用户名: 密码: 验证码:
多发性骨髓瘤骨髓微环境中脑源性神经营养因子促进血管新生的作用及调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分慢病毒shRNA干扰骨髓瘤细胞表达BDNF抑制体内肿瘤生长和局部血管新生
     目的通过慢病毒shRNA载体干扰骨髓瘤细胞BDNF的表达,建立人骨髓瘤裸鼠模型,在体内实验中研究BDNF对骨髓瘤肿瘤生长和血管新生的作用
     方法构建慢病毒载体pGCSIL-eGFP-shBDNF并转染至骨髓瘤RPMI 8226细胞,流式细胞分选术筛选eGFP阳性稳定转染BDNFshRNA的骨髓瘤细胞,Western blot验证shRNA对BDNF蛋白表达的干扰作用;分离培养正常人骨髓间充质细胞,流式细胞术鉴定其表面分子;诱导BMSCs向成骨细胞、成脂肪细胞和成软骨细胞分化,通过茜素红染色、油红O染色及阿辛蓝染色鉴定其多能定向分化的能力。将稳定转染BDNFshRNA/Control shRNA的RPMI 8226细胞单独或与骨髓间充质细胞混合后接种裸鼠皮下,建立骨髓瘤移植瘤老鼠模型。活体荧光显微镜下连续监测骨髓瘤细胞的体内生长,观察肿瘤大小,总体存活时间,通过免疫组化染色CD34计算肿瘤微血管密度(MVD),Western blot检测肿瘤组织BDNF、VEGF的蛋白表达。
     结果转染慢病毒载体的RPMI 8226细胞经流式分选后,表达eGFP的BDNF shRNA组和control shRNA组转染细胞纯度分别达91.87%和90.50%,Western Blot结果证实转染BDNF shRNA的RPMI 8226细胞BDNF蛋白表达显著抑制;9名健康人来源的BMSCs均表达CD44、CD105和CD29,但不表达CD14,CD45,并且BMSCs在不同条件下经诱导能向成骨细胞、成脂肪细胞以及成软骨细胞定向分化;人骨髓瘤裸鼠模型中,BMSCs能促进骨髓瘤细胞在体内生长,加速肿瘤形成;对于RPMI 8226细胞移植瘤模型,shBDNF RPMI 8226组较Control RPMI 8226组移植瘤平均体积(578.10±138.27 mm3 vs 1100.01±132.38 mm3,P<0.001)降低,并伴随局部微血管密度减少(6.40±3.81/HRP vs 12.73±5.89/HRP,P<0.001)以及总体生存时间延长;同样,对于骨髓瘤-间充质细胞混合移植瘤,ShBDNF RPMI 8226/BMSCs组较Control RPMI8226/BMSCs组肿瘤平均体积(1076.51±161.00mm3 vs 1674.49±174.71 mm3,P<0.001)亦降低。微血管密度(22.13±8.56/HRP vs 30.26±12.53/HRP,P<0.001)亦减少并且总体生存时间延长;Western Blot证实干扰骨髓瘤BDNF的表达能降低肿瘤组织VEGF的分泌。
     结论骨髓瘤分泌的BDNF在体内骨髓瘤的生长及局部血管新生过程中起重要作用,可能成为多发性骨髓瘤治疗的新靶点。
     第二部分骨髓微环境中骨髓瘤细胞分泌的BDNF促进骨髓间充质细胞分泌VEGF
     目的体外实验探讨BDNF/TrkB途径在骨髓微环境中对多发性骨髓瘤血管新生的作用。
     方法分离培养正常人原代骨髓间充质细胞,在体外应用BDNF作用于正常人骨髓间充质细胞,或将稳定转染BDNF/Control shRNA的RPMI 8226细胞与正常人骨髓间充质细胞在transwell小室中培养,ELISA法检测BDNF对BMSCs分泌VEGF的影响,Western blot法分别检测BMSC细胞TrkB、STAT3、p-STAT3的蛋白表达量,凝胶电泳迁移实验(EMSA)检测核因子AP-1的DNA结合活性。
     结果BDNF能促进BMSCs表达TrkB;沉默BDNF表达的RPMI 8226细胞与BMSCs共培养时,BMSCs表达的TrkB蛋白水平较对照组降低;BDNF以时间和剂量依赖性的方式促进BMSCs分泌VEGF这种作用能被TrkB抑制剂K252α所阻断;BMSCs与RPMI 8226细胞共培养能促进VEGF的分泌,共培养上清的VEGF水平是BMSCs及RPMI 8226细胞单独培养上清中VEGF水平之和的3.1倍,K252α亦能部分抑制这种作用,而当BMSCs与shBDNF RPMI 8226细胞共培养时,VEGF水平降低36.89%。BDNF能促进BMSCs内AP-1的DNA结合活性和STAT3的磷酸化水平,而阻断STAT3途径能明显下调BDNF对BMSCs分泌VEGF的促进作用。
     结论骨髓瘤-间充质细胞共培养系统中,骨髓瘤细胞分泌的BDNF是通过活化受体TrkB促进骨髓基质细胞内STAT3的磷酸化,从而上调促血管新生因子VEGF的分泌。
     第三部分脑源性神经营养因子-促进多发性骨髓瘤细胞分泌基质金属蛋白-9
     目的探讨脑源性神经营养因子(BDNF)通过核转录因子NF-κB诱导多发性骨髓瘤(MM)细胞分泌基质金属蛋白酶(MMP)-9的分子机制。
     方法培养人MM细胞株RPMI 8226,使用明胶酶谱法检测RPMI 8226细胞分泌的活性MMP-2、MMP-9水平的改变,用化学发光凝胶电泳迁移率分析(EMSA)法检测RPMI 8226细胞中NF-κB活化水平的改变。
     结果以25、50、100和200μg/L浓度的BDNF刺激RPMI 8226细胞24小时后,其活性MMP-9的分泌水平分别为2.03±0.48、2.99±0.46、4.63±0.62和5.62±1.29gμg/L,均明显高于对照组(P<0.01),而MMP-2的表达在各浓度组之间的差异无统计学意义(P>0.01)。当BDNF作用浓度为100μg/L时,预先分别用1mmol/L的NF-κB抑制剂四氢化吡咯二硫代氨基甲酸酯(PDTC)和500nmol/L的BDNF高亲和力受体TrkB的酪氨酸抑制剂K252a处理15min和1h后,K252α和PDTC(P<0.001)均能显著抑制RPMI 8226细胞MMP-9的分泌(光密度值分别为867.52±101.81、727.98±92.05,对照组为1159.01±233.15,与对照组比,P值均小于0.01)。随着BDNF浓度的升高,NF-κB的活化作用明显增强,于BDNF浓度为100gμg/L时加K252a预处理1h,6h,12h,24h的3个时间点均观察到K252α能明显抑制BDNF对NF-κB的活化作用(P<0.05),且随着BDNF作用时间的延长而增强。
     结论BDNF能促进MM细胞血管新生的能力可能是通过NF-κB信号转导途径激活MMP-9而实现的。
PRATⅠ
     Silencing of BDNF expression by shRNA inhibits in vivo multiple myeloma growth and angiogenesis in the bone marrow milieu
     Objective To evaluate the effect of MM derived BDNF on tumor growth and angiogenesis in human multiple myeloma xenograft animal model by using lentiviral based shRNA targeting BDNF expression.
     Methods RPMI 8226 cells were transfected with lentiviral based shBDNF-pGCSIL-eGFP or control vector. Pure populations of transfected RPMI 8226 cell were isolated via a flow cytometry, and specific BDNF knockdown was verified by western blot. BM stromal cells (BMSCs) were isolated from health donors and their phenotypes were identified with flow cytometer;Confirmation of differentiation of the BMSCs to adipocytes, osteocytes and chondrocytes were performed by staining with alizarin red, oil red O and alcine blue respectively. BDNF shRNA RPMI 8226 cells were inoculated subcutaneously with or without BMSCs in the hind neck of irradiated nude mice; Tumor volume was measured by in-vivo optical imaging and capliper; Microvessel density (MVD) was assessed by immunohistochemical analysis for CD34 expression; BDNF and VEGF expression in tumor were analyzed by western blot.
     Results The purity of transfectants was determined by flow cytometric analysis of enhanced GFP reporter protein, the selected BDNF shRNA and control shRNA RPMI-8226 cells could reach up to 91.87% and 90.50% when compared with parental RPMI-8226 cells. The silencing capacity of BDNF shRNA was confirmed by western blot;BMSCs, isolated from nine healthy donors, expressed CD44、CD 105 and CD29, but not CD14,CD45 and characterized for adipocytes, osteocytes and chondrocytes differentiation capacity; In human myeloma xenograft model, compared with control group, shBDNF RPMI 8226 group has decreased tumor volume(578.10±138.27 mm3 vs 1100.01±132.38 mm3, P <0.001)and microvessel density(6.40±3.81/HRP vs 12.73±5.89/HRP,P<0.001),and prolonged overall survival; Moreover, the shBDNF RPMI 8226/BMSCs group has dcreased tumor volume(1076.51±161.00mm3 vs 1674.49±174.71 mm3,P<0.001)and microvessel density(22.13±8.56/HRP vs 30.26±12.53/HRP,P<0.001),and prolonged overall survival as well.It also demonstrated that silencing of MM-derived BDNF expression significantly inhibited VEGF expression by tumor immunohistochemistry. Conclusion:Our studies demonstrate that BDNF, as a potential stimulator of angiogenesis, contributes to MM tumorgenesis and may be a new target for MM therapy.
     PRAT II
     MM derived BDNF promotes stroma-derived VEGF secretion in the bone marrow milieu
     Objective To evaluate the involvement of BDNF/TrkB pathway in MM-BMSCs interaction that mediates bone marrow angiogenesis in MM.
     Methods BMSCs were isolated from 9 healthy donors,and RPMI 8226 cells were transfected with lentiviral based BDNF/Control shRNA vector. An indirecte co-culture system between RPMI 8226 MM cells and BMSCs was established by using a 0.4μm transwell inserts.ELISA was used to evaluate the effect of BDNF on VEGF secretion from BMSCs. TrkB、STAT3 and p-STAT3 in BMSCs were detected by western blot and DNA-binding of AP-1 was detected by Electrophoretic mobility shift assay (EMSA).
     Results TrkB was consistently expressed by represent BMSC cultures and induced by BDNF stimulation, whereas TrkB expression was inhibited when BMSCs were co-cultured with BDNF knockdown MM cells compared to control group.Stimulation of BMSCs with exogenous BDNF induced a time-and dose-dependent increase in VEGF secretion, which was completely abolished by K252a, an inhibitor of TrkB.When RPMI-8226 cells were cultured with BMSCs, VEGF secretion was up-regulated 3.1-fold over the sum of basal concentrations in monoculture controls. This up-regulation of VEGF secretion is partially abrogated by K252a and inhibited when BMSCs co-culturing with shBDNF RPMI 8226 cells. Western blot and EMS A determined BDNF induced AP-1 tranloction and STAT3 phosphorylation respectively, and blocking STAT3 activity with AG490 lead to down-regulation of VEGF.
     Conclusion Our studies demonstrate that BDNF mediates MM-BMSCs interactions via selective activation of specific receptors TrkB and downstream signal transducer STAT3 in regulating VEGF secretion.
     PARTⅢ
     Brain-derived neurotrophic factor promotes the secretion of MMP-9 in human myeloma cell through modulation of nucleus factor-κB
     Objective:To explore the mechanism of brain-derived neurotrophic factor (BDNF) promoting human multiple myeloma (MM) cells secreting matrix metalloproteinase-9 (MMP-9). Methods:Gelatin zymograph of culture supernatants was performed to visualize the content of MMPs in myeloma RPMI 8226 cells stimulated by BDNF.NF-κB activity was determined by chemilumiescent electrophoretic mobility shift assay (EMSA). Results: Treatment with 25,50,100 and 200μg/L BDNF for 24 h significantly enhanced the level of MMP-9 secreted by RPMI 8226 cells in a dose-dependent manner (2.03±0.48, 2.99±0.46,4.63±0.62 and 5.62±1.29μg/L, respectively vs 1.00μg/L of the control. P<0.01), while that of MMP-2 was not changed significantly (P>0.05).The BDNF-induced activity on of MMP-9 was inhibited by pretreatment with pyrrolidine dithiocarbamate(PDTC), a NF-κB inhibitor, or K252a, a specific tyrosine inhibitor of TrkB which is the receptor for BDNF.Pretreated with 1 mmol/L PDTC or 500 nmol/L K252a significantly down-regulated MMP-9 secreted by the 100μg/L of BDNF stimulated RPMI 8226 cells (the optical density values were 867.52±101.81 and 727.98±92.05,respectively, vs 1159.01±233.15 of the control).The activity of NF-κB was enhanced by BDNF in a dose-dependent manner, and pretreatment with K252a could significantly inhibit this activation at 1,6,1 2 and 24 h (P<0.05) in a time-dependent manner.
     Conclusion:BDNF plays an important role in the angiogenesis of MM to promote the up-regulation of MMP-9,which may be induced by enhanced NF-κB activity in MM cells.
引文
1.Vacca A, Ribatti D, Roncali L et al.Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994;87:503-8.
    2.Vacca A, Ribatti D, Presta M et al.Bone marrow neovascularization, plasma cell angiogenic potential and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999;93:3064-73.
    3.Munshi NC, Wilson C.Increased bone marrow microvessel density in newly diagnosed multiple myeloma carries a poor prognosis.Semin Oncol 2001;28:565-9.
    4. Scavelli C, Nico B,Cirulli T, et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 2008;27:663-74.
    5.de Bont ES, Guikema JE, Scherpen F, et al. Mobilized human CD34+ hema-topoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodefi cient mouse model of human non-Hodgkin's lymphoma. Cancer Res 2001;61:7654-59.
    6.Jakob C, Sterz J, Zavrski I, et al.Angiogenesis in multiple myeloma. Eur J Cancer 2006;42:1581-90.
    7. Choi SJ, Cruz JC, Craig F, et al.Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000;96:671-5.
    8.黄靖,胡豫,孙春艳等.脑源性神经营养因子基因沉默对HeLa细胞增殖和凋亡的影响.Chinese Journal of Pathology 2009;38:686-90.
    9.Pearse RN, Swendeman SL, Li Y et al.A neurotrophin axis in myeloma:TrkB and BDNF promote tumor-cell survival.Blood 2005;105:4429-36.
    10. Hu Y, Sun CY, Wang HF et al.Brain-derived neurotrophic factor (BDNF) promotes growth and migration of multiple myeloma (MM) cells. Cancer Genet Cytogenet 2006; 169:12-20.
    11.孙春艳,胡豫,吴涛等.多发性骨髓瘤细胞脑源性神经营养因子对血管新生作用的研究.中华血液学杂志,2005,26:602-606
    1.Vacca A, Ria R, Ribatti D et al.A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haemato-logica 2003;88:176-85.
    2.Loic V, Jin DK, Karajannis MA et al.Fetal stromal-dependent paracrine and intracrine vascular endothelial growth factor-a/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells.Cancer Res 2005;65:3185-92.
    3.Di Raimondo F, Azzaro MP,Palumbo GA et al. Angiogenic factors in multiple myeloma:higher levels in bone marrow than in peripheral blood. Haematologica 2000; 85:800-5.
    4. Vacca A, Ribatti D, Roccaro AM, Frigeri A, Dammacco F.Bone marrow angiogenesis in patients with active multiple myeloma. Semin Oncol 2001;28:543-50.
    5.Pearse RN, Swendeman SL, Li Y et al. A neurotrophin axis in myeloma:TrkB and BDNF promote tumor-cell survival.Blood 2005;105:4429-36.
    6.胡豫,孙春艳,王雅丹等.脑源性神经营养因子(BDNF)在多发性骨髓瘤患者血浆中表达增高及其意义的初步研究.中国实验血液学杂志,2005,13:104-109.7
    7.Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006;291:R880-4.
    8.Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 2006; 98:1414-21.
    9.Wang M, Zhang W, Crisostomo P et al.STAT3 mediates bone marrow mesenchymal stem cell VEGF production. J Mol Cell Cardiol 2007;42:1009-15.
    10. Nq YP, Cheung ZH, Ip NY.STAT3 as a downstream mediator of Trk signaling and functions.J Biol Chem 2006;281:15636-44.
    11.Lin G, Bella AJ, Lue TF, Lin CS.Brain-derived neurotrophic factor acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat. J Sex Med 2006;3:821-7.
    12.Lund IV, Hu Y, Raol YH et al. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal 2008;1:ra9.
    13.Islam O, Loo TX, Heese K. Brain-derived neurotrophic factor (BDNF) has prolifera-tive effects on neural stem cells through the truncated TRK-B receptor, MAP Kinase, AKT, and STAT-3 signaling pathways. Curr Neurovasc Res 2009;6:42-53.
    14.Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ. Brain derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1 alpha in neuroblastoma cells. Cancer Res 2006;66:4249-55.
    15.Jung JE, Lee HG, Cho IH et al.STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J 2005;19:1296-8.
    16.Hu Y, Wang HF, Guo T et al.Identification of BDNF as a novel angiogenic protein in multiple myeloma. Cancer Genet Cytogenet 2007;178:1-10.
    17.孙春艳,胡豫,吴涛等.多发性骨髓瘤细胞脑源性神经营养因子对血管新生作用的研究.中华血液学杂志,2005,26:602-606.
    18.Cattoretti G, Schiro R, Orazi A, Soligo D, Colombo MP.Bone marrow stroma in humans:anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro.Blood 1993;81:1726-38.
    19.Labouyrie E, Dubus P, Groppi A et al. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 1999;154:405-15.
    20. Yaghoobia MM, Mowla SJ. Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells. Neurosci Lett 2006;397:149-54.
    21.Xu Q, Briggs J, Park S et al.Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 2005;24:5552-60.
    22.An DS,Xie Y, Mao SH, Morizono K, Kung SK, Chen IS.Efficient lentiviral vectors for short hairpin RNA delivery into human cells.Hum Gene Ther 2003; 14:1207-12.
    23.Scherr M, Battmer K, Dallmann I, Ganser A, Eder M. Inhibition of GM-CSF receptor function by stable RNA interference in a NOD/SCID mouse hematopoietic stem cell transplantation model. Oligonucleotides 2003;13:353-63.
    24. Aaronson DS, Horvath CM. A road map for those who don't know JAKSTAT. Science 2002;296:1653-5.
    25.Shi Q, Le X, Abbruzzese JL et al. Constitutive Spl activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res 2001;61:4143-54.
    26.Tischer E, Mitchell R, Hartman T et al.The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991;266:11947-54.
    27. Li Z, Ding M, Thiele CJ, Luo J. Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons.Neuroscience 2004; 126:149-62.
    28.Gaiddon C, Loeffler JP,Larmet Y. Brain-derived neurotrophic factor stimulates AP-1 and cyclic AMP-responsive element dependent transcriptional activity in central nervous system neurons.J Neurochem 1996;66:2279-86.
    29.Persson H, Ibanez CF.Role and expression of neurotrophins and trk family of tyrosine kinase receptors in neural growth and rescue after injury. Curr Opin Neurol Neurosurg 1993;6:11-8.
    30.Tessarollo L. Pleiotropic functions of neurotrophins in development. Cytokine Growth Factor Rev 1998;9:125-37.
    31.Mitra G,Martin-Zanca D,Barbacid M.Identification and biochemical characterization of p70TRK, product of the human TRK oncogene. Proc Natl Acad Sci U S A 1987;84: 6707-11.
    32.Eguchi M, Eguchi-Ishimae M, Tojo A et al.Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25).Blood 1999; 93:1355-63.
    33.Miknyoczki SJ, Wan W, Chang H et al.The neurotrophin-trk receptor axes are critical for the growth and progression of human prostatic carcinoma and pancreatic ductal adenocarcinoma xenografts in nude mice. Clin Cancer Res 2002;8:1924-31.
    34. Lamballe F, Klein R, Barbacid M. The trk family of oncogenes and neurotrophin receptors. Princess Takamatsu Symp 1991;22:153-70.
    35.Satoh F, Mimata H, Nomura T. Autocrine expression of neurotrophins and their receptors in prostate cancer. Int J Urol 2001;8:S28-34.
    36. Ohta T, Numata M, Tsukioka Y et al.Neurotrophin-3 expression in human pancreatic cancers. J Pathol 1997;181:405-12.
    37.Hu Y, Sun CY, Wang HF et al.Brain-derived neurotrophic factor (BDNF) promotes growth and migration of multiple myeloma (MM) cells. CancerGenet Cytogenet 2006; 169:12-20.
    1.胡豫,孙春艳,王雅丹,等.脑源性神经营养因子(BDNF)在多发性骨髓瘤患者血浆中表达增高及其意义的初步研究.中国实验血液学杂志,2005,13:104-109.
    2.孙春艳,胡豫,吴涛,等.脑源性神经营养因子及其受体在多发性骨髓瘤细胞中的表达及意义.中华内科杂志,2005,44:906-909.
    3.Sun CY,Hu Y,Wang HF,et al.Bmin-derived neurotrophic factor inducing angiogenesis through modulation of matrix-degrading pmteases.Chin Med J(Engl), 2006,119:589-595.
    4. Kemani P,Rafii D, Jin DK, et al.Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cell and systemic mobilization of hematopoietic progenitors.J Clin Invest,2005,115:653-663.
    5.Kaplan DR,Miller FD.Neurotrophin signal transduction in the nervous system.Curr Opin Neurobiol,2000,10:381-391.
    6.Barille S,Akhoundi C,collette M, et al.Metalloproteinases in multiple myeloma: production of matrix metalloproteinases-9(MMP-9),activation of proMMP-2,and induction of MMP-1 in myeloma cell.Blood,1997,90:1649-1655.
    7.Sfiridaki A,Miyakis S,Tsirakis G,et al.Systemic levels of interleukin-6 and matrix metalloproteinase-9 in patients with multiple myeloma may be useful as prognostic indexes of bone disease.Clin Chem Lab Med,2005,43:934-938.
    8.Vacca A, Ribatti D,Presta M,et al. Bone marmw neovascularization,plasma cell angiogenic potential and matrix metalloproteinase-2 secrition parallel progression of human multiple myeloma.Blood.1999.93:3064.
    9.Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene, 1999,18:6853-6866.
    1.Kuehl WM, Bergsagel PL. Multiple myeloma:evolving genetic events and host interactions. Nat Rev Cancer 2002;2:175-87.
    2.Kyle RA, Therneau TM, Rajkumar SV, et al.A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 2002;346:564-69.
    3.Vacca A, Ria R, Presta M, et al.alpha(v)beta(3) integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells.Exp Hematol 2001;29:993-1003.
    4. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma:clinical applications. Blood 2004;104:607-18.
    5.Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B.Blood 1996;87:1104-12.
    6.Peacock CD, Wang Q, Gesell GS,et al.Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104:4048-53.
    7.Matsui W, Wang Q, Barber JP, et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008;68:190-97.
    8.Corre J, Mahtouk K, Attal M, et al.Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007;21:1079-88.
    9.Zhang H, Vakil V, Braunstein M, et al. Circulating endothelial progenitor cells in multiple myeloma:implications and significance. Blood 2005;105:3286-94.
    10.Scavelli C, Nico B, Cirulli T, et al. Vasculogenic mimicry by bone marrow macro-phages in patients with multiple myeloma. Oncogene 2008;27:663-74.
    11.de Bont ES,Guikema JE, Scherpen F, et al.Mobilized human CD34+hema-topoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodefi cient mouse model of human non-Hodgkin's lymphoma. Cancer Res 2001;61:7654-59.
    12.Jakob C, Sterz J, Zavrski I, et al.Angiogenesis in multiple myeloma. Eur J Cancer 2006;42:1581-90.
    13.Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease:patho-physiology of osteoblast inhibition. Blood 2006;108:3992-96.
    14.Calvi LM, Adams GB,Weibrecht KW, et al.Osteoblastic cells regulate the haema-topoietic stem cell niche. Nature 2003;425:841-46.
    15.Mitsiades CS,Mitsiades N, Munshi NC, Anderson KC.Focus on multiple myeloma. Cancer Cell 2004;6:439-44.
    16.Uchiyama H, Barut BA, Chauhan D, Cannistra SA, Anderson KC.Characterization of adhesion molecules on human myeloma cell lines.Blood 1992;80:2306-14.
    17.Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D,Anderson KC.Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 1993;82:3712-20.
    18. Mitsiades CS, Mitsiades NS, McMullan CJ, et al.Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other haematologic malignancies, and solid tumours.Cancer Cell 2004; 5:221-30.
    19.Roodman GD.Role of the bone marrow microenvironment in multiple myeloma. J Bone Miner Res 2002;17:1921-5.
    20.Ashcroft AJ, Davies FE, Morgan GJ.Aetiology of bone disease and the role of bisphosphonates in multiple myeloma. Lancet Oncol 2003;4:284-92.
    21.Kawano M,Yamamoto I,Iwato K,Tanaka H,et al.Interleukin-1 beta rather than lymphotoxin as the major bone resorbing activity in human multiple myeloma. Blood 1989; 73:1646-9.
    22.Mundy GR. Hypercalcemic factors other than parathyroid hormone-related protein. Endocrinol Metab Clin North Am 1989;18:795-806.
    23.Nakamura M, Merchav S,Carter A, et al.Expression of a novel 3.5-kb macrophage colony-stimulating factor transcript in human myeloma cells. J Immunol 1989;143: 3543-7.
    24. Bataille R, Chappard D, Klein B.The critical role of interleukin-6, interleukin-1B and macrophage colony-stimulating factor in the pathogenesis of bone lesions in multiple myeloma. Int J Clin Lab Res 1992;21:283-7.
    25.Nakagawa M, Kaneda T, Arakawa T, et al.Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts.FEBS Lett 2000;473:161-4.
    26. Niida S,Kaku M, Amano H, et al.Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 1999;190:293-8.
    27. Han JH, Choi SJ, Kurihara N, et al.Macrophage inflammatory protein-1 alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 2001;97:3349-53.
    28.Choi SJ, Cruz JC, Craig F, et al.Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000; 96:671-5.
    29. Callander NS,Roodman GD.Myeloma bone disease. Semin Haematol 2001;38: 276-85.
    30.Tian E, Zhan F, Walker R, Rasmussen E, et al. The role of the Wnt-signalling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003;349:2483-94.
    31.Koutsilieris M, Mitsiades C, Lembessis P,Sourla A. Cancer and bone repair mechanism: clinical applications for hormone refractory prostate cancer. J Musculoskelet Neuronal Interact 2000;1:15-7.
    32.Matsui W, Huff CA, Wang Q, et al.Characterization of clonogenic multiple myeloma cells. Blood 2004;103:2332-6.
    33.Lemischka IR. Microenvironmental regulation of haematopoietic stem cells. Stem Cells 1997;15:63-8.
    34. Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer:are tumour stem cells also regulated by the microenvironment? Cancer Cell 2005;7:17-23.
    35.Hurt EM, Wiestner A, Rosenwald A, et al.Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004;5:191-9.
    36.Damiano JS,Cress AE, Hazlehurst LA, Shtil AA, Dalton WS.Cell adhesion mediated drug resistance (CAM-DR):role of integrins and resistance to apoptosis in human myeloma cell lines.Blood 1999;93:1658-67.
    37.Shain KH,Landowski TH,Dalton WS.Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in haematopoietic cancer cell lines.J Immunol 2002;168:2544-53.
    38.Landowski TH, Olashaw NE, Agrawal D, Dalton WS.Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells.Oncogene 2003;22:2417-21.
    39. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signalling in multiple myeloma. Oncogene 2001;20: 5991-6000.
    40.Hideshima T, Chauhan D, Richardson P, et al.NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002;277:16639-47.
    41.Mitsiades CS,Mitsiades N, Poulaki V, et al.Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signalling in human multiple myeloma cells:therapeutic implications.Oncogene 2002; 21:5673-83.
    42.Kawano M, Hirano T, Matsuda T, et al.Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 1988;332:83-5.
    43.Nefedova Y, Cheng P, Alsina M, Dalton WS,Gabrilovich DI. Involvement of Notch-1 signalling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004; 103:3503-10.
    44.Kawano M, Tanaka H, Ishikawa H, et al.Interleukin-1 accelerates autocrine growth of myeloma cells through interleukin-6 in human myeloma. Blood 1989; 73:2145-8.
    45.Derenne S,Amiot M, Barille S,et al.Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoural environment. J Bone Miner Res 1999;14:2048-56.
    46. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumour necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001;20:4519-27.
    47.Lowik CW, van der Pluijm G, Bloys H, et al. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells:a possible role of interleukin-6 in osteoclastogenesis.Biochem Biophys Res Commun 1989; 162: 1546-52.
    48.Klein B, Wijdenes J, Zhang XG, et al.Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukaemia. Blood 1991;78:1198-204.
    49.Lu ZY, Brailly H, Wijdenes J, et al.Measurement of whole body interleukin-6 (IL-6) production:prediction of the efficacy of anti-IL-6 treatments. Blood 1995;86:3123-31.
    50.Montero-Julian FA, Klein B, Gautherot E, Brailly H.Pharmacokinetic study of anti-interleukin-6 (IL-6) therapy with monoclonal antibodies:enhancement of IL-6 clearance by cocktails of anti-IL-6 antibodies. Blood 1995;85:917-24.
    51.Singhal S,Mehta J, Desikan R, et al.Antitumour activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341:1565-71.
    52.Rajkumar SV, Hayman S,Gertz MA, et al.Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. J Clin Oncol 2002;20:4319-23.
    53.Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 2003;21: 16-9.
    54. Rajkumar SV, Hayman SR, Lacy MQ, et al.Combination therapy with lenalidomide plus dexamethasone (REV/DEX) for newly diagnosed myeloma. Blood 2005;106: 4050-3.
    55.Rajkumar SV, Blood E, Vesole D, Fonseca R, Greipp PR. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma:a clinical trial coordinated by the Eastern Cooperative Oncology Group.J Clin Oncol 2006;24:431-6.
    56.Mitsiades CS,Mitsiades N.Treatment of haematologic malignancies and solid tumours by inhibiting IGF receptor signalling. Expert Rev Anticancer Ther 2005;5:487-99.
    57.Sell C,Dumenil G,Deveaud C,et al.Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 1994;14:3604-12.
    58.Coppola D, Ferber A, Miura M, et al. A functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol Cell Biol 1994; 14:4588-95.
    59. Porcu P, Ferber A, Pietrzkowski Z, et al.The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulin like growth factor 1 with its receptor. Mol Cell Biol 1992;12:5069-77.
    60. Chaiken RL, Moses AC, Usher P,Flier JS.Insulin stimulation of aminoisobutyric acid transport in human skin fibroblasts is mediated through both insulin and type I insulin-like growth factor receptors. J Clin Endocrinol Metab 1986; 63:1181-5.
    61.Flier JS,Usher P,Moses AC.Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis:clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts. Proc Natl Acad Sci U S A 1986;83:664-8.
    62.Kull Jr FC, Jacobs S, Su YF, et al.Monoclonal antibodies to receptors for insulin and somatomedin-C. J Biol Chem 1983;258:6561-6.
    63.Poretsky L, Grigorescu F, Seibel M, Moses AC, Flier JS.Distribution and characterization of insulin and insulin-like growth factor I receptors in normal human ovary. J Clin Endocrinol Metab 1985;61:728-34.
    64.Arteaga CL, Kitten LJ, Coronado EB, et al.Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 1989;84:1418-23.
    65.Arteaga CL, Osborne CK. Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res 1989;49:6237-41.
    66.Girnita A, Girnita L, del Prete F, et al. Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res 2004; 64:236-42.
    67.Stromberg T, Ekman S,Girnita L, et al. IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood 2006;107:669-78.
    68.Menu E, Jernberg-Wiklund H, Stromberg T, et al.Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP:an in vitro and in vivo study in the 5T33MM mouse model. Blood 2006;107:655-60.
    69.Kenyon BM, Browne F, D'Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997;64:971-8.
    70. D'Amato RJ, Loughnan MS,Flynn E, Folkman J.Thalidomideis an inhibitor of angiogenesis.Proc Natl Acad Sci U S A 1994;91:4082-5.
    71.D'Amato RJ, Lentzsch S, Anderson KC, Rogers MS.Mechanism of action of thalidomide and 3-aminothalidomide in multiple myeloma. Semin Oncol 2001;28:597-601.
    72.Stirling DI. The pharmacology of thalidomide. Sem in Haematol 2000; 37:5-14.
    73.Shipman CM, Rogers MJ, Apperley JF, Russell RG, Croucher PI. Bisphosphonates induce apoptosis in human myeloma cell lines:a novel anti-tumour activity. Br J Haematol 1997;98:665-72.
    74. Aparicio A, Gardner A, Tu Y, et al. In vitro cytoreductive effects on multiple myeloma cells induced by bisphosphonates.Leukaemia 1998;12:220-9.
    75. Uhlman DL, Verfaillie C, Jones RB,Luikart SD.BCNU treatment of marrow stromal monolayers reversibly alters haematopoiesis.Br J Haematol 1991;78:304-9.
    76.Mitsiades CS,Mitsiades NS,McMullan CJ, et al.Transcriptional signature of histone deacetylase inhibition in multiple myeloma:biological and clinical implications.Proc Natl Acad Sci U S A 2004; 101:540-5.
    77. Mitsiades N, Mitsiades CS,Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells.Blood 2003;101:4055-62.
    78.Sordillo EM, Pearse RN.RANK-Fc:a therapeutic antagonist for RANK-L in myeloma. Cancer 2003;97:802-12.
    79.Vanderkerken K, De Leenheer E, Shipman C, et al.Recombinant osteoprotegerin decreases tumour burden and increases survival in a murine model of multiple myeloma. Cancer Res 2003;63:287-9.
    80.Holash J, Davis S,Papadopoulos N, et al.VEGF-Trap:a VEGF blocker with potent antitumour effects.Proc Natl Acad Sci U S A 2002;99:11393-8.
    81.Hov H,Holt RU,Ro TB,et al.A selective c-Met inhibitor blocks an autocrine hepatocyte growth factor growth loop in ANBL-6 cells and prevents migration and adhesion of myeloma cells.Clin Cancer Res 2004; 10:6686-94.
    82.Mori Y, Shimizu N, Dallas M, et al.Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 2004; 104:2149-54.
    83.Trudel S,Ely S, Farooqi Y, et al.Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 2004;103:3521-8.
    84. Trudel S,Li ZH, Wei E, Wiesmann M, Chang H, Chen C, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 2005;105:2941-8.
    85.Zhu L, Somlo G, Zhou B,et al.Fibroblast growth factor receptor 3 inhibition by short hairpin RNAs leads to apoptosis in multiple myeloma. Mol Cancer Ther 2005; 4: 787-98.
    86.Sebti SM, Hamilton AD.Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy:lessons from mechanism and bench-to-bedside translational studies. Oncogene 2000; 19:6584-93.
    87.Le Gouill S,Pellat-Deceunynck C, Harousseau JL, et al.Farnesyl transferase inhibitor R115777 induces apoptosis of human myeloma cells. Leukaemia 2002;16:1664-7.
    88.Bolick SC, Landowski TH, Boulware D, et al.The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drugresistant myeloma tumour cells. Leukaemia 2003;17:451-7.
    89.Alsina M, Fonseca R, Wilson EF, et al.Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic /tumour survival pathways in patients with advanced multiple myeloma. Blood 2004; 103:3271-7.
    90. Frost P, Moatamed F, Hoang B, et al.In vivo antitumour effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 2004;104: 4181-7.
    91.Mitsiades NS, McMullan CJ, Poulaki V, et al.The mTOR inhibitor RAD001 (everolimus) is active against multiple myeloma cells in vitro and in vivo.Blood 2004; 104:418a.
    92.Raje N, Kumar S, Hideshima T, et al.Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 2004; 104:4188-93.
    93.Stromberg T, Dimberg A, Hammarberg A, et al.Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 2004; 103:3138-47.
    94.Shi Y, Yan H, Frost P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005;4:1533-40.
    95.Shammas MA, Shmookler Reis RJ, Akiyama M, et al. Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma. Mol Cancer Ther 2003;2:825-33.
    96.Shammas MA, Shmookler Reis RJ, Li C, et al. Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin Cancer Res 2004; 10: 770-6.
    97.Fonseca R, Barlogie B, Bataille R, et al.Genetics and cytogenetics of multiple myeloma:a workshop report. Cancer Res 2004; 64:1546-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700