用户名: 密码: 验证码:
大鼠骨髓间充质干细胞对梗死后心肌中成纤维细胞转型的调控及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察大鼠骨髓间充质干细胞对梗死后心肌中成纤维细胞转型的调控,并探讨其可能机制。研究方法:
     1.体外分离、培养、扩增、鉴定SD大鼠MSCs,并选择最佳分离培养MSCs的方法:(1)采用现行两种主要分离培养MSCs的方法:密度梯度离心法、全骨髓贴壁法分离培养MSCs,并对全骨髓贴壁法加以改进,选择MSCs培养生长增殖状态最佳的培养方法来培养实验用MSCs;(2)使用流式细胞仪技术检测MSCs表面两种抗原分子的表达情况:CD29、CD45;(3)加入成骨、成脂肪诱导分化培养体系,观察MSCs向成骨细胞、成脂肪细胞分化的能力,以鉴定其多向分化潜能;(4)采用Brdu标记法标记移植用细胞,并检测其细胞活力。
     2.大鼠心梗模型的制作及心律失常至造模失败分析、心肌匀浆的制作:(1)采用开胸直视下结扎左前降支的方法制作大鼠急性心肌梗死模型;(2)分析早期心律失常至造模失败机制,并加以预防改进;(3)心梗后心肌匀浆制作:使用组织匀浆机研磨心肌组织块,取匀浆上清并过滤除菌。
     3.体外模拟心梗后微环境,单培养及和培养MSCs与心肌成纤维细胞,观察两种细胞的转化情况:(1)使用心梗后心肌匀浆加入培养基,模拟心梗后微环境;(2)单培养或和培养两种细胞,应用细胞免疫化学染色的方法观察两种细胞的转化情况;(3)应用ELASA法检测培养基质中TGF-β1、TNF-α、PDGF的浓度变化。
     4.体内实验:大鼠心梗模型建模14天后,对大鼠心脏心梗周边区多点分别注射含TGF-β1 150μLDMEM培养液(n=13), PBS150μL (n=13),5×106MSCs/150μL(n=13)。移植后一月,处死大鼠,获取心脏标本,采用组织病理、免疫组化的方法鉴定移植部位有无肌纤维母细胞的聚集,并采用westen-blot、PCR分析胶原蛋白的产生情况。
     结果:
     1.全骨髓贴壁法组MSCs传代、生长速度明显快于密度梯度离心法法组MSCs,两组细胞流式细胞仪鉴定、分化能力鉴定及细胞活力均符合实验要求;
     2.青年组大鼠心律失常、室颤及早期死亡率均明显低于中年组大鼠,心律失常发生率与两组大鼠血清NE值增加速度成正比;
     3.利多卡因术前腹腔注射后,早期心律失常发生率下降,早期造模成功率升高;
     4.差速贴壁法可以分离培养的第二代成纤维细胞,MSCs与心脏成纤维细胞共培养,加用心梗14天后心梗周边区域心肌匀浆干预7-28天后行平滑肌肌动蛋白(α-SMA)免疫细胞化学染色呈阳性,ELASA法检测到急性心梗后14天心梗周边去心肌匀浆干预MSCs单培养组、MSCs与心脏成纤维细胞共培养组细胞因子TGF-β1浓度明显高于其他组,且与肌纤维母细胞阳性率正相关;
     5、MSCs移植组的梗死心肌内存在大量BrdU标记阳性的移植细胞,Brdu阳性区连续切片行波形蛋白及平滑肌肌动蛋白免疫组化染色阳性,Brdu阴性区连续切片行平滑肌肌动蛋白免疫组化染色阴性;移植后MSCs移植区、TGF-β1注射区、PBS注射区胶原蛋白Ⅰ、ⅢmRNA及蛋白的表达,PBS注射区明显小于MSCs移植区、TGF-β1注射区胶原蛋白Ⅰ、ⅢmRNA及蛋白的表达。
     结论:
     1.全骨髓贴壁法组MSCs生长增殖速度明显快于密度梯度离心法法组MSCs,并符合实验使用要求;
     2.开胸直视结扎左前降支能有效制作大鼠急性心肌梗死模型,其早期心律失常至造模失败率与血清NE值升高速度正相关,术前腹腔注射利多卡因能提高造模成功率;
     3.差速贴壁法可分离培养出心脏成纤维母细胞,急性心梗后14天心梗周边去心肌匀浆干预MSCs与心脏成纤维细胞共培养组细胞7-28天后可形成肌纤维母细胞,并由成纤维细胞转化而来,急性心梗后14天心梗周边去心肌匀浆干预MSCs(无论单培养还是与成纤维细胞共培养)可分泌一定量的细胞因子TGF-β1,TGF-β1参与成纤维细胞向肌纤维母细胞的转型;
     4.大鼠心脏对移植MSCs无明显免疫排斥,移植MSCs14天后,MSCs仍存活于心脏,MSCs移植区有肌纤维母细胞的聚集,MSCs移植能促进移植区胶原蛋白Ⅰ、Ⅲ的分泌,TGF-β1可能参与其中,体内实验验证了体外实验关于MSCs通过分泌TGF-β1调控心肌内成纤维细胞向肌纤维母细胞转型的结论。
Objective:
     To observe the rol of the rat bone marrow-derived mesenchymal stem cells on myocardial infarction in the regulation of fibroblast transformation, and to explore its possible mechanism.
     Methods:
     1. Isolation, culture, amplification, identification MSCs of SD rat, and to choose the best method of MSCs to isolate and culture:(1) use of the two main existing MSCs isolation and culture methods:density gradient centrifugation, whole bone marrow adherent method to isolate and culture MSCs, and whole bone marrow adherent method was improved, choose the best state of MSCs cultured growth and proliferation of training methods to cultivate experimental MSCs; (2) identify MSCs by flow cytometry to detect surface expression of the two antigen molecules:CD29, CD25; (3) by adding into the bone, fat-induced differentiation culture system to observe the ability of MSCs to differentiate into bone cells, fat cells,to identify their multi-differentiation potential; (4) using Brdu labeling to tag the transplantation cells and detected cell viability.
     2. Production of rat myocardial infarction model and analysis of modeling failure by cardiac arrhythmia, production of myocardial homogenate:(1) by open-chest and under direct vision ligating the left anterior descending artery, to product acute myocardial infarction model; (2) analysis of early arrhythmias making modeling failure mechanisms, and to prevent improvement; (3) myocardial infarction homogenate production:using tissue Grinding myocardial tissue blocks to make, take homogenate supernatant and filter sterilization.
     3. Vitro simulate micro-environment after myocardial infarction, single and nurturing culture MSCs with cardiac fibroblasts to observe the differentiation situation of the two kinds of cells:(1)by adding myocardial infarction homogenate into medium to simulate micro-environment after myocardial infarction; (2) single and train two kinds of cells in culture or to observe the differentiation situation of the two kinds of cells by the application of immuno-chemical staining; (3) application ELASA training matrix to detect TGF-β1, TNF-α, PDGF concentration changing.
     4. Vivo experiment:after 14 days modeling of myocardial infarction in rats, the myocardial infarction border zone of rat hearts were multi-point injected with 150μLDMEM culture medium with TGF-β1 (n =13), PBS150μL(n=13),5×106MSCs/150μL(n=13). Post-transplant in 2 weeks, rats were killed to obtain the heart specimens, to identify whether there were accumulation of myofibroblasts in grafted sites by tissue pathology, immunohistochemistry and adopt the westen-blot, PCR analysis of the production of collagen.
     Results:
     1. MSCs cultured by the whole group of bone marrow adherent method,which passage and growth rate significantly faster than the density gradient centrifugation method group MSCs, the two groups of cells, flow cytometry identification, differentiation and cell activity were consistent with identification of test requirements;
     2. Young rats arrhythmia, ventricular fibrillation and early mortality rates were significantly lower than the middle-aged rats, the incidence of arrhythmia and two groups of rats the rate of increase is proportional to the value of serum NE;
     3. Preoperative intraperitoneal injection of lidocaine, the early decline in the incidence of arrhythmias, early modeling success rate of increase;
     4. Differential adhesion method can be used to separate and culture the second generation of fibroblasts, MSCs and cardiac fibroblasts were cultured together, and was added homogenate around the area of myocardial infarction 14 days,after the intervention in 7-28 days, smooth muscle actin protein (α-SMA) immunocytochemistry positive, ELASA method detected MSCs single culture group, MSCs and cardiac fibroblasts co-cultured group with myocardial infarction neighboring homogenate interfere 14 days after acute myocardial infarction,the concentration of cytokines TGF-β1 was significantly higher than other groups, and with the positive rate of myofibroblasts positive correlation;
     5. There were a large number of BrdU-positive markers' transplanted cells in the infarcted myocardium in MSCS transplantation group, Brdu positive area serial sections were made vimentin and smooth muscle actin immunohistochemical staining which was positive, Brdu negative zone serial sectioning line-smooth muscle actin immunohistochemical staining negative staining; MSCs grafts after transplantation, TGF-β1 injection zone, PBS injection zone collagenⅠ,ⅢmRNA and protein expression, PBS injection area significantly smaller than MSCs grafts, TGF-β1 injection zone collagenⅠ,ⅢmRNA and protein expression.
     Conclusion:
     1. The whole bone marrow adherent method group's growth rate and proliferation of MSCs significantly faster than the density gradient centrifugation method group MSCs, and in accordance with experimental use requirements;
     2. Thoracotomy look directly at the left anterior descending artery ligation in rats produced an effective model of acute myocardial infarction, arrhythmia to its early failure rate modeling, increased rate and serum values of NE are related to preoperative intraperitoneal injection of lidocaine can improve the success rate of modeling;
     3. Differential adhesion method detachable train cardiac fibroblasts, myocardial homogenate around infarction region 14 days after myocardial infarction to interfere MSCs with cardiac fibroblasts,which were cultured after 7-28 days,could form myofibroblasts which transformed by the fibroblasts, interfered with neighboring myocardial homogenate 14 days after myocardial infarction MSCs (whether single or with cultured fibroblast co-culture) could be detected a certain amount of secretion of cytokines TGF-β1, TGF-β1 involved in transition of fibroblast to myofibroblast;
     4. Rat heart transplanted MSCs had no significant immune rejection, 14 days after transplant MSCs, MSCs still alive in the heart, MSCs transplantation district myofibroblast accumulation, MSCs transplantation can promote the migration zone of collagenⅠ,Ⅲsecretion, TGF-β1 may be involved, in vivo is verified in vitro on MSCs through the secretion of TGF-β1 in regulation of cardiac fibroblast to myofibroblast transformation conclusions.
引文
1. Wilansky S, Moreno CA, Lester SJ. Complications of myocardial infarction. Crit Care Med.2007;35(8 Suppl):S348-354.
    2. Dai W, Wold LE, Dow JS, et al. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats:a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol. 2005;46(4):714-719.
    3. Ertl G, Frantz S. Healing after myocardial infarction. Cardiovasc Res. 2005;66(1):22-32.
    4. Arnesen H, Lunde K, Aakhus S, et al. Cell therapy in myocardial infarction. Lancet.2007;369(9580):2142-2143.
    5. Ge J, Li Y, Qian J, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart. 2006;92(12):1764-1767.
    6. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med.2004;10(5):494-501.
    7. Grinnemo KH, Mansson-Broberg A, Leblanc K, et al. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med 2006;38(2):144-153.
    8. Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98(11):1414-1421.
    9. Mollmann H, Nef HM, Kostin S, et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res.2006;71(4):661-671.
    10. van Amerongen M, Bou-Gharios G, Popa E, et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. JPathol.2008;214(3):377-386.
    11. Jugdutt BI. Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord.2003;3(1):1-30.
    12. Hayakawa K, Takemura G, Kanoh M, et al. Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage. Circulation. 2003;108(1):104-109.
    13. Kanamori H, Takemura G, Li Y, et al. Inhibition of Fas-associated apoptosis in granulation tissue cells accompanies attenuation of postinfarction left ventricular remodeling by olmesartan. Am J Physiol Heart Circ Physiol. 2007;292(5):H2184-2194.
    14. Ogino A, Takemura G, Kanamori H, et al. Amlodipine inhibits granulation tissue cell apoptosis through reducing calcineurin activity to attenuate postinfarction cardiac remodeling. Am J Physiol Heart Circ Physiol. 2007;293(4):H2271-2280.
    15. Yano T, Miura T, Ikeda Y, et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc Pathol 2005;14(5):241-246.
    16. Direkze NC, Hodivala-Dilke K, Jeffery R, et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 2004;64(23):8492-8495.
    17. Cimini M, Fazel S, Zhuo S, et al. c-kit dysfunction impairs myocardial healing after infarction. Circulation.2007; 116(11 Suppl):I77-82.
    18. Drobic V, Cunnington RH, Bedosky KM, et al. Differential and combined effects of cardiotrophin-1 and TGF-beta(1) on cardiac myofibroblast proliferation and contraction. American Journal of Physiology-Heart and Circulatory Physiology.2007;293(2):H1053-H1064.
    19. 杜优优,周胜华,周滔,等.骨髓间充质干细胞移植对心肌梗死后炎性细胞因子表达的调节.中国组织工程研究与临床康复.2008;12(8):1440-1444.
    20. Tomita, S., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. J., Sakai, T. and Jia, Z. Q.(1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 Suppl.19, Ⅱ247-Ⅱ256.
    21. Tomita, Y., Matsumura, K., Wakamatsu, Y., Matsuzaki, Y., Shibuya, I., Kawaguchi,H., Ieda, M., Kanakubo, S., Shimazaki, T., Ogawa, S. et al. (2005). Cardiac neura crest cells contribute to the dormant multipotent stem cell in the mammalian heart.J. Cell Biol.170,1135-1146.
    22. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S.,Durand, D. J., Fitton, T., Kuang, J. Q., Stewart, G. et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA 102,11474-11479.
    23. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E. and Kloner, R.A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short-and long-term effects. Circulation 112, 214-223.
    24. Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., Coulter, S.C., Lin, J., Ober, J., Vaughn, W. K. et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111,150-156.
    25. Grauss, R. W., van Tuyn, J., Steendijk, P., Winter, E. M., Pijnappels, D. A., Hogers, B.,Gittenberger-de Groot, A. C., van der Geest, R., van der Laarse, A., de Vries, A.A. et al. (2008). Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts.Stem Cells 26,1083-1093.
    26. Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K.,Ishida, H., Shimizu, T., Kangawa, K. et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12,459-465.
    1. Li RK, Mickle DA, Weisel RD, et al. In vivo survival and function of transplanted rat cardiomyocytes. Circ Res.1996;78 (2):283-288.
    2. Murry CE, Wiseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest. 1996;98(11):2512-2523.
    3. Watt FM, Hogan BL. Out of Eden:stem cells and their niches. Science. 2000:287(5457):1427-1430.
    4. Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA.2000; 97 (7):3213-3218.
    5. Halleux C, Sottile V, Gas ser JA, et al. Multi-lineage potential of human mesenchymal s tem cells following clonal expans ion. J Musculoskelet Neuronal Interact 2001;2(1):71-76
    6. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal s tem cells.Science 1999;284(5411):143-147
    7. Friedens tein AJ, Gorskaja JF, Kulagina NN. Fibroblas t precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976:4(5):267-274
    8. Izadpanah R, Joswig T, Ts ien F, et al. Characterization of multipotent mesenchymal s tem cells from the bone marrow of rhesus macaques. Stem Cells Dev 2005;14(4):440-451
    9. Hattori H, Ishihara M, Fukuda T, et al. Es tablishment of a novel method for enriching os teoblas t progenitors from adipose tis sues us ing a difference in cell adhes ive properties. Biochem Biophys Res Commun 2006:343(4):1118-1123
    10. Nuttall ME, Gimble JM. Controlling the balance between os teoblas togenes is and adipogenes is and the consequent therapeutic implications. Curr Opin Pharmacol 2004;4(3):290-294
    11. Yan Z, Fang CH, Gao P. Preliminary research of hepatocarcinoma s tem cell markers.Nan Fang Yi Ke Da Xue Xue Bao 2006;26 (9):1304-1306
    12. Liu X, Ren GD, Shan W, et al. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu.2009;13(10):1901-1904.
    13. Yang YX, Zheng JL, Zhang P, et al. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu.2007;11(3):补充页码 584-586。
    14. Huang DQ, Yang DJ, Li WR, et al. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu.2006;10(1):31-33.
    15. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science.2001;293(5532):1089-1093.
    16. Karl I, Melamed E, offen D. Integral therapeutic potential of bone marrowmesenchymal stem cells (J) Curr Drug Targets,2005,6(1):31-41
    17.邵毅,裴重刚,干细胞治疗视网膜疾病的研究进展(J)国际眼科杂志,2006,6(2):441-445
    18. Yoo HJ, Yoon SS, Park S. Production and characterization of monoclonal anti-bodies to mesenchymal stem cells derived fromhuman bone marrow (J). Hybridoma(Larchmt),2005,24(2):92-97
    19.姜文敏,唐罗生,视神经再生的相关因素研究(J)国际眼科杂志,2005,5(3):543-546
    20. SmitsAM, Van Vliet P, Hassink RJ. The role of stem cells in cardiac regeneration (J). J Cell Mol Med,2005,9(1):25-36
    21. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury (J). J Neurosci 2006,26(13):3377-3389
    22. Thirion C, Lochmuller H, Ruzsics Z, et al. Adenovirus vectors based on human adenovirus type 19a have high potential for human muscle-directed gene therapy (J). Hum Gene Ther,2006, 17(2):193-205
    23 Foster LJ, Zeemann PA, Li C. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation (J). Stem Cells,2005,23(9):1367-1377
    24.张澍,黄从新,任晓庆,犬骨髓间叶干细胞的分离培养和生物学特性(J)中华心律失常学杂志,2004,8(1):51-57
    25. Li CD, ZhangWY, Li HL. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation (J). Cell Res,2005,15(7):539-547
    26. Arnesen H, Lunde K, Aakhus S, et al. Cell therapy in myocardial infarction. Lancet.2007;369(9580):2142-2143.
    27. Ge J, Li Y, Qian J, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart.2006;92(12):1764-1767.
    28. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004; 10 (5):494-501.
    29. Grinnemo KH, Mansson-Broberg A, Leblanc K, et al. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med.2006;38(2):144-153.
    30. Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res.2006;98(11):1414-1421.
    1.陈灏珠.心肌梗死.实用内科学[M].北京:人民卫生出版社,19971 1237-12481
    2.Dowell JD, Rubart M, Pasumarthi KB, et al. Myocyte and myogenicstem cell transplantation in the heart [J]. Cardiovasc Res,2003,58:336-3501
    3.Rangappa S, Fen C, Lee EH, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue intocardiomyocytes [J]. Ann Thorac Surg, 2003,75:775-7791
    4.施新猷.心血管疾病动物模型.现代医学实验动物学[M].北京:人民卫生出版社,2001,461-4721
    5.陈修.抗心肌缺血与再灌注损伤药物实验法.药理实验方法学[M].第2版.北京:人民卫生出版社,1982,921-9401
    6. Wilansky S, Moreno CA, Lester SJ. Complications of myocardial infarction. Crit Care Med.2007;35(8 Suppl):S348-354.
    7. Dai W, Wold LE, Dow JS, et al. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats:a novel approach to preserve cardiac function after myocardial infarction. JAm Coll Cardiol.2005;46(4):714-719.
    8. Ertl G, Frantz S. Healing after myocardial infarction. Cardiovasc Res. 2005;66(1):22-32.
    9. Arnesen H, Lunde K, Aakhus S, et al. Cell therapy in myocardial infarction. Lancet.2007;369(9580):2142-2143.
    10. Ge J, Li Y, Qian J, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart. 2006;92(12):1764-1767.
    11. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med.2004;10(5):494-501.
    12. Grinnemo KH, Mansson-Broberg A, Leblanc K, et al. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med.2006;38(2):144-153.
    13. Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98(11):1414-1421。
    14.1i MS, Mudagal MP, Goli D.Cardioprotective effect of tetrahydrocurcumin and rutin on lipid peroxides and antioxidants in experimentally induced myocardial infarction in rats. Pharmazie.2009 Feb;64(2):132-6.
    15.Sleight P, Medical interventions in acute myocardial infarction.Cardiovasc Pharmacol.1990;16 Suppl 5:S113-9.
    16.Barnay C, Taieb J, Morice R, Electrical storm, Ann Cardiol Angeiol (Paris). 2007 Nov;56(5):183-7.
    17.Abramovich-Sivan S, Bitton Y, Karin J, David D, Akselrod S. The effects of lidocaine on cardiac parasympathetic control in normal subjects and in subjects after myocardial infarction. Clin Auton Res.1996 Dec;6(6):313-9。
    18.ollmann H, Nef HM, Kostin S, et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res.2006;71(4):661-671。
    19 van Amerongen M, Bou-Gharios G, Popa E, et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol.2008;214(3):377-386。
    20. Jugdutt BI. Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord.2003;3(1):1-30。
    21. Hayakawa K, Takemura G, Kanoh M, et al. Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage. Circulation.2003; 108(1):104-109。
    22.anamori H, Takemura G, Li Y, et al. Inhibition of Fas-associated apoptosis in granulation tissue cells accompanies attenuation of postinfarction left ventricular remodeling by olmesartan. Am J Physiol Heart Circ Physiol. 2007;292(5):H2184-2194。
    23. Yano T, Miura T, Ikeda Y, et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc Pathol.2005;14(5):241-246.
    24.ano T, Miura T, Ikeda Y, et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc Pathol.2005;14(5):241-246。
    25.robic V, Cunnington RH, Bedosky KM, et al. Differential and combined effects of cardiotrophin-1 and TGF-beta(1) on cardiac myofibroblast proliferation and contraction. American Journal of Physiology-Heart and Circulatory Physiology. 2007;293(2):H1053-H1064。
    26. Cai Chuang, XU Jun, ZHANG Min, Zhong Nanshan, airway epithelial injury in bronchial epithelium-myofibroblastic transdifferentiation and transforming growth factor-β1 in regulation of the International Respiratory Diseases.-2009,29 (10).-577-581。
    27. Jia Min,Lu Peiqi, et al.Influence of transplanting mesenchymal stem cells at different time on functional restoration after myocardial infarction, JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH, 2007 11 (33)。
    28.Muller-Ehmsen J,Whittaker P, Kloner RA,et al. Survivaland development of neonatal rat cardiomyocytes trans-planted into adult myocardium[J].J Mol Cell Cardiol,2002,34(2):107-116
    29. Liu Yu-Hua Liao, et al.After myocardial infarction myocardial inflammatory response and cytokine expression in rats,CHINESE JOURNAL OF IMMUNOLOGY.2004 20(12):386-389
    1. Arnesen H, Lunde K, Aakhus S, et al. Cell therapy in myocardial infarction. Lancet.2007;369(9580):2142-2143.
    2. Ge J, Li Y, Qian J, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart. 2006;92(12):1764-1767.
    3. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med.2004;10(5):494-501.
    4. Grinnemo KH, Mansson-Broberg A, Leblanc K, et al. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med.2006;38(2):144-153.
    5. Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98(11):1414-1421.
    6. Mollmann H, Nef HM, Kostin S, et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res.2006;71(4):661-671.
    7. van Amerongen M, Bou-Gharios G, Popa E, et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol.2008;214(3):377-386.
    8. Tomita, S., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. J., Sakai, T. and Jia, Z. Q.(1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 Suppl.19, Ⅱ247-Ⅱ256.
    9. Tomita, Y., Matsumura, K., Wakamatsu, Y., Matsuzaki, Y., Shibuya, I., Kawaguchi,H., Ieda, M., Kanakubo, S., Shimazaki, T., Ogawa, S. et al. (2005). Cardiac neura crest cells contribute to the dormant multipotent stem cell in the mammalian heart.J. Cell Biol.170,1135-1146.
    10. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S.,Durand, D. J., Fitton, T., Kuang, J. Q., Stewart, G. et al. (2005). Cardiac
    repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA 102,11474-11479.
    11. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E. and Kloner, R.A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short-and long-term effects. Circulation 112, 214-223.
    12. Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., Coulter, S.C., Lin, J., Ober, J., Vaughn, W. K. et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111,150-156.
    13. Grauss, R. W., van Tuyn, J., Steendijk, P., Winter, E. M., Pijnappels, D. A., Hogers, B.,Gittenberger-de Groot, A. C., van der Geest, R., van der Laarse, A., de Vries, A.A. et al. (2008). Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts-Stem Cells 26,1083-1093.
    14. Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K.,Ishida, H., Shimizu, T., Kangawa, K. et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med.12,459-465.
    15. Yano T, Miura T, Ikeda Y, et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc Pathol.2005;14(5):241-246。
    16. Drobic V, Cunnington RH, Bedosky KM, et al. Differential and combined effects of cardiotrophin-1 and TGF-beta(1) on cardiac myofibroblast proliferation and contraction. American Journal of Physiology-Heart and Circulatory Physiology.2007;293(2):H1053-H1064。
    17. Jia Min,Lu Peiqi, et al.Influence of transplanting mesenchymal stem cells at different time on functional restoration after myocardial infarction, JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH,2007 11 (33).
    18. van Amerongen M, Bou-Gharios G, Popa E, et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. JPathol.2008;214(3):377-386.
    19. Jugdutt BI. Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord.2003;3(1):1-30.
    1.Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A.,Zuba-Surma, E. K., Al-Mallah, M. and Dawn, B. (2007). Adult bone marrow-derived cells for cardiac repair:a systematic review and meta-analysis. Arch. Intern. Med.167,989-997.
    2.Abu-Issa, R. and Kirby, M. L. (2007). Heart field:from mesoderm to heart tube. Annu.Rev. Cell Dev. Biol.23,45-68.
    3.Aggarwal, S. and Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105,1815-1822.
    4.Ahmadi, H., Baharvand, H., Ashtiani, S. K., Soleimani, M., Sadeghian, H., Ardekani,J. M., Mehrjerdi, N. Z., Kouhkan, A., Namiri, M., Madani-Civi, M. et al. (2007).Safety analysis and improved cardiac function following local autologous transplantation of CD133(+) enriched bone marrow cells after myocardial infarction.Curr. Neurovasc. Res.4,153-160.
    5. Aicher, A., Brenner, W., Zuhayra, M., Badorff, C., Massoudi, S., Assmus, B., Eckey,T., Henze, E., Zeiher, A. M. and Dimmeler, S. (2003). Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107,2134-2139.
    6.Alfaro, M. P., Pagni, M., Vincent, A., Atkinson, J., Hill, M. F., Cates, J., Davidson, J.M., Rottman, J., Lee, E. and Young, P. P. (2008). The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardialrepair. Proc. Natl. Acad. Sci. USA 105,18366-18371.
    7.Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S.,Durand, D. J., Fitton, T., Kuang, J. Q., Stewart, G. et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA 102,11474-11479.
    8.Antman, E. M. and Braunwald, E. (2001). Acute myocardial infarction. In Harrison's Principles of internal medicine (ed. A. S. Fauci, E. Braunwald, K. J. Isselbacher, J. D. ilson, J. B. Martin, D. L. Kasper, S. L. Hauser, D. L. Longo and T. R. Harrison), pp.1386-1399. New York, USA:McGraw-Hill.
    9.Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T.,Witzenbichler, B., Schatteman, G. and Isner, J. M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275,964-967.
    10.Assmus, B., Honold, J., Schachinger, V., Britten, M. B., Fischer-Rasokat, U.,Lehmann, R., Teupe, C., Pistorius, K., Martin, H., Abolmaali, N. D. et al. (2006).Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl.J. Med.355,1222-1232.
    11.Badorff, C., Brandes, R. P., Popp, R., Rupp, S., Urbich, C., Aicher, A., Fleming, I.,Busse, R., Zeiher, A. M. and Dimmeler, S. (2003). ransdifferentiation of bloodderived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107,1024-1032.
    12.Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L. and Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428,668-673.
    13.Bartunek, J., Vanderheyden, M., Vandekerckhove, B., Mansour, S., De Bruyne, B.,De Bondt, P., Van Haute, I., Lootens, N., Heyndrickx, G. and Wijns, W. (2005).Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction:feasibility and safety.Circulation 112 Suppl.9,1178-1183.
    14.Bayes-Genis, A., Salido, M., Sole Ristol, F., Puig, M., Brossa, V., Camprecios, M.,Corominas, J. M., Marinoso, M. L., Baro, T., Vela, M. C. et al. (2002). Host cellderived cardiomyocytes in sex-mismatch cardiac allografts. Cardiovasc. Res.56,404-410.
    15.Bayes-Genis, A., Roura, S., Prat-Vidal, C., Farre, J., Soler-Botija, C., de Luna, A. B.and Cinca, J. (2007). Chimerism and microchimerism of the human heart: evidence for cardiac regeneration. Nat. Clin. Pract. Cardiovasc. Med.4 Suppl.1, S40-S45.
    16.Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A.,Yasuzawa-Amano, S., Trofimova, I., Siggins, R. W., Cascapera, S. et al. (2007).Human cardiac stem cells. Proc. Natl. Acad. Sci. USA 104,14068-14073.
    17.Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A. and Puceat, M. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB J.16,1558-1566.
    18.Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S.,Puceat, M., Niederlander, N., Alekseev, A. E., Zingman, L. V. et al. (2007).Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J.Exp. Med.204,405-420.
    19.Behfar, A., Faustino, R. S., Arrell, D. K., Dzeja, P. P., Perez-Terzic, C. and Terzic, A.(2008). Guided stem cell cardiopoiesis:discovery and translation. J. Mol. Cell. Cardiol.45,523-529.
    20.Bel, A., Messas, E., Agbulut, O., Richard, P., Samuel, J. L., Bruneval, P., Hagege, A.A. and Menasche, P. (2003). Transplantation of autologous fresh bone marrow into infarcted myocardium:a word of caution. Circulation 108 Suppl.1, Ⅱ247-Ⅱ252.
    21.Belema Bedada, F., Technau, A., Ebelt, H., Schulze, M. and Braun, T. (2005).Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Mol. Cell. Biol.25,9509-9519.
    22.Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S.,Kasahara, H., Rota, M., Musso, E., Urbanek, K. et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114,763-776.
    23.Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh,S., Zupicich, J., Alkass, K., Buchholz, B. A., Druid, H. et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324,98-102.
    24.Bowley, E., O'Gorman, D. B. and Gan, B. S. (2007). Beta-catenin signaling in fibroproliferative disease. J. Surg. Res.138,141-150. Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C. and Rando, T. A.(2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317,807-810.
    25.Brand, T. (2003). Heart development:molecular insights into cardiac specification and early morphogenesis. Dev. Biol.258,1-19. Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., Fries, J. W.,Tiemann, K., Bohlen, H., Hescheler, J. et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110,1362-1369.
    26.Buckingham, M. and Montarras, D. (2008). Skeletal muscle stem cells. Curr. Opin.Genet. Dev.18,330-336. Buckingham, M., Meilhac, S. and Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet.6,826-835.
    27.Burt, R. K., Loh, Y., Pearce, W., Beohar, N., Barr, W. G., Craig, R., Wen, Y., Rapp, J. A.and Kessler, J. (2008). Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299,925-936.
    28.Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J. and Evans, S. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5,877-889.
    29.Cai, C. L., Martin, J. C., Sun, Y., Cui, L., Wang, L., Ouyang, K., Yang, L., Bu, L., Liang,X., Zhang, X. et al. (2008). A myocardial lineage derives from Tbx18 epicardial cells.Nature 454,104-108.
    30.Caplan, A. I. and Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. J.Cell. Biochem.98,1076-1084. Challen, G. A. and Little, M. H. (2006). A side order of stem cells:the SP phenotype.Stem Cells 24,3-12.
    31.Chavakis, E., Aicher, A., Heeschen, C., Sasaki, K., Kaiser, R., El Makhfi, N., Urbich,C., Peters, T., Scharffetter-Kochanek, K., Zeiher, A. M. et al. (2005). Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells.J. Exp. Med.201,63-72.
    32.Chavakis, E., Urbich, C. and Dimmeler, S. (2008). Homing and engraftment of progenitor cells:a prerequisite for cell therapy. J. Mol. Cell. Cardiol.45,514-522.
    33.Chen, S. L., Fang, W. W., Ye, F., Liu, Y. H., Qian, J., Shan, S. J., Zhang, J. J., Chunhua,R. Z., Liao, L. M., Lin, S. et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol.94,92-95.
    34.Chen, S., Liu, S., Tian, S., Zhang, J., Yei, F., Duan, B., Zhu, Z., Lin, S. and Kwan, T. W.(2006). Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J. Invasive Cardiol.18,552-556.
    35.Cheon, S. S., Cheah, A. Y., Turley, S., Nadesan, P., Poon, R., Clevers, H. and Alman,B. A. (2002).-Catenin stabilization dysregulates mesenchymal cell proliferation,motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc. Natl. Acad. Sci. USA 99,6973-6978.
    36. Chien, K. R., Domian, I. J. and Parker, K. K. (2008). Cardiogenesis and the complexbiology of regenerative cardiovascular medicine. Science 322,1494-1497.
    37.Choi, J. H., Choi, J., Lee, W. S., Rhee, I., Lee, S. C., Gwon, H. C., Lee, S. H., Choe, Y. H.,Kim, D. W., Suh, W. et al. (2007). Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction. Circ. J.71,486-494.
    38.Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127,469-480.
    39.Cohen, E. D., Tian, Y. and Morrisey, E. E. (2008). Wnt signaling:an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal.Development 135,789-798.
    40.Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E. and Kloner, R.A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short-and long-term effects. Circulation 112,214-223.
    41.David, R., Brenner, C., Stieber, J., Schwarz, F., Brunner, S., Vollmer, M., Mentele, E.,Muller-Hocker, J., Kitajima, S., Lickert, H. et al. (2008). MesPl drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling.Nat. Cell Biol.10,338-345.
    42.Dawn, B., Stein, A. B., Urbanek, K., Rota, M., Whang, B., Rastaldo, R., Torella, D.,Tang, X. L., Rezazadeh, A., Kajstura, J. et al. (2005). Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Natl. Acad. Sci. USA 102,3766-3771.
    43.Deb, A., Wang, S., Skelding, K. A., Miller, D., Simper, D. and Caplice, N. M. (2003).Bone marrow-derived cardiomyocytes are present in adult human heart:A study of gender-mismatched bone marrow transplantation patients. Circulation 107, 1247-1249.
    44.Dimmeler, S. and Zeiher, A. M. (2008). Cell therapy of acute myocardial infarction:open questions. Cardiology 113,155-160.
    45.Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. and Kemler, R. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol.87,27-45.
    46.E1-Helou, V., Beguin, P. C., Assimakopoulos, J., Clement, R., Gosselin, H., Brugada,R., Aumont, A., Biernaskie, J., Villeneuve, L., Leung, T. K. et al. (2008). The rat heart contains a neural stem cell population; role in sympathetic sprouting and angiogenesis. J. Mol. Cell. Cardiol.45,694-702.
    47.Ellison, G. M., Torella, D., Karakikes, I. and Nadal-Ginard, B. (2007). Myocyte death and renewal:modern concepts of cardiac cellular homeostasis. Nat. Clin. Pract.Cardiovasc. Med.4 Suppl.1, S52-S59.
    48.Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126,677-689.
    49.Erbs, S., Linke, A., Adams, V., Lenk, K., Thiele, H., Diederich, K. W., Emmrich, F.,Kluge, R., Kendziorra, K., Sabri, O. et al. (2005). Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion:firstrandomized and placebo-controlled study. Circ. Res.97,756-762.
    50.Evans, M. J. and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292,154-156.
    51.Fazel, S., Chen, L., Weisel, R. D., Angoulvant, D., Seneviratne, C., Fazel, A., Cheung,P., Lam, J., Fedak, P. W., Yau, T. M. et al. (2005). Cell transplantation preserves cardiac function after infarction by infarct stabilization:augmentation by stem cell factor. J. Thorac. Cardiovasc. Surg.130,1310.e1-1310.e10.
    52.Fernandez-Aviles, F., San Roman, J. A., Garcia-Frade, J., Fernandez, M. E.,Penarrubia, M. J., de la Fuente, L., Gomez-Bueno, M., Cantalapiedra, A.,Fernandez, J., Gutierrez, O. et al. (2004). Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ. Res.95, 742-748.
    53.Flaherty, M. P., Abdel-Latif, A., Li, Q., Hunt, G., Ranjan, S., Ou, Q., Tang, X. L., Johnson, R. K., Bolli, R. and Dawn, B. (2008). Noncanonical Wntl 1 signaling is sufficient to induce cardiomyogenic differentiation in unfractionated bone marrow mononuclear cells. Circulation 117,2241-2252.
    54.Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacol. Res.58,88-111.
    55.Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero,F., Canizo, C., Martin-Arnau, A., Marti-Climent, J. M., Hernandez, M. et al. (2006).Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction:1-year follow-up. J. Thorac. Cardiovasc. Surg.131,799-804.
    56.Ge, J., Li, Y., Qian, J., Shi, J., Wang, Q., Niu, Y., Fan, B., Liu, X., Zhang, S., Sun, A. et al. (2006). Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 92,1764-1767.
    57.Ghostine, S., Carrion, C., Souza, L. C., Richard, P., Bruneval, P., Vilquin, J. T., Pouzet,B., Schwartz, K., Menasche, P. and Hagege, A. A. (2002). Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 106 Suppl.1,1131-1136.
    58.Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., Noiseux, N.,Zhang, L., Pratt, R. E., Ingwall, J. S. et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat.Med.11,367-368.
    59.Gnecchi, M., Zhang, Z., Ni, A. and Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res.103,1204-1219.
    60.Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. and Mulligan, R. C. (1996).Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.183,1797-1806.
    61.Grauss, R. W., van Tuyn, J., Steendijk, P., Winter, E. M., Pijnappels, D. A., Hogers, B.,Gittenberger-de Groot, A. C., van der Geest, R., van der Laarse, A., de Vries, A.A. et al. (2008). Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts.Stem Cells 26,1083-1093.
    62.Guan, K., Nayernia, K., Maier, L. S., Wagner, S., Dressel, R., Lee, J. H., Nolte, J., Wolf,F., Li, M., Engel, W. et al. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440,1199-1203.
    63.Gulati, R. and Simari, R. D. (2009). Defining the potential for cell therapy for vascular disease using animal models. Dis. Model. Mech 2,130-137.
    64.Haegebarth, A. and Clevers, H. (2009). Wnt signaling, lgr5, and stem cells in the intestine and skin. Am. J. Pathol.174,715-721.
    65.Haider, H. K., Jiang, S., Idris, N. M. and Ashraf, M. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-lalpha/CXCR4 signaling to promote myocardial repair.Circ. Res.103,1300-1308.
    66.Hao, J., Daleo, M. A., Murphy, C. K., Yu, P. B., Ho, J. N., Hu, J., Peterson, R. T.,Hatzopoulos, A. K. and Hong, C. C. (2008). Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS ONE 3, e2904.
    67.He, K. L., Yi, G. H., Sherman, W., Zhou, H., Zhang, G. P., Gu, A., Kao, R., Haimes, H.B., Harvey, J., Roos, E. et al. (2005). Autologous skeletal myoblast transplantation improved hemodynamics and left ventricular function in chronic heart failure dogs.J. Heart Lung Transplant.24,1940-1949.
    68.Heeschen, C., Lehmann, R., Honold, J., Assmus, B., Aicher, A., Walter, D. H., Martin,H., Zeiher, A. M. and Dimmeler, S. (2004). Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109,1615-1622.
    69.Hendrikx, M., Hensen, K., Clijsters, C., Jongen, H., Koninckx, R., Bijnens, E., Ingels,M., Jacobs, A., Geukens, R., Dendale, P. et al. (2006). Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation:results from a randomized controlled clinical trial. Circulation 114 Suppl.1,1101-1107.
    70.Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A. and Megeney, L. A. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Lett. 530,239-243.
    71.Hinkel, R., El-Aouni, C., Olson, T., Horstkotte, J., Mayer, S., Muller, S., Willhauck, M.,Spitzweg, C., Gildehaus, F.-G., Miinzing, W. et al. (2008). Thymosin 4 is an essential paracrine factor of embryonic endothelial progenitor cell mediatedcardioprotection. Circulation 117,2232-2240.
    72.Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M. L. and Gabbiani, G. (2007). The myofibroblast:one function, multiple origins. Am. J. Pathol.170,1807-1816.
    73.Hodgson, D. M., Behfar, A., Zingman, L. V., Kane, G. C., Perez-Terzic, C., Alekseev,A. E., Puceat, M. and Terzic, A. (2004). Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.287, H471-H479.
    74.Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L. Hertenstein, B.,Ganser, A., Knapp, W. H. and Drexler, H. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111, 2198-2202.
    75.Hollier, B. G., Evans, K. and Mani, S. A. (2009). The epithelial-to-mesenchymal transition and cancer stem cells:a coalition against cancer therapies. J. MammaryGland Biol. Neoplasia 14,29-43.
    76.Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D.,Robbins, J. and Lee, R. T. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med.13,970-974.
    77.Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S.,Muhlestein, W. and Melton, D. A. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol.26,1269-1275.
    78.Hutson, M. R. and Kirby, M. L. (2007). Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations.Semin. Cell Dev. Biol.18,101-110.
    79.Ince, H., Petzsch, M., Rehders, T. C., Chatterjee, T. and Nienaber, C. A. (2004).Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J. Endovasc. Ther.11, 695-704.
    80.Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W.,Entman, M. L., Michael, L. H., Hirschi, K. K. and Goodell, M. A. (2001).Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest.107,1395-1402.
    81.Jaenisch, R. and Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132,567-582.
    82.Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W.,Kalantzi, M., Herbots, L., Sinnaeve, P., Dens, J. et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction:double-blind, randomised controlled trial. Lancet 367,113-121.
    83.Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M. et al. (2002).Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418,41-49.
    84.Kajstura, J., Rota, M., Whang, B., Cascapera, S., Hosoda, T., Bearzi, C., Nurzynska,D., Kasahara, H., Zias, E., Bonafe, M. et al. (2005). Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res.96,127-137.
    85.Kajstura, J., Urbanek, K., Rota, M., Bearzi, C., Hosoda, T., Bolli, R., Anversa, P. and Leri, A. (2008). Cardiac stem cells and myocardial disease. J. Mol. Cell. Cardiol.45,505-513.
    86.Kalani, M. Y., Cheshier, S. H., Cord, B. J., Bababeygy, S. R., Vogel, H., Weissman, I.L., Palmer, T. D. and Nusse, R. (2008). Wnt-mediated self-renewal of neural stem/progenitor cells. Proc. Natl. Acad. Sci. USA 105,16970-16975.
    87.Kalluri, R. and Neilson, E. G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest.112,1776-1784.
    88.Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R.,Masaki, H., Mori, Y., Iba, O., Tateishi, E. et al. (2001). Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.Circulation 104,1046-1052.
    89.Kang, H., Lee, H., Na, S., Chang, S. A., Park, K. W., Kim, H. K., Kim, S. Y., Chang, H.J., Lee, W., Kang, W. J. et al. (2006). Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction:the MAGIC Cell-3-DES randomized, controlled trial.Circulation 114 Suppl.1,1145-1151.
    90.Katritsis, D. G., Sotiropoulou, P. A., Karvouni, E., Karabinos, I., Korovesis, S., Perez,S. A., Voridis, E. M. and Papamichail, M. (2005). Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infracted human myocardium. Catheter. Cardiovasc. Interv.65,321-329.
    91.Kattman, S. J., Huber, T. L. and Keller, G. M. (2006). Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smoothmuscle lineages. Dev. Cell 11,723-732.
    92.Kawamoto, A., Tkebuchava, T., Yamaguchi, J., Nishimura, H., Yoon, Y. S., Milliken,C., Uchida, S., Masuo, O., Iwaguro, H., Ma, H. et al. (2003). Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107,461-468.
    93.Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne,E., Binah, O., Itskovitz-Eldor, J. and Gepstein, L. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108,407-414.
    94.Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I.,Satin, J., Itskovitz-Eldor, J. and Gepstein, L. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22,1282-1289.
    95.Keller, G. (2005). Embryonic stem cell differentiation:emergence of a new era in biology and medicine. Genes Dev.19,1129-1155.
    96.Kinnaird, T., Stabile, E., Burnett, M. S. and Epstein, S. E. (2004). Bone-marrowderived cells for enhancing collateral development:mechanisms, animal data, and initial clinical experiences. Circ. Res.95,354-363.
    97.Klein, H. M., Ghodsizad, A., Marktanner, R., Poll, L., Voelkel, T., Mohammad Hasani, M. R., Piechaczek, C., Feifel, N., Stockschlaeder, M., Burchardt, E. R. et al.(2007). Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery. Heart Surg. Forum 10, E66-E69.
    98.Klug, M. G., Soonpaa, M. H., Koh, G. Y. and Field, L. J. (1996). Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest.98,216-224.
    99.Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J.,Homma, S., Edwards, N. M. and Itescu, S. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7,430-436.
    100.Kofidis, T., Lebl, D. R., Martinez, E. C., Hoyt, G., Tanaka, M. and Robbins, R. C.(2005). Novel injectable bioartificial tissue facilitates targeted, less invasive, largescale tissue restoration on the beating heart after myocardial injury. Circulation 112 Suppl.9,1173-1177.
    101.Koyanagi, M., Haendeler, J., Badorff, C., Brandes, R. P., Hoffmann, J., Pandur, P.,Zeiher, A. M., Kiihl, M. and Dimmeler, S. (2005). Non-canonical Wnt signaling enhances differentiation of human circulating progenitor cells to cardiomyogenic cells. J. Biol. Chem.280,16838-16842.
    102.Koyanagi, M., Bushoven, P., Iwasaki, M., Urbich, C., Zeiher, A. M. and Dimmeler, S.(2007). Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ. Res.101,1139-1145.
    103.Kudo, M., Wang, Y., Wani, M. A., Xu, M., Ayub, A. and Ashraf, M. (2003). Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. J. Mol. Cell. Cardiol.35,1113-1119.
    104.Kupatt, C., Horstkotte, J., Vlastos, G. A., Pfosser, A., Lebherz, C., Semisch, M.,Thalgott, M., Buttner, K., Browarzyk, C., Mages, J. et al. (2005a). Embryonic endothelial progenitor cells expressing a broad range of pro-angiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J.19,1576-1578.
    105.Kupatt, C., Hinkel, R., Lamparter, M., von Bruhl, M.-L., Pohl, T., Horstkotte, J., Beck,H., Muller, S., Delker, S., Gildehaus, F.-J. et al. (2005b). Retroinfusion of embryonic endothelial progenitor cells attenuates ischemia-reperfusion injury in pigs:Role of PI3-Kinase/AKT. Circulation 112 Suppl. 9,1117-1122.
    106.Kwon, C., Arnold, J., Hsiao, E. C., Taketo, M. M., Conklin, B. R. and Srivastava, D.(2007). Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc. Natl. Acad. Sci. USA 104,10894-10899.
    107.Laflamme, M. A., Myerson, D., Saffitz, J. E. and Murry, C. E. (2002). Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res.90,634-640.
    108.Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., Muskheli, V.and Murry, C. E. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol.167,663-671.
    109.Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S.K., Reinecke, H., Xu, C., Hassanipour, M., Police, S. et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25,1015-1024.
    110.Lamparter, M. and Hatzopoulos, A. K. (2007). The biology of embryonic and adult endothelial progenitor cells. In Therapeutic Neovascularization-Quo Vadis? (ed. E.Deindl and C. Kupatt), pp.197-213.
    111.Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L. Z., Cai,C. L., Lu, M. M., Reth, M. et al. (2005). Postnatal isll+cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433,647-653.
    112.Laugwitz, K. L., Moretti, A., Caron, L., Nakano, A. and Chien, K. R. (2008). Islet1 cardiovascular progenitors:a single source for heart lineages? Development 135,193-205.
    113.Leesar, M. A., Stoddard, M., Ahmed, M., Broadbent, J. and Bolli, R. (1997).Preconditioning of human myocardium with adenosine during coronary angioplasty.Circulation 95,2500-2507.
    114.Leobon, B., Garcin, I., Menasche, P., Vilquin, J. T., Audinat, E. and Charpak, S.(2003). Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc. Natl. Acad. Sci. USA 100,7808-7811.
    115.Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G. and Poss, K. D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127,607-619.
    116.Li, Z. Q., Zhang, M., Jing, Y. Z., Zhang, W. W., Liu, Y., Cui, L. J., Yuan, L., Liu, X. Z., Yu,X. and Hu, T. S. (2007). The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int. J. Cardiol.115,52-56.
    117.Limana, F., Zacheo, A., Mocini, D., Mangoni, A., Borsellino, G., Diamantini, A., De Mori, R., Battistini, L., Vigna, E., Santini, M. et al. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ. Res.101,255-265.
    118.Lin, L., Cui, L., Zhou, W., Dufort, D., Zhang, X., Cai, C. L., Bu, L., Yang, L., Martin, J.,Kemler, R. et al. (2007). Beta-catenin directly regulates Isletl expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis.Proc. Natl. Acad. Sci. USA 104,9313-9318.
    119.Losordo, D. W., Schatz, R. A., White, C. J., Udelson, J. E., Veereshwarayya, V.,Durgin, M., Poh, K. K., Weinstein, R., Kearney, M., Chaudhry, M. et al. (2007).Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina:a phase Ⅰ/Ⅱa double-blind, randomized controlled trial. Circulation 115, 3165-3172.
    120.Lowry, W. E. and Richter, L. (2007). Signaling in adult stem cells. Front. Biosci.12,3911-3927.
    .Luis, T. C., Weerkamp, F., Naber, B. A., Baert, M. R., de Haas, E. F., Nikolic, T.,Heuvelmans, S., De Krijger, R. R., van Dongen, J. J. and Staal, F. J. (2009). Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads todefects in progenitor cell differentiation. Blood 113,546-554.
    121.Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T.,Endresen, K., Ilebekk, A., Mangschau, A., Fjeld, J. G. et al. (2006). Intracoronary injections of mononuclear bone marrow cells in acute myocardial infarction. N. Engl.J. Med.355,1199-1209.
    122.Ma, Q., Zhou, B. and Pu, W. T. (2008). Reassessment of Isll and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev. Biol.323, 98-104.
    123.Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M.,Takahashi, T., Hori, S., Abe, H. et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest.103,697-705.
    124.Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S. and Dzau, V.J. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9,1195-1201.
    125.Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M.,Reinhard, F., Zhang, C. C., Shipitsin, M. et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133,704-715.
    126.Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci.USA 78,7634-7638.
    127.Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates,S., Goetsch, S. C., Gallardo, T. D. and Garry, D. J. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol.265,262-275.
    128.Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., Sano, M., Toko,H., Akazawa, H., Sato, T. et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem.279,11384-11391.
    129.Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S.,Nguemo, F., Menke, S., Haustein, M., Hescheler, J. et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation118,507-517. McMurray, J. J. and Pfeffer, M. A. (2005). Heart failure. Lancet 365,1877-1889.
    130.Meluzin, J., Mayer, J., Groch, J., Janousek, S., Hornacek, I., Hlinomaz, O., Kala, P.,Panovsky, R., Prasek, J., Kaminek, M. et al. (2006). Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction:the effect of the dose of transplanted cells on myocardial function. Am. Heart J.152,e9-e15.
    131.Meluzin, J., Janousek, S., Mayer, J., Groch, L., Hornacek, I., Hlinomaz, O., Kala, P.,Panovsky, R., Prasek, J., Kaminek, M. et al. (2008). Three-,6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int. J. Cardiol.128,185-192.
    132.Menasche, P. (2007). Skeletal myoblasts as a therapeutic agent. Prog. Cardiovasc. Dis.50,7-17.
    133.Menasche, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart,L., Vilquin, J. T., Marolleau, J. P., Seymour, B., Larghero, J. et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial:first randomized placebo-controlled study of myoblast transplantation. Circulation 117,1189-1200.
    134.Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., Salio,M., Battaglia, M., Latronico, M. V., Coletta, M. et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95,911-921.
    135.Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., Hecker, H.,Schaefer, A., Arseniev, L., Hertenstein, B. et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction:eighteen months'follow-up data from the randomized, controlled BOOST (BOne marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113,1287-1294.
    136.Min, J. Y., Yang, Y., Converso, K. L., Liu, L., Huang, Q., Morgan, J. P. and Xiao, Y. F.(2002). Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol.92,288-296.
    137.Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., Mu, H.,Pachori, A. and Dzau, V. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survivaland repair. Proc. Natl. Acad. Sci. USA 104,1643-1648.
    138.Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K.,Ishida, H., Shimizu, T., Kangawa, K. et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med.12,459-465.
    139.Mocini, D., Staibano, M., Mele, L., Giannantoni, P., Menichella, G., Colivicchi, F.,Sordini, P., Salera, P., Tubaro, M. and Santini, M. (2006). Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypassgrafting. Am. Heart J.151,192-197.
    140.Moorman, A. F., Christoffels, V. M., Anderson, R. H. and van den Hoff, M. J. (2007).The heart-forming fields:one or multiple? Philos. Trans. R. Soc. Lond. B Biol. Sci.362,1257-1265.
    141.Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., Qyang, Y.,Bu, L., Sasaki, M., Martin-Puig, S. et al. (2006). Multipotent embryonic isll+progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.Cell 127,1151-1165.
    142.Mouquet, F., Pfister, O., Jain, M., Oikonomopoulos, A., Ngoy, S., Summer, R., Fine,A. and Liao, R. (2005). Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ. Res.97,1090-1092. Muller, P., Pfeiffer, P., Koglin, J., Schafers, H. J., Seeland, U., Janzen, I., Urbschat, S.and Bohm, M. (2002). Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106,31-35.
    143.Murry, C. E. and Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations:lessons from embryonic development. Cell 132, 661-680.
    144.Murry, C. E., Wiseman, R. W., Schwartz, S. M. and Hauschka, S. D. (1996). Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest.98, 2512-2523.
    145.Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart,M., Pasumarthi, K. B., Virag, J. I., Bartelmez, S. H., Poppa, V. et al. (2004).Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428,664-668.
    146.Nakamura, T., Sano, M., Songyang, Z. and Schneider, M. D. (2003). A Wnt-and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc. Natl. AcadSci. USA 100,5834-5839.
    147.Nakamura, T., Colbert, M. C. and Robbins, J. (2006). Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ. Res.98,1547-1554.
    148.Nakaya, Y. and Sheng, G. (2008). Epithelial to mesenchymal transition during gastrulation:an embryological view. Dev. Growth Differ.50,755-766.
    149.Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., Yamanaka,S. and Yamashita, J. K. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118, 498-506.
    150.Neilson, E. G. (2006). Mechanisms of disease:fibroblasts-a new look at an old problem. Nat. Clin. Pract. Nephrol.2,101-108.
    151.Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S. D., Deb, A.,Dzau, V. J. and Pratt, R. E. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther.14,840-850.
    152.Norris, R. A., Moreno-Rodriguez, R. A., Sugi, Y., Hoffman, S., Amos, J., Hart, M. M.,Potts, J. D., Goodwin, R. L. and Markwald, R. R. (2008). Periostin regulates atrioventricular valve maturation. Dev. Biol.316,200-213.
    153.Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A.,Muskheli, V., Pabon, L., Reinecke, H. and Murry, C. E. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart:teratoma formation andimmune response. FASEBJ.21,1345-1357.
    154.Nusse, R. (2008). Wnt signaling and stem cell control. Cell Res.18, 523-527.
    155.Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y.,Pocius, J., Michael, L. H., Behringer, R. R., Garry, D. J. et al. (2003). Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion afterinfarction. Proc. Natl. Acad. Sci. USA 100,12313-12318.
    156.Okita, K., Ichisaka, T. and Yamanaka, S. (2007). Generation of germ-line competent induced pluripotent stem cells. Nature 448,313-317. Olson, E. N. (2006). Gene regulatory networks in the evolution and development of the heart. Science 313,1922-1927.
    157.Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J.,McKay, R., Nadal-Ginard, B., Bodine, D. M. et al. (2001a). Bone marrow cells regenerate infarcted myocardium. Nature 410,701-705.
    158.Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., Nadal-Ginard, B., Bodine, D. M., Leri, A. and Anversa, P. (2001b). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci.USA 98,10344-10349.
    159.Otto, A., Schmidt, C., Luke, G., Allen, S., Valasek, P., Muntoni, F., Lawrence-Watt, D.and Patel, K. (2008). Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J. Cell Sci.121, 2939-2950.
    160.Oyama, T., Nagai, T., Wada, H., Naito, A. T., Matsuura, K., Iwanaga, K., Takahashi,T., Goto, M., Mikami, Y., Yasuda, N. et al. (2007). Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J. Cell Biol.176,329-341.
    161.Pallante, B. A., Duignan, I., Okin, D., Chin, A., Bressan, M. C., Mikawa, T. and Edelberg, J. M. (2007). Bone marrow Oct3/4+cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ. Res.100, e1-e11.
    162.Perez-Pomares, J. M., Gonzalez-Rosa, J. M. and Munoz-Chapuli, R. (2009). Building the vertebrate heart-an evolutionary approach to cardiac development. Int. J. Dev.Biol. Jan 23 [Epub ahead of print] [doi:10.1387/ijdb.072409jp].
    163.Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Silva, G. V.,Mesquita, C. T., Belem, L., Vaughn, W. K., Rangel, F. O. et al. (2004). Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy.Circulation 110 Suppl.1,Ⅱ213-Ⅱ218.
    164.Person, A. D., Klewer, S.E. and Runyan, R. B. (2005). Cell biology of cardiac cushion development. Int. Rev. Cytol.243,287-335. Pfeffer, M. A. and Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 1161-1172.
    165.Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., Colucci, W. S.and Liao, R. (2005). CD31-but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res.97,52-61.
    166.Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D.,Moorman, M. A., Simonetti, D. W., Craig, S. and Marshak, D. R. (1999).Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.
    167.Poelmann, R. E., Jongbloed, M. R., Molin, D. G., Fekkes, M. L., Wang, Z., Fishman,G. I., Doetschman, T., Azhar, M. and Gittenberger-de Groot, A. C. (2004). The neural crest is contiguous with the cardiac conduction system in the mouse embryo:a role in induction? Anat. Embryol (Berl.) 208,389-393.
    168.Prall, O. W., Menon, M. K., Solloway, M. J., Watanabe, Y., Zaffran, S., Bajolle, F.,Biben, C., Mcbride, J. J., Robertson, B. R., Chaulet, H. et al. (2007). An Nkx2-5/Bmp2/Smadl negative feedback loop controls heart progenitor specification andproliferation. Cell 128,947-959.
    169.Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B.,Kajstura, J., Leri, A. and Anversa, P. (2002). Chimerism of the transplanted heart. N.Engl. J. Med.346,5-15.
    170.Qyang, Y., Martin-Puig, S., Chiravuri, M., Chen, S., Xu, H., Bu, L., Jiang, X., Lin, L.,Granger, A., Moretti, A. et al. (2007). The renewal and differentiation of Isll+cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 1,165-179.
    171.Reese, D. E., Mikawa, T. and Bader, D. M. (2002). Development of the coronary vesselsystem. Circ. Res.91,761-768.
    172.Reffelmann, T., Konemann, S. and Kloner, R. A. (2009). Promise of blood-and bone marrow-derived stem cell transplantation for functional cardiac repair: putting it in perspective with existing therapy. J. Am. Coll. Cardiol.53,305-308.
    173.Reinecke, H., Poppa, V. and Murry, C. E. (2002). Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell. Cardiol.34,241-249.
    174.Reinecke, H., Minami, E., Zhu, W. Z. and Laflamme, M. A. (2008). Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ. Res.103, 1058-1071.
    175.Roell, W., Fan, Y., Xia, Y., Stoecker, E., Sasse, P., Kolossov, E., Bloch, W., Metzner, H.,Schmitz, C., Addicks, K. et al. (2002). Cellular cardiomyoplasty in a transgenic mouse model. Transplantation 73,462-465.
    176.Roell, W., Lewalter, T., Sasse, P., Tallini, Y. N., Choi, B. R., Breitbach, M., Doran, R.,Becher, U. M., Hwang, S. M., Bostani, T. et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450,819-824.
    177.Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., Keating, S. C.,Parker, T. G., Backx, P. H. and Keating, A. (2008). Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 26,2884-2892.
    178.Rota, M., Kajstura, J., Hosoda, T., Bearzi, C., Vitale, S., Esposito, G., Iaffaldano, G.,Padin-Ireguas, M. E., Gonzalez, A., Rizzi, R. et al. (2007). Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc. Natl. Acad. Sci. USA 104, 17783-17788.
    179.Rota, M., Padin-Iruegas, M. E., Misao, Y., De Angelis, A., Maestroni, S., Ferreira-Martins, J., Fiumana, E., Rastaldo, R., Arcarese, M. L., Mitchell, T. S. et al. (2008).Local activation or implantation of cardiac progenitor cells rescues scarred infracted myocardium improving cardiac function. Circ. Res.103,107-116.
    180.Ruan, W., Pan, C., Huang, G., Li, Y., Ge, J. B. and Shu, X. H. (2005). Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin. Med. J. (Engl.) 118,1175-1181.
    181.Ryzhov, S., Solenkova, N. V., Goldstein, A. E., Lamparter, M., Fleenor, Y., Young, P.P., Greelish, J. P., Byrne, J. G., Vaughan, D. E., Biaggioni, I. et al.. (2008). Adenosine receptor-mediated adhesion of endothelial progenitors to cardiac microvascular endothelial cells. Circ. Res.102,356-363.
    182.Sachinidis, A., Fleischmann, B. K., Kolossov, E., Wartenberg, M., Sauer, H. and Hescheler, J. (2003). Cardiac specific differentiation of mouse embryonic stem cells.Cardiovasc. Res.58,278-291.
    183.Sauka-Spengler, T. and Bronner-Fraser, M. (2008). A gene regulatory network orchestrates neural crest formation. Nat. Rev. Mol. Cell. Biol.9,557-568.
    184.Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R.,Holschermann, H., Yu, J., Corti, R., Mathey, D. G., Hamm, C. W. et al. (2006a).Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.N. Engl. J. Med.355,1210-1221.
    185.Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R.,Holschermann, H., Yu, J., Corti, R., Mathey, D. G., Hamm, C. W. et al. (2006b).Improved clinical outcome after intracoronary administration of bone-marrowderived progenitor cells in acute myocardial infarction:final 1-year results of the REPAIR-AMI trial. Eur. Heart J.27,2775-2783.
    186.Schenke-Layland, K., Rhodes, K. E., Angelis, E., Butylkova, Y., Heydarkhan-Hagvall,S., Gekas, C., Zhang, R., Goldhaber, J. I., Mikkola, H. K., Plath, K. et al. (2008).Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26,1537-1546.
    187.Schonberger, J. and Seidman, C. E. (2001). Many roads lead to a broken heart:the genetics of dilated cardiomyopathy. Am. J. Hum. Genet.69,249-260.
    188.Segers, V. F. and Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature 451,937-942. Shen, J. and DiCorleto, P. E. (2008). Adenosine prompts the heart to recruit endothelial progenitors. Circ. Res.102,280-282.
    189.Shenje, L. T., Field, L. J., Pritchard, C. A., Guerin, C. J., Rubart, M., Soonpaa, M. H.,Ang, K. L. and Galinanes, M. (2008). Lineage tracing of cardiac explant derived cells. PLoS ONE 3, e1929.
    190.Shi, X. and Garry, D. J. (2006). Muscle stem cells in development, regeneration, and disease. Genes Dev.20,1692-1708.
    191.Shiota, M., Heike, T., Haruyama, M., Baba, S., Tsuchiya, A., Fujino, H., Kobayashi,H., Kato, T., Umeda, K., Yoshimoto, M. et al. (2007). Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Exp. Cell Res.313,1008-1023.
    192.Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., Coulter, S.C., Lin, J., Ober, J., Vaughn, W. K. et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111,150-156.
    193.Singla, D. K., Hacker, T. A., Ma, L., Douglas, P. S., Sullivan, R., Lyons, G. E. and Kamp, T. J. (2006). Transplantation of embryonic stem cells into the infarcted mouse heart:formation of multiple cell types. J. Mol. Cell. Cardiol.40,195-200.
    194.Slack, J. M. (2008). Origin of stem cells in organogenesis. Science 322, 1498-1501.
    195.Smart, N., Risebro, C. A., Melville, A. A., Moses, K., Schwartz, R. J., Chien, K. R. and Riley, P. R. (2007). Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445,177-182.
    196.Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., Giacomello,A., Abraham, M. R. and Marban, E. (2007). Regenerative potential of cardiospherederived cells expanded from percutaneous endomyocardial biopsy specimens.Circulation 115,896-908.
    197.Snider, P., Olaopa, M., Firulli, A. B. and Conway, S. J. (2007). Cardiovascular development and the colonizing cardiac neural crest lineage. ScientificWorldJournal 7,1090-1113.
    198.Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. and Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science 322, 945-949.
    199.Stamm, C., Kleine, H. D., Choi, Y. H., Dunkelmann, S., Lauffs, J. A., Lorenzen, B.,David, A., Liebold, A., Nienaber, C., Zurakowski, D. et al. (2007). Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease:safety and efficacy studies. J. Thorac. Cardiovasc. Surg.133,717-725.
    200.Stoller, J. Z. and Epstein, J. A. (2005). Cardiac neural crest. Semin. Cell Dev. Biol.16,704-715.
    201.Stottmann, R. W., Choi, M., Mishina, Y., Meyers, E. N. and Klingensmith, J. (2004).BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development 131, 2205-2218.
    202.Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., Kogler,G. and Wernet, P. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106,1913-1918.
    203.Strauer, B. E., Brehm, M., Zeus, T., Bartsch, T., Schannwell, C., Antke, C., Sorg, R. V.,Kogler, G., Wernet, P., Muller, H. W. et al. (2005). Regeneration of human infracted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease:the IACT Study. J. Am. Coll. Cardiol.46,1651-1658.
    204.Sun, L., Cui, M., Wang, Z., Feng, X., Mao, J., Chen, P., Kangtao, M., Chen, F. and Zhou, C. (2007). Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem. Biophys. Res.Commun.357,779-784.
    205.Sun, Y. (2009). Myocardial repair/remodelling following infarction:roles of local factors.Cardiovasc. Res.81,482-490.
    206.Sun, Y., Liang, X., Najafi, N., Cass, M., Lin, L., Cai, C. L., Chen, J. and Evans, S. M.(2007). Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev. Biol.304,286-296.
    207.Suzuki, K., Murtuza, B., Beauchamp, J. R., Smolenski, R. T., Varela-Carver, A.,Fukushima, S., Coppen, S. R., Partridge, T. A. and Yacoub, M. H. (2004). Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart.FASEB J.10,1153-1155.
    208.Swijnenburg, R. J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., Lebl, D.R., Caffarelli, A. D., de Bruin, J. L., Fedoseyeva, E. V. et al. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112 Suppl.9,1166-1172.
    209.Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131,861-872.
    210.Takehara, N., Tsutsumi, Y., Tateishi, K., Ogata, T., Tanaka, H., Ueyama, T.,Takahashi, T., Takamatsu, T., Fukushima, M., Komeda, M. et al. (2008). Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J. Am. Coll.Cardiol.52,1858-1865.
    211.Tatsumi, T., Ashihara, E., Yasui, T., Matsunaga, S., Kido, A., Sasada, Y., Nishikawa,S., Hadase, M., Koide, M., Nakamura, R. et al. (2007). Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction. Circ. J.71,1199-1207.
    212.Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson,K. A., Glower, D. D. and Kraus, W. E. (1998). Regenerating functional myocardium:improved performance after skeletal myoblast transplantation. Nat. Med. 4,929-933.
    213.Teng, C. J., Luo, J., Chiu, R. C. and Shum-Tim, D. (2006). Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart:implications for cellular cardiomyoplasty. J. Thorac. Cardiovasc. Surg.132, 628-632.
    214.Thiery, J. P. and Sleeman, J. P. (2006). Complex networks orchestrate epithelialmesenchymal transitions. Nat. Rev. Mol. Cell. Biol.7,131-142.
    215.Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J.,Marshall, V. S. and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282,1145-1147.
    216.Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J. and Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105,93-98.
    217.Tomita, S., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. J., Sakai, T. and Jia, Z. Q.(1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 Suppl.19, Ⅱ247-Ⅱ256.
    218.Tomita, Y., Matsumura, K., Wakamatsu, Y., Matsuzaki, Y., Shibuya, I., Kawaguchi,H., Ieda, M., Kanakubo, S., Shimazaki, T., Ogawa, S. et al. (2005). Cardiac neura crest cells contribute to the dormant multipotent stem cell in the mammalian heart.J. Cell Biol.170,1135-1146.
    219.Uccelli, A., Moretta, L. and Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nat. Rev. Immunol.8,726-736.
    220.Uemura, R., Xu, M., Ahmad, N. and Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling.Circ. Res.98,1414-1421.
    221.Ueno, S., Weidinger, G., Osugi, T., Kohn, A. D., Golob, J. L., Pabon, L. Reinecke, H.,Moon, R. T. and Murry, C. E. (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl. Acad. Sci. USA 104,9685-9690.
    222.Vajkoczy, P., Blum, S., Lamparter, M., Mailhammer, R., Erber, R., Engelhardt, B.,Vestweber, D. and Hatzopoulos, A. K. (2003). Multistep nature of microvascularrecruitment of ex vivo expanded embryonic endothelial progenitor cells during tumor angiogenesis. J. Exp. Med.197,1755-1765.
    223.van den Berg, G. and Moorman, A. F. (2009). Concepts of cardiac development in retrospect. Pediatr. Cardiol.30,580-587.
    224.van den Bos, E. J., Thompson, R. B., Wagner, A., Mahrholdt, H., Morimoto, Y.,Thomson, L. E., Wang, L. H., Duncker, D. J., Judd, R. M. and Taylor, D. A. (2005).Functional assessment of myoblast transplantation for cardiac repair with magnetic resonance imaging. Eur. J. Heart Fail.7,435-443.
    225.van Laake, L. W., Passier, R., Doevendans, P. A. and Mummery, C. L. (2008). Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ. Res.102,1008-1010.
    226.van Tuyn, J., Atsma, D. E., Winter, E. M., van der Velde-van Dijke, I., Pijnappels, D.A., Bax, N. A., Knaan-Shanzer, S., Gittenberger-de Groot, A. C., Poelmann, R. E.,van der Laarse, A. et al. (2007). Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25,271-278.
    227.Vanhoutte, D., Schellings, M., Pinto, Y. and Heymans, S. (2006). Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction:a temporal and spatial window. Cardiovasc. Res.69,604-613.
    228.Walter, D. H., Haendeler, J., Reinhold, J., Rochwalsky, U., Seeger, F., Honold, J.,Hoffmann, J., Urbich, C., Lehmann, R., Arenzana-Seisdesdos, F. et al. (2005).Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ. Res.97,1142-1151.
    229.Wang, X., Hu, Q., Nakamura, Y., Lee, J., Zhang, G., From, A. H. and Zhang, J. (2006). The role of the sca-1+/CD31-cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24,1779-1788.
    230.Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K.,Bernstein, B. E. and Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448,318-324.
    231.Wessels, A. and Perez-Pomares, J. M. (2004). The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat. Rec. A Discov. Mol. Cell. Evol. Biol.276,43-57.
    232.Winter, E. M. and Gittenberger-de Groot, A. C. (2007). Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell. Mol. Life Sci.64,692-703.
    233.Winter, E. M., Grauss, R. W., Hogers, B., van Tuyn, J., van der Geest, R., Lie-Venema,H., Steijn, R. V., Maas, S., DeRuiter, M. C., deVries, A. A. et al. (2007). Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation 116,917-927.
    234.Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P.,Breidenbach, C., Fichtner, S., Korte, T., Hornig, B., Messinger, D. et al. (2004).Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364,141-148.
    235.Wu, S. M., Fujiwara, Y., Cibulsky, S. M., Clapham, D. E., Lien, C. L Schultheiss, T. M.and Orkin, S. H. (2006). Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127, 1137-1150.
    236.Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. J. Pathol.214,199-210.
    237.Xu, C., Police, S., Rao, N. and Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res.91,501-508.
    238.Yamada, S., Nelson, T. J., Crespo-Diaz, R. J., Perez-Terzic, C., Liu, X. K., Miki, T.,Seino, S., Behfar, A. and Terzic, A. (2008). Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells 26,2644-2653.
    239.Yan, P., Nagasawa, A., Uosaki, H., Sugimoto, A., Yamamizu, K., Teranishi, M.,Matsuda, H., Matsuoka, S., Ikeda, T., Komeda, M. et al. (2009). Cyclosporin-A potently induces highly cardiogenic progenitors from embryonic stem cells.Biochem. Biophys. Res. Commun.379,115-120.
    240.Yang, J. H., Wylie-Sears, J. and Bischoff, J. (2008). Opposing actions of Notch 1 and VEGF in post-natal cardiac valve endothelial cells. Biochem. Biophys. Res. Commun.374,512-516.
    241.Yang, L., Cai, C. L., Lin, L., Qyang, Y., Chung, C., Monteiro, R. M., Mummery, C. L.,Fishman, G. I., Cogen, A. and Evans, S. (2006). IsllCre reveals a common Bmp pathway in heart and limb development. Development 133,1575-1585.
    242.Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M.,Henckaerts, E., Bonham, K., Abbott, G. W., Linden, R. M. et al. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453,524-528.
    243.Yang, W., Yan, H. X., Chen, L., Liu, Q., He, Y. Q., Yu, L. X., Zhang, S. H., Huang, D. D.,Tang, L., Kong, X. N. et al. (2008). Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 68,4287-4295.
    244.Yeh, E. T., Zhang, S., Wu, H. D., Korbling, M., Willerson, J. T. and Estrov, Z. (2003).Transdifferentiation of human peripheral blood CD34-Enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108,2070-2073.
    245.Yellon, D. M. and Hausenloy, D. J. (2007). Myocardial reperfusion injury. N. Engl. J.Med.357,1121-1135.
    246.Yoon, Y. S., Park, J. S., Tkebuchava, T., Luedeman, C. and Losordo, D. W. (2004).Unexpected severe calcification after transplantation of bone marrow cells in acutemyocardial infarction. Circulation 109,3154-3157.
    247.Young, P. P., Vaughan, D. E. and Hatzopoulos, A. K. (2007). Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog. Cardiovasc. Dis.49,421-429.
    248.Yuasa, S., Itabashi, Y., Koshimizu, U., Tanaka, T., Sugimura, K., Kinoshita, M.,Hattori, F., Fukami, S., Shimazaki, T., Ogawa, S. et al. (2005). Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol.23,607-611.
    249.Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R.,Gustafsson, E., Chandraker, A., Yuan, X., Pu, W. T., Roberts, A. B. et al. (2007).Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med.13,952-961.
    250.Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P.,Thomson, J. A. and Kamp, T. J. (2009). Functional cardiomyocytes derived fromhuman induced pluripotent stem cells. Circ. Res.104, e30-e41.
    251.Zhang, M., Mal, N., Kiedrowski, M., Chacko, M., Askari, A. T., Popovic, Z. B., Koc, O.N. and Penn, M. S. (2007). SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 21,3197-3207.
    252.Zhang, Y., Goss, A. M., Cohen, E. D., Kadzik, R., Lepore, J. J., Muthukumaraswamy,K., Yang, J., DeMayo, F. J., Whitsett, J. A., Parmacek, M. S. et al. (2008). A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration.Nat. Genet.40,862-870.
    253.Zhang, Z., Deb, A., Zhang, Z., Pachori, A., He, W., Guo, J., Pratt, R. and Dzau, V. J.(2009). Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J. Mol. Cell. Cardiol.46,370-377.
    254.Zhao, T. C., Tseng, A., Yano, N., Tseng, Y., Davol, P. A., Lee, R. J., Lum, L. G. andPadbury, J. F. (2008). Targeting human CD34+ hematopoietic stem cells with anti-CD45 x anti-myosin light chain bispecific antibody preserves cardiac function in myocardial infarction. J. Appl. Physiol.104,1793-1800.
    255.Zhou, B., Ma, Q., Rajagopal, S., Wu, S. M., Domian, I., Rivera-Feliciano, J., Jiang, D.,von Gise, A., Ikeda, S., Chien, K. R. et al. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454,109-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700