用户名: 密码: 验证码:
调节性T细胞在母胎耐受中的作用机制及对H-Y皮肤移植影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分妊娠水平的雌、孕激素对机体免疫系统的影响及机制研究
     目的探讨妊娠浓度雌、孕激素对小鼠体内调节性T细胞的影响及可能机制。
     方法实验分为体内部分和体外部分。体内实验:建立去势C57BL/6小鼠模型,两周后分别予以皮下注射雌激素(E2)、孕激素(P4)、雌孕激素联合及溶剂(生理盐水)模拟重建妊娠浓度小鼠激素水平。维持两周后,流式细胞术和免疫组化检测给药后小鼠外周血、脾脏、腹腔淋巴结、胸腺中调节性T细胞(Treg)比例变化情况。并通过ELISA的方法检测外周血中TNF-α、IL-2、IFN-γ、IL-10、TGF-β等细胞因子水平的变化。体外实验:通过CFSE标记磁珠分选的调节性T细胞反应细胞,外加E2和共刺激信号,观察标记的调节性T细胞是否发生增殖,并进一步通过CFSE标记法结合单向混合淋巴细胞培养来验证其调节性T细胞的功能。
     结果体内实验:无论雌、雄小鼠,去势后单独的妊娠水平的E2即可明显提高外周血、脾脏、腹腔淋巴结中CD4+CD25+Foxp3+Treg占CD4+T细胞的比例(分别为6.13±1.32%;10.50±1.85%;7.63±1.68%),与溶剂组相比有明显统计学差异(P<0.05)。但在胸腺中CD4+CD25+Foxp3+Treg的比例与溶剂组没有统计学差异。与此同时,单独的妊娠水平的P4相比于溶剂组,Treg比例有所升高,但不具有统计学意义(P>0.05)。而联合应用雌、孕激素对Treg的影响与单独应用E2的结果类似,两者没有统计学差异(P>0.05)。相同干预药物,Treg的比例变化在雌雄两组之间没有差异(P>0.05)。同样的结果在免疫组化中得到验证。对于外周血中细胞因子的影响,在没有外来抗原刺激的条件下是没有多大影响的。
     体外实验:单独的E2处理对于调节性T细胞并不能直接诱导CFSE标记的调节性T细胞的增殖(PI=1.01±0.01),单独的TCR双信号刺激也不能检测到CFSE的增殖(PI=1.03±0.02),只有在E2的预处理联合CD3/CD28的刺激下才能检测到调节性T细胞自身的增殖(PI=1.15±0.03)。验证了E2对于调节性T细胞数量上的促增殖作用之后,功能学方面的实验结果提示,CD3/CD28的刺激能显著促进CD4+CD25- NaiveT细胞的增殖(PI=1.56±0.03),在此基础上按照反应细胞与调节性T细胞比为1:1,未经E2处理组也能检测到对刺激后增殖的抑制(PI=1.18±0.04),E2的预处理能进一步增强调节性T细胞的抑制功能(PI=1.07±0.02),不仅与刺激组相比有差异(1.07±0.02 vs 1.56±0.03,P<0.05),与未经E2处理组同样有差异(1.07±0.02 vs 1.18±0.04,P<0.05)证明了E2不仅能通过促进调节性T细胞的增殖而扩增,而且在功能上也能进一步增强其对效应T细胞活化后增殖的抑制效应。
     结论单独应用妊娠浓度E2可明显提高小鼠外周血,脾脏,腹腔淋巴结CD4+CD25+Foxp3+Treg比例,妊娠浓度的P4对外周Treg没有影响,两种激素对中枢淋巴器官的淋巴细胞均没有影响。这可能与小鼠T淋巴细胞中雌、孕激素的受体分布、功能及与性别遗传没有相关性有关。体外实验的结果不仅验证妊娠水平的E2通过改变调节性T细胞的无反应性,在联合TCR信号下能促进调节性T细胞自身发生增殖,还能在功能上加强调节性T细胞的抑制作用。无论是中枢还是外周的调节性T细胞的比例均没有影响.妊娠水平的雌、孕激素对于血清中细胞因子免疫网络是没有太大的影响。
     第二部分调节性T细胞在妊娠保护中的作用及抗原特异性的研究
     目的:探讨妊娠中调节性T细胞的免疫调节作用是否具有抗原特异性。
     方法:本实验分体外部分和体内部分。体外实验:以雌性CBA/J与雄性DBA/2J同笼构建流产趋势模型,从流产趋势孕10天雌鼠脾脏分离的单个核细胞经尼龙毛处理后作为效应T细胞(Tef);DBA雄鼠脾细胞经MMC处理后作为APC;根据培养体系中调节性T细胞(Treg)的来源分组:未孕CBA雌鼠来源的Treg为未孕组,正常妊娠(CBA/J×Balb/c)来源的Treg为正常妊娠组,无关正常妊娠(Balb/c×C57BL/6)来源的Treg为正常妊娠无关对照组。按照Tef与Treg比分别为10:1,1:1,1:5构建单向混合淋巴细胞培养体系,72小时后,流式细胞仪检测标记细胞的增殖指数(Proliferative Index, PI), ELISA检测细胞因子水平。
     体内实验:构建流产趋势的妊娠模型,于妊娠第0-2天,过继输注来自正常妊娠组、未孕组、无关妊娠对照组的CD4+CD25+Treg,观察Treg的过继输注对妊娠结局的影响。按照Treg的来源不同分为:正常妊娠组、未孕组、无关妊娠对照组。
     结果:体外实验:在Tef与Treg比例为10:1的体系中,未孕组效应性T细胞增殖明显受到抑制。在1:1,1:5的体系中同样均能检测到明显的抑制效应,但这种抑制效应没有剂量依赖性。而分别来自于其他两组正常妊娠小鼠的Treg也表现出相似的增殖抑制效应,各组之间没有统计学差异。在Treg的干预后培养体系中细胞因子水平的变化在Treg的干预后,IL-10的水平明显升高,并且这种水平的升高呈Treg剂量依赖性正相关。而IFN-γ的水平明显减少,并且与Treg剂量呈负相关。
     体内实验:在外周血中,流产趋势组CD4+CD25+Foxp3+Treg细胞占CD4+T细胞的比例较未孕组明显增高(6.59% vs 3.55%,P<0.05);正常妊娠组中外周血能检测到更为显著的Treg的升高,不仅与未孕组有差异(8.34% vs 3.55%,P<0.05),与流产趋势组亦有明显差异(8.34% vs 6.59%,P<0.05)。同样,在淋巴结(6.86% vs 4.85;9.62%vs 4.85%, P<0.05; 9.62% vs 6.86%, P<0.05)中也获得相似结果。过继输注后,只有来自正常妊娠组小鼠的Treg的过继输注才能完全阻止流产的发生。而来自未孕组和无关对照组的Treg不能逆转流产的发生。Treg过继输注不能改变体内Th1型细胞因子水平,但是能显著提升IL-10水平。
     结论:无论哪种来源的Treg都具有免疫调节的潜能。在体外均能检测到对Treg增殖的抑制效应,但并没有表现出抗原特异性的更为显著抑制功能;Treg在体外可能是通过分泌高浓度的IL-10发挥抑制效应。但在体内正常的妊娠过程中产生的Treg在保护胚胎免受母体攻击方面是具有抗原特异性的,只有之前接触胎儿父系抗原的具有抗原特异性的Treg才能在体内发挥对胎儿的保护作用。
     第三部分妊娠水平的雌、孕激素在H-Y皮肤移植中的作用及其机制研究
     目的探讨妊娠浓度雌激素(E2)、孕激素(P4)对小鼠H-Y皮肤移植的影响及其机制。
     方法建立小鼠去势模型,每日分别注射E2、P4及E2+P4联合注射,14d后受鼠行H-Y皮肤移植并继续给药。检测移植前及移植后第3天外周血中CD4+CD25+Foxp3+调节性T细胞(Treg)变化及外周血细胞因子水平;观察H-Y皮肤移植物的存活。
     结果E2可提高外周血Treg的比例(6.13±1.32% vs 3.26±0.68%,P<0.05),移植后Treg的比例进一步升高(11.78±2.32% vs 3.33±0.57%,P<0.05);P4对Treg没有显著影响(4.01±0.79% vs 3.26±0.68%,P>0.05),而移植前后E2+P4联合对Treg的影响与单独应用E2结果相似(6.13±1.32% vs 7.25±1.71%,P>0.05;12.35±3.04% vs 11.78±2.32%,P>0.05)。移植后P4对Treg仍无明显影响,而E2+P4联合亦不能进一步提高Treg的比例。细胞因子检测显示,E2、P4均能减少促炎因子分泌,并提高抗炎因子分泌(P<0.05)。E2、P4均能有效延长H-Y皮肤移植物存活((44.0±1.2天,35.5±0.8天,23.0±1.6天,P<0.05,P<0.05),且两者联用具有协同效应(MST=56.5±3.2天)。结论P4可通过诱导细胞因子免疫偏移促进H-Y皮肤移植物的存活。而E2除诱导细胞因子免疫偏移外,还通过提高Treg水平而延长移植物的存活。
PartⅠEffects and Mechanisms of Pregnancy Estrogen and Progesterone on the Immune Reaction in Mice
     Objective To investigate whether the estrogen (E2), progesterone(P4) within the physiological concentration range of pregnancy could affect the expansion of CD4+CD25+ Foxp3+regulatory T cell. Methods In vitro, we first isolated the CD4+CD25+ regulatory T cells by magenetic columns, and then labeled the regulatory T cells with carboxyfluorescein diacetate succinimidyl ester (CFSE). We treated the labeled regulatory T cells with estrogen (E2) and anti-CD3 antibody and anti-CD28 antibody. Then we used the flow cytometry detect the changes of fluorescence, and analyse the proliferation index of the labeled cells. Furthermore, we detected the function of expanded regulatory T cells. Groups were divided as followed, Group A, labeled E2-untreated Treg with PBS; Group B, E2-treated Tregs with PBS; Group C, labeled E2-untreated Treg with CD3/CD28; Group D, labeled E2-treated Treg with CD3/.CD28. While in the experiments of function of Treg, we use CD4+CD25-Naive T cells as the effective cells (Tef). Group A, coculatured the Tef with PBS; Group B, coculatured the Tef with CD3/CD28; Group C, added the E2-untreated Treg to the culture with the proportion of Tef and Treg 1:1; Group D, insteaded of E2-untreated Treg with E2-treated Treg in the Group C. In vivo, we administrated pregnancy E2/P4 or saline in the ovariectomized and orchiectomized mice. After reconstituting the sex hormone to the physiological concentration range of pregnancy for two weeks, the mice were sacrificed, and lymphocytes were isolated from thymus, spleen, iliac lymph nodes and peripheral blood. The CD4+CD25+ Foxp3+ regulate T cells were detected by flow cytometry and Immunohistochemistry. Results our results revealed that E2 could significantly promote the proliferation index of labeled Treg with the costimulate signals in vitro. E2 alone could not expand the proportion of Tregs, which was not matched with the result in vivo. This phenomenon may involve in broken down of anergy of Treg by E2, and then the costimulate signals promoted the proliferation of the Tregs. In the function experiments E2 could also enhance the inhibitory effect of the effective cells. In vivo, the groups received E2 alone showed a notable increase in the proportion of the Tregs that marked CD4+CD25+ Foxp3+ in spleen, iliac lymph nodes and blood. CD4+CD25+ Foxp3+ cells constituted 10.5% of all CD4+ cells in spleen, 7.63% in iliac lymph nodes and 6.13% in blood, While the proportion in the thymus can't be enhanced compared to the vehicle groups. The P4 administration could improve the proportion of Tregs lightly, but without statistically significant. During the group combine with E2 and P4, each tissue samples showed a same statistically significant trend in the increase of Tregs with E2 alone. Furthermore, no difference was found in the change of Tregs between the ovariectomized and orchiectomized mice. The similar results could be found in immunohistochemistry. Conclusions E2 could promote the proliferation of regulatory T cells with the TCR signals, not only expanded the amout, but also enhancede the function. In vivo, E2 can drive the expansion of the Tregs in the secondary lymphoid organs and peripheral blood, but not P4. Neither of them can improve the proportion of Tregs in thymus. No gender difference could be found in the effect, which may involve in the same distribution of hormone corelative receptors.
     PartⅡPaternal Antigen-Specific regulatory T cells were involved in the protection in maternal-fetal tolerance
     Objective We determined whether the function of T regulatorycells (Tregs) on the effector T cells was specific for paternal antigens. Methods The CBA/J×DBA/2J murine models were used as an immunological spontaneous abortion and provoked spontaneously high abortion rates.The MLC was established as follow. Effector cells from spleen of pregnant CBA/J females in abortion group were incubated with MMC treated DBA/2J males'spleen cells. Cultures were added with Tregs from normal pregnant or nonpregnant or further control (Balb/c female mated C57BL/6) mice (ratios of T effector:Treg cells were 10:1,1:1, and 1:5, respectively). Effector cells were stained with CFDA-SE before coculture,72 hours later; cells were processed and analyzed for their proliferation and cytokines. In vivo, Tregs from the normal pregnant, nonpregnant CBA/J females and further control were injected intravenously on day 0 to 2 of pregnancy to CBA/J females mated with DBA/2J abortion group. The abortion rates of each group were documented. Results A statistically significant increased percentage of Treg in peripheral blood from abortion mice when compared to non-pregnant mice (6.59% vs 3.55%, P<0.01), and also significant increased percentage of Treg in peripheral blood from normal pregnant mice when compared to abortion mice (8.34% vs 6.59%, P<0.01). The similar results could be observed in lymphoid nodes (6.86% vs 4.85; 9.62% vs 4.85%, P<0.05; 9.62% vs 6.86%, P<0.05). Cultureed with Tregs from all groups showed comparable ex vivo Treg number depended cytokine secretion such as up-regulated IL-10 and down-regulated IFN-γ.The defective function and insufficient number of Treg cells were involved in the spontaneous abortion combination of DBA/2J-mated CBA/J mice. We found that functional Treg adoptive transfer in vivo did not prevent the rejection of fetal on the abortion prone mate which was undergoing immunological abortion. Full normal pregnancy could only be achieved after adoptive transfer of Treg from normal pregnant mice, which was specific for paternal antigen. Conclusions All of the Treg cells from normal pregnant and nonpregnant CBA/J mice could inhibit the proliferation from abortion mice in vitro whereas in vivo prevention of fetal rejection could only be achieved after adoptive transfer of Treg cells from normal pregnant mice. Our data suggest that pregnancy-induced Treg cells protect the fetal from being rejected in a paternal antigen specific way.
     Part III Pregnancy Levels of Estrogen and Progesterone enhance regulatory responses to H-Y mismatched skin graft in murine model
     Objective To investigate the effects of estrogen (E2) and progesterone (P4) alone or combined with each other to H-Y skin graft and the potential mechanism. Methods The female C57BL/6 mice were ovariectomized and divided into four groups (n=15 in each). The mice were treated consecutively for 14d with subcutaneous injection of saline, E2 and P4 alone and in combination respectively. Before and after H-Y skin grafting, half of each group was sacrificed, and the CD4+CD25+Foxp3+regulatory T cells of peripheral blood and the serum cytokines were detected by flow cytometry and ELISA, respectively. The skin grafts survivals of the other half were observed. Results The administration of sex hormone regardless of E2 and P4 alone or in combination, significantly decreased production of pro-inflammatory cytokines (IFN-y and TNF-a), but increased production of anti-inflammatory cytokines (IL-10 and TGF-β). (P<0.05) E2 alone could significantly augment the proportion of regulatory T cells. In the presence of H-Y antigen, this effect was further enhanced. (P<0.05) By contrast, P4 had no effect on the expression of Foxp3, regardless of the presence of H-Y antigen or not. (P>0.05) The skin grafts survivals were significantly prolonged in the different experimental groups compared to vehicle control group.(P<0.05) Conclusions Pregnancy Levels of E2 and P4 suppresses the inflammatory response and enhances the regulatory response to exogenous antigen, through influencing the levels of cytokines and/or the proportion of regulatory T cells. It may contribute to induce the transplant tolerance.
引文
[1]Sasaki Y, Sakai M, Miyazaki S, et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod,2004,10(5):347-353.
    [2]Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol,2004,5(3):266-271.
    [3]Polanczyk MJ, Carson BD, Subramanian S, et al. Cutting edge:estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immunol,2004, 173(4):2227-2230.
    [4]Polanczyk MJ, Hopke C, Huan J, et al. Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treatedmice. J Neuroimmunol,2005,170(1): 85-92.
    [5]Zhao JX, Zeng YY, Liu Y. Fetal alloantigen is responsible for the expansion of the CD4(+)CD25(+) regulatory T cell pool during pregnancy. J Reprod Immunol,2007, 75(2):71-81
    [6]Arruvito L, Sanz M, Banham AH, et al. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle:Implications for human reproduction. J Immunol,2007,178(4):2572-2578.
    [7]Sakaguchi S, Ono M, Setoguchi R, et al. Nomura T:Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev, 2006,212:8-27.
    [8]Chan, C.C., Reed, G.F., Kim, Y, et al. A correlation of pregnancy term, disease activity, serum female hormones and cytokines in uveitis. Br. J. Ophthalmol,2004,88(12): 1506-1509.
    [9]Mjosberg J, Svensson J, Johansson E, et al. Systemic reduction of functionally suppressive CD4dimCD25highFoxp3+ Tregs in human second trimester pregnancy is induced by progesterone and 17beta-estradiol. J Immunol,2009,183(1):759-769.
    [10]Wang C, Dehghani B, Li Y, et al. Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology,2009,126(3):329-35.
    [11]Garay L, Deniselle MC, Meyer M, et al. Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis. Brain Res,2009,1283:177-85.
    [12]Bebo BF Jr, Fyfe-Johnson A, Adlard K, et al. Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol,2001,166(3):2080-2089.
    [13]Majewski AC, Hansen PJ. Progesterone inhibits rejection of xenogeneic transplants in the sheep uterus. Horm Res,2002,58(3):128-135.
    [14]Walter LM, Rogers PA, Girling JE. The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice. Reproduction,2005,129(6): 765-77.
    [15]Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol,2003, 38(1):13-22.
    [16]Kuang H, Peng H, Xu H, et al. Hormonal regulation of uterine natural killer cells in mouse preimplantation uterus. J Mol Histol,2010,41(1):1-7.
    [17]Robertson SA, Guerin LR, Moldenhauer LM, et al. Activating T regulatory cells for tolerance in early pregnancy-the contribution of seminal fluid. J Reprod Immunol, 2009,83(1-2):109-116.
    [18]Darrasse-Jeze G, Klatzmann D, Charlotte F. CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol Lett,2006,102(1):106-109.
    [19]Tai P, Wang J, Jin H, et al Induction of regulatory T cells by physiological level estrogen. J Cell Physiol,2008,214(2):456-464.
    [20]Choe YS, et al. Expression of galectin-1 mRNA in the mouse uterus is under the control of ovarian steroids during blastocyst implantation. Mol Reprod,1997,48: 261-266.
    [21]Butts CL, Bowers E, Horn JC, et al. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gend Med,2008,5(4):434-447.
    [22]汪理,林星光,昌盛。妊娠浓度的雌激素对诱导CD4+CD25-naiveT细胞转化为CD4+CD25+Treg细胞的影响。免疫学杂志,2009,25(1):61-63.
    [23]Redline RW, Lu CY. Localization of fetal major histocompatibility complex antigens and maternal leukocytes in murine placenta. Implications for maternal-fetal immunological relationship. Lab Invest,1989,61(1):27-36.
    [24]Jaffe L, Robertson EJ, Bikoff EK. Distinct patterns of expression of MHC class I and beta 2-microglobulin transcripts at early stages of mouse development. J Immunol, 1991,147(8):2740-2749.
    [25]Gavin MA, Clarke SR, Negrou E, et al. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat Immunol,2002; 3(1):33-41.
    [26]Walker LS. CD4+ CD25+ Treg:divide and rule. Immunology,2004; 111(2):129-137.
    [27]Wegmann TG, Lin H, Guilbert L, et al. Bidirectional cytokine inter-actions in the maternal-fetal relationship:is successful pregnancy a Th2 phenomenon? Immunol Today,1993; 14:353
    [28]Liang J, Sun L, Wang Q, et al. Progesterone regulates mouse dendritic cells differentiation and maturation. Int Immunopharmacol,2006,6(5):830-838.
    [29]Polgar B, Nag E, Miko E, et al. Urinary progesterone-induced blocking factor concentration is related to pregnancy outcome. Biol Reprod 2004,71(5):1699-1705.
    [1]Medawar P B. Some immunological and endocrinological problems raised by evolution of viviparity in vertebrates. Symp Soc Exp Biol,1953,7,320-328.
    [2]Cai CC, Rathod H, Chen ZK. Pregnancy site-specific tolerance to allogeneic fetus. Transplant Proc,2000,32:2496-2497.
    [3]Munn D., Zhou M., Attwood J, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science,1998,281:1191-1193.
    [4]Rouas-Freiss N, Goncalves RM., Menier, C, et al. Direct evidence to support the role of HLA-G in protecting the fetus frommaternal uterine natural killer cytolysis. Proc Natl Acad Sci,1997,94:11520-11525
    [5]Makriagiannis A, Zoumakis E, Kalantaridou C, et al. Corticotropin-releasing hormone promotes blastocytes implantation and early maternal tolerance. Nat. Immunol,2001, 18:367-391.
    [6]Tafuri A, Alferink J, Moller P, et al. T cell awareness of paternal alloantigens during pregnancy. Science,1995,270:630-633.
    [7]Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol,2003,38: 13-22.
    [8]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunological self-tolerance maintained by activated T-cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance causes various auto-immune diseases. J Immunol,1995, 155:1151-1164.
    [9]Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol,2004,5:266-271.
    [10]Darrasse-Jeze G, Klatzmann D, Charlotte F, et al. CD4+ CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol Lett,2006,102(1): 106-109.
    [11]Zenclussen AC, Gerlof K, Zenclussen ML, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion:adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol,2005,166(3):811-822.
    [12]Chaouat G, Clark DA, Wegmann TG. Genetic aspects of the CBA×DBA/2 and B10× B10:A model of murine abortion and its prevention by lymphocytes immunisation. RCOG Press,1988,89-102.
    [13]Somerset DA, Zheng Y, Kilby MD, et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology,2004,112(1):38-43.
    [14]Arruvito L, Sanz M, Banham AH, et al. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle:implications for human reproduction. J Immunol,2007,178(4):2572-2578.
    [15]Schumacher A, Wafula PO, Bertoja AZ, et al. Mechanisms of action of regulatory T cells specific for paternal antigens during pregnancy. Obstet Gynecol,2007,110(5): 1137-1145.
    [16]Billington WD. The normal fetomaternal immune relationship. Baillieres Clin Obstet Gynaecol,1992,6:417-438.
    [17]Mold JE, Michae lsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science,2008,322: 1562-1565.
    [18]Wegmann TG, Lin H, Guilbert L, et al. Bidirectional cytokine inter-actions in the maternal-fetal relationship:is successful pregnancy a Th2phenomenon? Immunol Today,1993,14:353.
    [19]Raghupathy R. Thl-type immunity is incompatible with successful pregnancy. Immunol Today,1997,18(10):478-82.
    [20]Krishnan L. T helper 1 response against Leishmania major in pregnant C57BL/6 mice increases implantation failure and fetal resorptions. Correlation with increased IFN-gamma and TNF and reduced IL-10 production. J Immunol,1996,156(2): 653-662.
    [21]Kheshtchin N, Gharagozloo M, Andalib A, et al. The Expression of Th1-and Th2-Related Chemokine Receptors in Women with Recurrent Miscarriage:the Impact of Lymphocyte Immunotherapy. Am J Reprod Immunol,2010.
    [22]Piccinni MP. T cell tolerance towards the fetal allograft. J Reprod Immunol,2010, 85(1):71-75.
    [23]Chaouat G, Assal Meliani A., Martal J. IL-10 prevents naturally occurring fetal loss in the CBAxDBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-γ. J. Immunol, 1995,154,4261-4268.
    [1]Kammerer U, Kruse A, Barrientos G, et al. Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation. Immunol Invest, 2008,37(5):499-533.
    [2]Pap E, Pallinger E, Falus A, et al. T lymphocytes are targets for platelet-and trophoblast-derived microvesicles during pregnancy. Placenta,2008,29(9):826-832.
    [3]Seavey MM, Mosmann TR. Immunoregulation of fetal and anti-paternal immune responses. Immunol Res,2008,40(2):97-113.
    [4]Zenclussen ML, Thuere C, Ahmad N, et al. The persistence of paternal antigens in the maternal body is involved in regulatory T-cell expansion and fetal-maternal tolerance in murine pregnancy. Am J Reprod Immuno,2010,163:200-208.
    [5]Bebo BF Jr, Fyfe-Johnson A, Adlard K, et al. Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol,2001,166(3):2080-2089.
    [6]Majewski AC, Hansen PJ. Progesterone inhibits rejection of xenogeneic transplants in the sheep uterus. Horm Res,2002,58(3):128-135.
    [7]Polgar B, Nag E, et al.Urinary progesterone-induced blocking factor concentration is related to pregnancy outcome. Biol Reprod,2004,71(5):1699-1705.
    [8]Thuere C, Zenclussen ML, Schumacher A, et al. Kinetics of regulatory T cells during murine pregnancy. Am J Reprod Immunol,2007,58:514-523.
    [9]Wang C, Dehghani B, Li Y, et al. Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology, 2009,126:329-335.
    [10]Sireci G, Barera A, Macaluso P, et al. A continuous infusion of a minor histocompatibility antigen-immunodominant peptide induces a delay of male skin graft rejection. Immunobiology,2009,214(8):703-711.
    [11]Ross H, Pflugfelder P, Haddad H, et al. Reduction of cyclosporine following the introduction of everolimus in maintenance heart transplant recipients:a pilot study. Transpl Int,2010,23(1):31-37.
    [12]Ponton C, Vizcaino L, Tome S, et al. Improvement of renal function after conversion to mycophenolate mofetil combined with low-level calcineurin inhibitor in liver transplant recipients with chronic renal dysfunction. Transplant Proc,2010,42(2): 656-659.
    [13]Aluvihare, V, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol,2004,5(3):266-271.
    [14]Darrasse-Jeze G, Klatzmann D, Charlotte F. CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol. Lett,2006,102(1):106-109.
    [15]Zelenika D, Adams E, Mellor A, et al. Rejection of H-Y disparate skin grafts by monospecific CD4+ Th1 and Th2 cells:no requirement for CD8+ T cells or B cells. J Immunol,1998,161(4):1868-1874.
    [16]Roopenian DC, Davis AP, Christianson GJ, et al. The functional basis of minor histocompatibility loci. J Immunol,1993,151(9):4595-4605.
    [17]Wang K, Busker-Mannie AE, Hoeft J, et al. Prolonged Hyadisparate skin graft survival in ethanol-consuming mice:correlation with impaired delayed hypersensitivity. Alcohol Clin Exp Res,2001,25(10),1542-1548.
    [18]Simpson E, Scott D, James E, et al. Minor H antigens:Genes and peptides. Transpl Immunol,2002,10(2-3):115-123.
    [19]Zhang L, Ma J, Takeuchi M, et al. Suppression of experimental autoimmune uveoretinitis by inducing differentiation of regulatory T cells via activation of aryl hydrocarbon receptor. Invest Ophthalmol Vis Sci,2010,51(4):2109-2117.
    [1]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunological self-tolerance maintained by activated T-cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance causes various auto-immune diseases. J Immunol 1995,155(3):1151-1164.
    [2]Kingsley CL, Karim M, Bushell AR, et al. CD25+CD4+ regulatory T cells prevent graft rejection:CTLA4-and IL-10-dependent immunoregulation of alloresponses. J Immunol,2002,168(3):1080-1086.
    [3]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science,2003,299(5609):1057-1061.
    [4]Fontenot JD, Rudensky AY. A well adapted regulatory contrivance:regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol, 2005,6(4):331-337.
    [5]Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol,2003,4(4):330-336.
    [6]Sakaguchi S. Naturally Arising CD4+ Regulatory T Cells for Immunologic Self-Tolerance and Negative Control of Immune Responses. Annu Rev Immunol, 2004,22:531-562.
    [7]Apostolou I, Sarukhan A, Klein L, et al. Origin of regulatory T cells with known specificity for antigen. Nat Immunol,2002,3(8):756-763.
    [8]Reichardt P, Dornbach B, Rong S, et al. Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood,2007,110(5):1519-1529.
    [9]Somerset DA, Zheng Y, Kilby MD, et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+CD4+ regulatory T-cell subset. Immunology,2004,112(1):38-43.
    [10]Mjosberg J, Svensson J, Johansson E, et al:Systemic reduction of functionally suppressive CD4dimCD25highFoxp3+Tregs in human second trimester pregnancy is induced by progesterone and 17beta-estradiol. J Immunol,2009,183(1): 759-769.
    [11]Mjosberg J, Berg G, Ernerudh J, et al. CD4+ CD25+ regulatory T cells in human pregnancy:development of a Treg-MLC-ELISPOT suppression assay and indications of paternal specific Tregs. Immunology,2007,120 (4):456-466.
    [12]Tilburgs T, Roelen DL, van der Mast BJ, et al. Evidence for a selective migration of fetus-specific CD4+CD25 bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol,2008,180(8):5737-5745.
    [13]Jasper MJ, Tremellen KP, Robertson SA. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol Hum Reprod,2006,12(5):301-308.
    [14]Sasaki Y, Sakai M, Miyazaki S, et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod,2004,10(5):347-353.
    [15]Arruvito L, Billordo A, Capucchio M, et al. IL-6 trans-signaling and the frequency of CD4+FOXP3+ cells in women with reproductive failure. J Reprod Immunol, 2009,82(2):158-165.
    [16]Mjosberg J, Berg G, Jenmalm MC, et al. FOXP3+ Regulatory T Cells and T Helper 1, T Helper 2, and T Helper 17 Cells in Human Early Pregnancy Decidua. Biol Reprod,2010,82(4):698-705.
    [17]Sasaki Y, Darmochwal-Kolarz D, Suzuki D, et al. Proportion of peripheral blood and decidual CD4(+) CD25 (bright) regulatory T cells in pre-eclampsia. Clin Exp Immunol,2007,149(1):139-145.
    [18]Paeschke S, Chen F, Horn N, et al. Preeclampsia is not associated with changes in the levels of regulatory T cells in peripheral blood. Am J Reprod Immunol,2005, 54(6):384-389.
    [19]Santner-Nanan B, Peek MJ, Khanam R, et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol,2009,183(11):7023-7030.
    [20]Prins JR, Boelens HM, Heimweg J, et al. Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertens Pregnancy,2009, 28(3):300-311.
    [21]Toldi G, Svec P, Va'sa'rhelyi B, et al. Decreased number of FoxP3+ regulatory T cells in preeclampsia. Acta Obstet Gynecol Scand,2008,87:1229-1233.
    [22]Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol,2004,5(3):266-271.
    [23]Zenclussen AC, Gerlof K, Zenclussen ML, et al. Abnormal T cell reactivity against paternal antigens in spontaneous abortion:adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol,2005,166(3):811-822.
    [24]Thuere C, Zenclussen ML, Schumacher A, et al. Kinetics of regulatory T cells during murine pregnancy. Am J Reprod Immunol,2007,58(6):514-523.
    [25]Tai P, Wang J, Jin H, et al. Induction of regulatory T cells by physiological level estrogen. J Cell Physiol,2008,214(2):456-464.
    [26]Zhao JX, Zeng YY, Liu Y, et al. Falloantigen is responsible for the expansion of the CD4(+)CD25(+) regulatory T cell pool during pregnancy. J Reprod Immunol,2007, 75(2):71-81.
    [27]Zenclussen ML, Thuere C, Ahmad N, et al. The persistence of paternal antigens in the maternal body is involved in regulatory T cell expansion and fetal-maternal tolerance in murine pregnancy. Am J Reprod Immunol,2010,63(3):200-208.
    [28]Robertson SA, Guerin LR, Bromfield JJ, et al. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod,2009,80(5):1036-1045.
    [29]Kallikourdis M, Betz AG. Periodic accumulation of regulatory T cells in the uterus: preparation for the implantation of a semi-allogeneic fetus? PLoS ONE,2007,2(4): 382.
    [30]Arruvito L, Sanz M, Banham AH, et al. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle:implications for human reproduction. J Immunol,2007,178(4):2572-2578.
    [31]Schumacher A, Wafula PO, Bertoja AZ, et al. Mechanisms of action of regulatory T cells specific for paternal antigens during pregnancy. Obstet Gynecol,2007,110(5): 1137-1145.
    [32]Moldenhauer LM, Diener KR, Thring DM, et al. Cross-presentation of male seminal fluid antigens elicits T cell activation to initiate the female immune response to pregnancy. J Immunol,2009,182(12):8080-8093.
    [33]Kirby DR, Billington WD, Bradbury S, et al. Antigen Barrier of the Mouse Placenta. Nature,1964,204:548-559.
    [34]Billington WD. The normal fetomaternal immune relationship. Baillieres Clin Obstet Gynaecol,1992,6(3):417-438.
    [35]Andrassy J, Kusaka S, Jankowska-Gan E, et al. Tolerance to noninherited maternal MHC antigens in mice. J Immunol,2003,171(10):5554-5561.
    [36]Yan Z, Lambert NC, Guthrie KA, et al. Male microchimerism in women without sons:quantitative assessment and correlation with pregnancy history. Am J Med, 2005,118(8):899-906.
    [37]Tan XW, Liao H, Sun L, et al. Fetal microchimerism in the maternal mouse brain:a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells,2005,23(10):1443-1452.
    [38]Khosrotehrani K, Johnson KL, Gue'gan S, et al. Natural history of fetal cell microchimerism during and following murine pregnancy. J Reprod Immunol,2005, 66(1):1-12.
    [39]Dutta P, Molitor-Dart M, Bobadilla JL, et al. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood,2009,114(17): 3578-3587.
    [40]Redline RW, Lu CY. Localization of fetal major histocompatibility complex antigens and maternal leukocytes in murine placenta. Implications for maternal-fetal immunological relationship. Lab Invest,1989,61(1):27-36.
    [41]Jaffe L, Robertson EJ, Bikoff EK. Distinct patterns of expression of MHC class Ⅰ and beta 2-microglobulin transcripts at early stages of mouse development. J Immunol,1991(8),147:2740-2749.
    [42]Van Kampen CA, Versteeg-van der Voort Maarschalk MF, Langerak J, et al. Pregnancy can induce long-persisting primed CTLs specific for inherited paternal HLA antigens. Hum Immunol,2001,62(3):201-207.
    [43]Verdijk RM, Kloosterman A, Pool J, et al. Pregnancy induces minor histocompatibility antigen-specific cytotoxic T cells:implications for stem cell transplantation and immunotherapy. Blood,2004,103(5):1961-1964.
    [44]Tafuri A, Alferink J, Mo" ller P, et al. T cell awareness of paternal alloantigens during pregnancy. Science,1995,270(5236):630-633.
    [45]Darrasse-Jeze G, Klatzmann D, Charlotte F, et al. CD4+CD25+ regulatory/ suppressor T cells prevent allogeneic fetus rejection in mice. Immunol Lett,2006, 102(1):106-109.
    [46]Mold JE, Michae¨lsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science,2008, 322(5907):1562-1565.
    [47]Medawar PB. Some immunological and endocrinological problems raised by evolution of viviparity in vertebrates. Symp Soc Exp Biol,1953,7:320-328.
    [48]Heikkinen J, Mottonen M, Alanen A, et al. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol,2004,136(2):373-378.
    [49]Shevach EM, DiPaolo RA, Andersson J, et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev,2006,212:60-73.
    [50]Seddon B, Mason D. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J Exp Med,1999,189(5):877-882.
    [51]Muller-Hermelink HK, Steinmann G, Stein H. Structural and functional alterations of the aging human thymus. Adv Exp Med Biol,1982,149:303-312.
    [52]Kendall MD, Johnson HR, Singh J. The weight of the human thymus gland at necropsy. J Anat,1980,131(pt3):483-497.
    [53]Steinmann GG, Klaus B, Mu" ller-Hermelink HK. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol,1985,22(5):563-575.
    [54]Appay V, Sauce D, Prelog M. The role of the thymus in immunosenescence:lessons from the study of thymectomized individuals. Aging (Albany NY),2010,2(2): 78-81.
    [55]Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol,1997,158(7):3037-3045.
    [56]Nishioka T, Shimizu J, Iida R, et al. CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J Immunol,2006,176(11):6586-6593.
    [57]Chambers SP, Clarke AG. Measurement of thymus weight, lumbar node weight and progesterone levels in syngeneically pregnant, allogeneically pregnant, and pseudopregnant mice. J Reprod Fertil,1979,55(2):309-315.
    [58]Shinomiya N, Tsuru S, Tsugita M, et al. Thymic depletion in pregnancy:kinetics of thymocytes and immunologic capacities of the hosts. J Clin Lab Immunol,1991, 34(1):11-22.
    [59]Persike EC. Involution of the thymus during pregnancy in young mice. Proc Soc Exp Biol Med,1940,45:315-317.
    [60]Kendall MD, Clarke AG. The thymus in the mouse changes its activity during pregnancy:a study of the microenvironment. J Anat,2000,197(3):393-411.
    [61]Clarke AG, Gil AL, Kendall MD. The effects of pregnancy on the mouse thymic epithelium. Cell Tissue Res,1994,275(2):309-318.
    [62]Maroni ES, de Sousa MA. The lymphoid organs during pregnancy in the mouse. A comparison between a syngeneic and an allogeneic mating. Clin Exp Immunol, 1973,13(1):107-124.
    [63]Ito T, Hoshino T. Studies of the influences of pregnancy and lactation on the thymus in themouse. Z Zellforsch Mikrosk Anat,1962,57:667-678.
    [64]Tibbetts TA, DeMayo F, Rich S, et al. Progesterone receptors in the thymus are required for thymic involution during pregnancy and for normal fertility. Proc Natl Acad Sci USA,1999,96:12021-12026.
    [65]Clarke AG. Pregnancy-induced involution of the thymus can be prevented by immunizing with paternal skin grafts:a strain-dependent effect. Clin Exp Immunol, 1979,35(3):421-424.
    [66]Zoller AL, Schnell FJ, Kersh GJ. Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology,2007, 121(2):207-215.
    [67]Richters CD, van Gelderop E, du Pont JS, et al. Migration of dendritic cells to the draining lymph node after allogeneic or congeneic rat skin transplantation.Transplantation,1999,67(6):828-832.
    [68]Beer AE, Billingham RE. Immunobiology of mammalian reproduction. Adv Immunol,1971,14:1-84.
    [69]Bulmer JN, Johnson PM. The T-lymphocyte population in first trimester human decidua does not express the interleukin-2 receptor. Immunology,1986,58(4): 685-687.
    [70]Athanassakis I, Iconomidou B. Cytokine production in the serum and spleen of mice from day 6 to 14 of gestation:cytokines/placenta/spleen/serum. Dev Immunol, 1996,4(4):247-255.
    [71]Zhu XY, Zhou YH, Wang MY, et al. Blockade of CD86 signaling facilitates a Th2 bias at the maternal-fetal interface and expands peripheral CD4+CD25+ regulatory T cells to rescue abortion-prone fetuses. Biol Reprod,2005,72(2):338-345.
    [72]Zenclussen AC, Gerlof K, Zenclussen ML, et al. Regulatory T cells induce a privileged tolerant microenvironment at the fetal-maternal interface. Eur J Immunol, 2006,36(1):82-94.
    [73]Lee I, Wang L, Wells AD, et al. Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J Exp Med,2005, 201(7):1037-1044.
    [74]Jones RL, Hannan NJ, Kaitu'u TJ, et al. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab,2004,89(12):6155-6167.
    [75]Watanabe M, Shimoya K, Zhang Q, et al. The expression of fractalkine in the endometrium during the menstrual cycle. Int J Gynaecol Obstet,2006,92(3): 242-247.
    [76]Red-Horse K, Drake PM, Gunn MD, et al. Chemokine ligand and receptor expression in the pregnant uterus:reciprocal patterns in complementary cell subsets suggest functional roles. Am J Pathol,2001,159(6):2199-2213.
    [77]Akiyama M, Okabe H, Takakura K, et al. Expression of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in human endometrium throughout the menstrual cycle. Br J Obstet Gynaecol,1999,106(7):725-730.
    [78]Daikoku N, Kitaya K, Nakayama T, et al. Expression of macrophage inflammatory protein-3beta in human endometrium throughout the menstrual cycle. Fertil Steril, 2004, Suppl 1:876-881.
    [79]Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity,2005,22(3): 329-341.
    [80]Bystry RS, Aluvihare V, Welch KA, et al. B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol,2001,2(12):1126-1132.
    [81]Schaniel C, Pardali E, Sallusto F, et al. Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells. J Exp Med,1998,188(3):451-463.
    [82]Tang HL, Cyster JG. Chemokine Up-regulation and activated T cell attraction by maturing dendritic cells. Science,1999,284(5415):819-822.
    [83]Camargo CA Jr, Madden JF, Gao W, et al. Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology,1997,26(6):1513-1520.
    [84]Thuere C, Zenclussen ML, Schumacher A, et al. Kinetics of regulatory T cells during murine pregnancy. Am J Reprod Immunol,2007,58(6):514-23.
    [85]Iellem A, Mariani M, Lang R, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med,2001,194(6):847-853.
    [86]Colantonio L, Iellem A, Sinigaglia F, et al. Skin-homing CLA+ T cells and regulatory CD25+ T cells represent major subsets of human peripheral blood memory T cells migrating in response to CCL1/I-309. Eur J Immunol,2002, 32(12):3506-3514.
    [87]Ochando JC, Yopp AC, Yang Y, et al. Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+ regulatory T cells. J Immunol,2005,174(11):6993-7005.
    [88]Szanya V, Ermann J, Taylor C, et al. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol,2002,169(5):2461-2465.
    [89]Taylor PA, Panoskaltsis-Mortari A, Swedin JM, et al. L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood,2004,104(12):3804-3812.
    [90]Bertoja AZ, Zenclussen ML, Casalis PA, et al. Anti-P-and E-selectin therapy prevents abortion in the CBA/J x DBA/2J combination by blocking the migration of Thl lymphocytes into the foetal-maternal interface. Cell Immunol,2005,238(2): 97-102.
    [91]Schumacher A, Brachwitz N, Sohr S, et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J Immunol,2009,182(9):5488-5497.
    [92]Parrott AM, Mathews MB. A snaR Genes. Recent Descendants of Alu Involved in the Evolution of Chorionic Gonadotropins. Cold Spring Harb Symp Quant Biol, 2009.
    [93]Zachar V, Fink T, Koppelhus U, et al. Role of placental cytokines in transcriptional modulation of HIV type 1 in the isolated villous trophoblast. AIDS Res Hum Retroviruses,2002,18(12):839-47.
    [94]Zenclussen ML, Anegon I, Bertoja AZ, et al. Over-expression of heme oxygenase-1 by adenoviral gene transfer improves pregnancy outcome in a murine model of abortion. J Reprod Immunol,2006,69(1):35-52.
    [95]Wafula PO, Teles A, Schumacher A, et al. PD-1 but not CTLA-4 blockage abrogates the protective effect of regulatory T cells in a pregnancy murine model. Am J Reprod Immunol,2009,62(5):283-292.
    [96]Read S, Greenwald R, Izcue A, et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol,2006,177(7): 4376-4383.
    [97]Fallarino F, Grohmann·U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol,2003,4(12):1206-1212.
    [98]Miwa N, Hayakawa S, Miyazaki S, et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod,2005,11(12):865-870.
    [99]Munn DH, Shafizadeh E, Attwood JT, et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med,1999,189(9):1363-1372.
    [100]Munn DH, Sharma MD, Lee JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science,2002,297(5588): 1867-1870.
    [101]Guleria I, Khosroshahi A, Ansari MJ, et al. A critical'role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med,2005,202(2):231-237.
    [102]Yang Y, Huang CT, Huang X, et al. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol,2004,5(5): 508-515.
    [103]Garin MI, Chu CC, Golshayan D, et al. Galectin-1:a key effector of regulation mediated by CD4+CD25+ T cells. Blood,2007,109(5):2058-2065.
    [104]Matarrese P, Tinari A, Mormone E, et al. Galectin-1 sensitizes resting human T lymphocytes to Fas-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J Biol Chem,2005,280(8):6969-6985.
    [105]Rabinovich GA, Ariel A, Hershkoviz R, et al. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology,1999,97(1):100-106.
    [106]Dias-Baruffi M, Zhu H, Cho M, et al. Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J Biol Chem,2003,278(42):41282-41293.
    [107]Rabinovich GA, Iglesias MM, Modesti NM, et al. Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells:biochemical and functional characterization. J Immunol,1998,160(10):4831-4840.
    [108]Toscano MA, Commodaro AG, Ilarregui JM, et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2-and T regulatory-mediated anti-inflammatory responses. J Immunol,2006,176(10): 6323-6332.
    [109]Ilarregui JM, Croci DO, Bianco GA, et al. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol,2009,10(9):981-991.
    [110]Oderup C, Cederbom L, Makowska A, et al. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+CD25+ regulatory T-cell-mediated suppression. Immunology,2006, 118(2):240-249.
    [111]Wakkach A, Fournier N, Brun V, et al. Characterization of dendritic cells that induce tolerance and T regulatory cell differentiation in vivo. Immunity,2003,18(5): 605-617.
    [112]Lim HW, Hillsamer P, Banham AH, et al. Cutting edge:direct suppression of B cells by CD4+CD25+ regulatory T cells. J Immunol,2005,175(7):4180-4183.
    [113]Gari G, Piconese S, Frossi B, et al. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity,2008,29(5):771-781.
    [114]Tilburgs T, Roelen DL, van der Mast BJ, et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol,2008,180(8):5737-5745.
    [115]Groux H, O'Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature,1997,389(6652):737-742.
    [116]Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev,2001,182:207-214.
    [117]Vigan'o P, Somigliana E, Mangioni S, et al. Expression of interleukin-10 and its receptor is up-regulated in early pregnant versus cycling human endometrium. J Clin Endocrinol Metab,2002,87(12):5730-5736.
    [118]Inagaki N, Stern C, McBain J, et al. Analysis of intra-uterine cytokine concentration and matrix-metalloproteinase activity in women with recurrent failed embryo transfer. Hum Reprod,2003,18(3):608-615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700