluster deposition on Au(001) surfaces. Appl. Surf. Sci, 2004, 238: 223~227.
    [13] Luo X, Qian G F, Wang E G, et al. Molecular-dynamics simulation of Al/SiC interface structures. Phys. Rev. B, 1999, 59: 10125~10131.
    [14] Vervisch W, Motter C, Goniakowski J. Theoretical study of the atomic structure of Pd nanoclusters deposited on a MgO(100) surface. Phys. Rev. B, 2002, 65: 245411.
    [15] Dmitriev S V, Yoshikawa N, Al Y K E. Coherency of copper/sapphire interface studied by atomistic simulation and geometrical analysis. Surf. Sci., 2003, 542: 45~55.
    [16] Dmitriev S V, Yoshikawa N, Kagawa Y. Misfit accommodation at the Cu(111)/α- Al2O3(0001) interface studied by atomistic simulation. Comp. Mater. Sci., 2004, 29: 95~102.
    [17] Dmitriev S V, Yoshikawa N, Kohyama M, et al. Modeling interatomic interactions acrossCu/alpha-Al2O3 interface. Comp. Mater. Sci., 2006, 36(3): 281~291.
    [18] Hoekstra J, Kohyama M. Ab initio calculations of the beta-SiC(001)/Al interface. Phys. Rev. B, 1998, 57(4): 2334~2341.
    [19] Kohyama M, Hoekstra J. Ab initio calculations of the beta-SiC(001)/Ti interface. Phys. Rev. B, 2000, 61(4): 2672~2679.
    [20] Vandenburg M, Dehosson J. Al-SiC interface structure studied by HREM. Acta Metallurgica et Materialia, 1992, 40: S281~S287.
    [21] Arsenault R J, Romero J C. A comparison of interfacial arrangements of SiC/Al composites. Scripta Metallurgica et Materialia, 1995, 32(11): 1783~1787.
    [22] Li S, Arsenault R J, Jena P. Quantum chemical study of adhesion at the SiC/Al interface. J. Appl. Phys., 1988, 64(11): 6246~6253.
    [23] Romero J C, Arsenault R J. Anomalous penetration of Al into SiC. Acta Metallurgica et Materialia, 1995, 43(2): 849~857.
    [24] Romero J C, Wang L, Arsenault R J. Interfacial structure of a SiC/Al composite. Mater. Sci. Eng. A, 1996, 212(1): 1~5.
    [25] Levay A, M?bus G, Vitek V, et al. Structure of misfit dislocations in niobium-sapphire interfaces and strength of interfacial bonding: an atomistic study. Acta Mater., 1999, 47: 4143.
    [26] Vellinga W P, Hosson J.Th.M. De, Vitek V. Misfit dislocations: an atomistic and elastic continuum approach. Acta Metallurgica, 1997, 45: 1525.
    [27] Ye F, Zhang W Z. Dislocation structure of non-habit plane of alpha precipitates in a Ti-7.26 wt.% Cr alloy. Acta Mater., 2006, 54: 871~879.
    [28] Ye F, Zhang W Z, Qiu D. Near-coincidence-sites modeling of the edge facet dislocation structures of alpha precipitates in a Ti-7.26 wt.% Cr alloy. Acta Mater., 2006, 54: 5377~5384.
    [29] Zhang W Z, Wu J. Dislocation description of martensite interfaces based on misfit analysis. Mat. Sci. Eng. A, 2006, 438: 118~121.
    [30] Renaud G, Barbier A. Structure and morphology of the Pd/MgO(001) interface during its formation. Appl. Surf. Sci., 1999, 142: 14~17.
    [31] Renaud G, Barbier A, Robach O. Growth, structure, and morphology of the Pd/MgO(001) interface: Epitaxial site and interfacial distance. Phys. Rev. B, 1999, 60: 5872~5882.
    [32] Hoshino Y, Matsubara Y, Nishimura T, et al. Atomic and electronic structures of an ultrathin Ni-deposited SiC(0001)-2×2 surface. Phys. Rev. B, 2005, 72: 235416.
    [33] Kubo O, Ryu J T, Katayama M, et al. Ag/6H-SiC(0001) surface phase and its structural transformation upon exposure to atomic hydrogen. Phys. Rev. B, 2004, 69: 045406.
    [34] Hoshino Y, Matsumoto S, Kido Y. Ultrathin Ni layers grown epitaxially on SiC(0001) at room temperature. Phys. Rev. B, 2004, 69: 155303.
    [35] Slijkerman W, Fischer A, Vanderveen J F, et al. Formation of the Ni-SiC(001) interface studied by high-resolution ion backscattering. J. Appl. Phys., 1989, 66(2): 666~673.
    [36] Bermudez V M, Kaplan R. Investigation of the structure and stability of the Pt/SiC(001) interface. Journal of Materials Research, 1990, 5(12): 2882~2893.
    [37] Bermudez V M. Photoemission-study of oxygen-adsorption on (001) silicon-carbide surfaces. J. Appl. Phys., 1989, 66(12): 6084~6092.
    [38] Johansson L I, Virojanadara, C. Electronic structure study of reconstructed Au-SiC(0001) surfaces. Surf. Sci., 2006, 600(2): 436-441.
    [39]斯温.陶瓷的结构与性能:郭景坤等译.科学出版社, 1998.
    [40] Choi D S, Kopczyk M, Kayani A, et al. Structure of ultrathin Ag films on the Al(100) surface. Phys. Rev. B, 2006, 74: 115407.
    [41] Tung R T, Sullivan J P, Schrey F. Relationship between interface structure and Schottky barrier height. Interface Control of Electrical, Chemical, and Mechanical Properties. Symposium, 1994: 3~11.
    [42] Tung R T, Levi A, Sullivan J P, et al. Schottky-barrier inhomogeneity at epitaxial NiSi2 interfaces on Si(100). Phys. Rev. Lett., 1991, 66(1): 72~75.
    [43] Li S J, Zhou Y, Duan H P. Wettability and interfacial reaction in SiC/Ni plus Ti system. J. Mater. Sci., 2002, 37(12): 2575~2579.
    [44] Edelstein A S, Gillespie D J, Cheng S F, et al. Reactions at amorphous SiC/Ni interfaces. J. Appl. Phys., 1999, 85(5): 2636~2641.
    [45] Fan T X, Shi Z L, Zhang D, et al. The interfacial reaction characteristics in SiC/Al composite above liquidus during remelting. Mater. Sci. Eng. A, 1998, 257(2): 281~286.
    [46] Suino A, Yamazaki Y, Nitta H, et al. Tracer diffusion of Cu in CVD beta-SiC. J. Phys. Chem. Solids, 2008, 69(2-3): 311~314.
    [47] Passerone A, Muolo M L, Passerone D. Wetting of Group IV diborides by liquid metals. J. Mater. Sci., 2006, 41(16): 5088~5098.
    [48] Binner J, Fernie J A, Whitaker P A. An investigation into microwave bonding mechanisms via a study of silicon carbide and zirconia. J. Mater. Sci., 1998, 33(12): 3009~3015.
    [49] Mcdermid J R, Drew R. Brazing of reaction-bonded silicon-carbide and inconel 600 with an iron-based alloy. J. Mater. Sci., 1990, 25(11): 4804~4809.
    [50]李树杰,张利. SiC基材料自身及其与金属的连接.粉末冶金技术, 2004, 22(2): 91.
    [51] Finnis M W. Metal-ceramic cohesion and the image interaction. Acta Metal. Mater., 1992, 40: S25~S37.
    [52] Yao Y G, Zhang Y. Ab initio pair potentials at metal-ceramic interfaces. Phys. Lett. A, 1999, 256: 391~398.
    [53] Mocuta C, Barbier A, Al G R E. Structure and growth of metal on NiO(111) single crystal interface. J. Appl. Phys., 2004, 95: 2151~2162.
    [54] Long Y, Chen N X. Pair potential approach for metal/Al2O3 interface. J. Phys: Condens. Matter, 2007, 19: 196216.
    [55] Long Y, Chen N X, Zhang W Q. Pair potentials for a metal-ceramic interface by inversion of adhesive energy. J. Phys: Condens. Matter, 2005, 17(12): 2045~2058.
    [56]龙瑶.金属/氧化物界面的理论研究:[博士学位论文].清华大学, 2007.
    [57] Chen G, Li Z Y, Bai S, et al. Properties of homoepitaxial 4H-SiC and characteristics of Ti/4H-SiC Schottky barrier diodes. Proceedings of the SPIE - The International Societyfor Optical Engineering, 2008, : 69842L~69844L.
    [58] Davydov S Y, Lebedev A A, Posrednik O V, et al. Role of silicon vacancies in formation of Schottky barriers at Ag and Au contacts to 3C- and 6H-SiC. Semiconductors, 2002, 36(6): 652~654.
    [59] Duman S, Dogan S, Gurbulak B, et al. The barrier-height inhomogeneity in identically prepared Ni/n-type 6H-SiC Schottky diodes. Appl. Phys. A, 2008, 91(2): 337~340.
    [60] Hadzi-Vukovic J M, Jevtic M M. The voltage pulse degraded Ti/4H-SiC Schottky diodes studied with I-V and low frequency noise measurements. Diamond and Related Materials, 2007, 16(1): 81~89.
    [61] Hatayama T, Kawahito K, Kijima H, et al. Electrical properties and interface reaction of annealed Cu/4H-SiC Schottky rectifiers. Silicon Carbide and Related Materials 2001, Parts1 and 2, Proceedings, 2002, 389-3: 925~928.
    [62] Hatayama T, Suezaki T, Kawahito K, et al. Effects of thermal annealing on Cu/6H-SiC Schottky properties. Silicon Carbide and Related Materials, ECSCRM2000, 2000, 353-3: 615~618.
    [63] Milman V, Winkler B, Al J A W E. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem., 2000, 77: 895~910.
    [64] Chen N X. Modified Mobius inverse formula and its applications in Physics. Phys. Rev. Lett., 1990, 64: 1193~1195.
    [65]蔡进.化合物半导体晶格反演原子势及其应用:[博士学位论文].清华大学, 2007.
    [66] Stillinger F H, Weber T A. Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B, 1985, 31(8): 5262~5271.
    [67] Cowley E R. Lattice-dynamics of silicon with empirical many-body potentials. Phys. Rev. Lett., 1988, 60(23): 2379~2381.
    [68] Khor K E, Dassarma S. Growth of Ge thin-films and islands on the Si(001) surface. Phys. Rev. B, 1994, 49(19): 13657~13662.
    [69] Khor K E, Dassarma S. Model-potential-based simulation of Si(100) surface reconstruction. Phys. Rev. B, 1987, 36(14): 7733~7736.
    [70]刘英.基于第一性原理计算的原子间相互作用三体势及其应用:[博士学位论文].北京科技大学, 2002.
    [71] Tekmen C, Cocen U. Squeeze casting of Ni coated SiC particle reinforced Al based composite. J. Compos. Mater., 2008, 42(13): 1271~1279.
    [72] Rams J, Campo M, Torres B, et al. Al/SiC composite coatings of steels by thermal spraying. Mater. Lett., 2008, 62(14): 2118~2121.
    [73] Mohan B, Venugopal S, Rajadurai A, et al. Optimization of the machinability of the Al-SiC metal matrix composite using the dynamic material model. Metallurgical and Materials Transactions A, 2008, 39A(12): 2931~2940.
    [74] Hafizpour H R, Simchi A. Investigation on compressibility of Al-SiC composite powders. Powder Metallurgy, 2008, 51(3): 217~223.
    [75]弗里埃德尔.位错:王煜译.科学出版社, 1984.
    [76] Benedek R, Seidman D N, Woodward C. The effect of misfit on heterophase interface energies. J. Phys: Condens. Matter, 2002, 14(11): S953~S8984.
    [77] Liu L M, Wang S Q, Ye H Q. Atomic and electronic structures of the lattice mismatched metal-ceramic interface. J. Phys: Condens. Matter, 2004, 16(32): 5781~5790.
    [78] Long Y, Chen N X. An atomistic simulation and phenomenological approach of misfit dislocation in metal/oxide interfaces. Surf. Sci., 2008, 602(5): 1122~1130.
    [79] Bermudez V M. Growth and structure of aluminum films on (001) silicon-carbide. J. Appl. Phys., 1988, 63(10): 4951~4959.
    [80] Yildirim N, Korkut H, Turut A. Temperature-dependent Schottky barrier inhomogeneity of Ni/n-GaAs diodes. European Physical Journal-Applied Physics, 2009, 45(1): 10302.
    [81] Huang S H, Wu F M. Study of the inhomogeneity of Schottky barrier height in nickel silicide by the internal photoemission spectroscopy. Modern Physics Letters B, 2006, 20(28): 1825~1832.
    [82] Huang S H, Lu F. Investigation on the barrier height and inhomogeneity of nickel silicide Schottky. Appl. Surf. Sci., 2006, 252(12): 4027~4032.
    [83] Hamida A F, Ouennoughi Z, Sellai A, et al. Barrier inhomogeneities of tungsten Schottky diodes on 4H-SiC. Semiconductor Science and Technology, 2008, 23(4): 045005.
    [84] Tung R T. Schottky-barrier height - Do we really understand what we measure. Journal of Vacuum Science & Technology B, 1993, 11(4): 1546~1552.
    [85]刘恩科,朱秉升,罗晋生.半导体物理学,电子工业出版社, 2006.
    [86]曹立礼.材料表面科学,清华大学出版社, 2007.
    [87] Kaiser W J, Bell L D. Direct investigation of subsurface interface electronic-structure by ballistic-electron-emission microscopy. Phys. Rev. Lett., 1988, 60(14): 1406~1409.
    [88] Bell L D, Kaiser W J. Observation of interface band-structure by ballistic-electron-emission microscopy. Phys. Rev. Lett., 1988, 61(20): 2368~2371.
    [89] Long Y, Chen N X. Interface reconstruction and dislocation networks for a metal/alumina interface: an atomistic approach. J. Phys: Condens. Matter, 2008, 20 135005.
    [90] Bhatnagar M, Baliga B J, Kirk H R, et al. Effect of surface inhomogeneities on the electrical characteristics of SiC Schottky contacts. IEEE Transactions on Electron Devices, 1996, 43(1): 150~156.
    [91] Sullivan J P, Tung R T, Pinto M R, et al. ELECTRON-TRANSPORT OF INHOMOGENEOUS SCHOTTKY BARRIERS - A NUMERICAL STUDY. JOURNAL OF APPLIED PHYSICS, 1991, 70(12): 7403~7424.
    [92]尤雪梅.金属/陶瓷界面粘聚力模型微观机理研究:[博士学位论文].中国科学院力学研究所, 2008.
    [93] Zhang H Z, Liu L M, Wang S Q. First-principles study of the tensile and fracture of the Al/TiN interface. Comp. Mater. Sci., 2007, 38(4): 800~806.
    [94] Liu L M, Wang S Q, Ye H Q. First-principles study of the effect of hydrogen on the metal-ceramic interface. J. Phys: Condens. Matter, 2005, 17(35): 5335~5348.
    [95] Li W X, Wang T C. Ab initio investigation of the elasticity and stability of aluminium. J. Phys: Condens. Matter, 1998, 10(43): 9889~9904.
    [96] Li W X, Wang T C. Elasticity, stability, and ideal strength of beta-SiC in plane-wave-based ab initio calculations. Phy. Rev. B, 1999, 59(6): 3993~4001.
    [97] Long Y, Chen N X. Theoretical study of misfit dislocation in interface dynamics. Comp. Mater. Sci., 2008, 44(2): 721~727.
    [98] Tanaka S, Tamura T, Okazaki K, et al. Schottky-barrier heights of metal/alpha-SiC{0001} interfaces by first-principles calculations. Physica Status Solidi C, 2007, 4(8): 2972~2976.
    [99] Porter L M, Davis R F. A critical review of ohmic and rectifying contacts for silicon-carbide. Mater. Sci. Eng. B, 1995, 34(2-3): 83~105.
    [100] Arizumi T, Hirose M, Altaf N. Au-Cu alloy and Ag-Cu alloy-silicon Schottky barriers. Japanese Journal of Applied Physics, 1969, 8(11): 1310.
    [101] Arizumi T, Hirose M, Altaf N. Au-Ag alloy-silicon Schottky barriers. Japanese Journal of Applied Physics, 1968, 7(8): 870.
    [102] Tung R T. Recent advances in Schottky barrier concepts. Material Science & Engineering R-Reports, 2001, 35(1-3): 1~138.
    [103] Lu W C, Zhang K M, Xie X D. Adsorption of aluminum on beta-SiC(100) surfaces. Phys. Rev. B, 1992, 45: 11048~11053.
    [104] Sabisch M, Kruger P, Mazur A, et al. First-principles calculations of beta-SiC(001) surfaces. Phys. Rev. B, 1996, 53: 13121~13132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700