用户名: 密码: 验证码:
磁靶向系统中磁流体动态特性和行为控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着磁纳米材料和多功能高分子材料研究的深入,基于纳米磁流体的磁靶向系统因具有高靶向性和可控性而成为一种重要的靶向递送系统,在药物/基因靶向输运、肿瘤治疗、磁分离及微流控等领域引起广泛关注,具有重要的研究价值和应用前景。但由于磁靶向系统涉及到电磁学、流体力学、及纳米技术等多学科交叉研究内容,目前国内外磁靶向技术的整体发展水平仍处于基础研究阶段,特别是在靶向递送机理、靶向行为控制和靶向系统优化等方面亟需开展进一步的研究。
     靶向递送机理方面,本文基于电磁学和流体力学基本原理,建立了磁流体靶向递送过程中的磁场-流场-浓度场多场耦合动力学模型,考虑了磁场作用下磁流体的非线性磁化特性和磁体积力对流体流动行为的影响。在此基础上对外加梯度磁场作用下管道中磁流体浓度分布特征和变化规律进行了数值模拟,并探讨了流速、磁场源结构和磁参数对磁流体动力学行为的影响,进一步加强了对动力学数学模型的理解。
     同时针对磁流体靶向递送过程中的磁团聚现象,本文采用Cluster-moving蒙特卡罗方法研究了不同磁场方向和磁能大小下磁性粒子在均匀磁场下的随机团聚行为,在此基础上提出磁团聚行为降低磁性颗粒在运动过程中所受到的流体粘滞阻力是造成实验中粒子靶向聚集速度加快的可能原因。后基于磁偶极子模型,通过对双/三粒子模型磁作用能和力的分析,定性地揭示了磁性粒子在磁场作用下团聚形成机理。
     靶向行为控制方面,本文从磁场力的数学模型出发,提出通过独立控制磁场强度和梯度参数可实现磁场力大小和方向可调,在此基础上为微流控靶向系统设计了一套由外部均匀场源和内部梯度场源构成的组合磁场源方案,并开展了组合磁场源作用下微管道内磁流体靶向行为的可控性研究。同时基于该磁场源方案设计了一套微混合器系统,研究了该系统作用下电流时变频率、入口速度及磁体积力等参数对微管道中流体混合规律及效率的影响,为磁力式微混合器的优化设计提供了一定的依据和指导。
     靶向系统优化方面,本文基于Comsol和Matlab联合仿真技术对磁场源进行了优化设计。以Maxwell梯度线圈为例分析了其结构参数对磁场梯度和均匀度的影响,指出厚壁线圈体系下传统Maxwell线圈设计思路的不合理性及结构参数优化的必要性。在此基础上提出并建立了基于有限元和自适应混合遗传算法的磁源系统电磁优化模型,实现了厚壁梯度线圈系统和永磁体阵列式均匀场系统高性能优化。
     最后本文针对现有药物筛选体系中药物与受体激活效率低这一难题,本文提出采用磁靶向技术来提高细胞表面受体附近的有效药物浓度,进而有效增强药物与受体的激活效率。在此基础上,分析和设计了一套可在96孔板区域内产生均匀磁场力的磁靶向系统,并初步开展了该系统作用下药物与GPCR激活特性的实验研究。
With the development of magnetic nano-materials and multi-functional polymer materials in recent years, the magnetic targeting system based on nano-magnetic fluid has become an important delivery system for high target and controllable performance, which can be an effective research tool in drug/gene targeting delivery, cancer therapy, magnetic separation and microfluidic chip. However, due to the fact that the magnetic targeting system involves an interdisciplinary research of electromagnetics, fluid mechanics, and nano-technology, the magnetic targeting technology at home and abroad is still under development, especially in the fields of targeting mechanism, targeting behavior control and targeting system optimzation.
     In the respect of the targeting mechanism, the paper has established a coupling mathematical model of magnetic field, flow field, and concentration field for the hydrodynamics of magnetic fluid under magnetic field based on the basic principles of electromagnetism and fluid mechanics, taking into account the non-linearity magnetization performance of the magnetic fluid and the effect of magnetic body force on the fluid flow behavior. On this basis, a numerical simulation is presented to study the variation law of the magnetic fluid in the pipe under gradient magnetic field and the effects of flow velocity, magnetic field source structure and magnetic parameters on the magnetic fluid dynamic behavior, which can be used to further understand the mathmatical model.
     In view of the aggregation phenomenon of magnetic particles under magnetic field, the paper studies the particle aggregation phenomenon by simulating the random movement behavior of magnetic particles under magnetic field with Cluster-moving Monte Carlo method. And the effects of magnetic field direction and magnetic energy on the aggregation morphology are analyzed. On the basis, the paper points out that the possible main reason for the increase of the particle speed in the experiment is that the viscous-fluid drag force acting on the particles is reduced due to the aggregation behavior. Meanwhile, the aggregation mechanism is studied by analyzing the magnetic interaction energy and force in magnetic particle system under magnetic field.
     In the respect of the targeting behavior control, through the mathematical model of the magnetic force, the paper points out that the magnitude and direction of magnetic force can be controlled by independently adjusting magnetic field strength and magnetic field gradient parameters. And a compound magnetic field source system with one uniform magnetic field and one gradient magnetic field is proposed. Based on the field source, the dynamic targeting behavior of magnetic fluid in the microfludic system is studied and an effective micro-mixer system is designed. Then the effects of current frequency, inlet velocity and magnetic body force on the regularity and efficiency of fluid mixing in the microchannel are investigated, which can be used as basis and instruction for the optimum design of magnetic micro-mixer.
     In the respect of optimum design for magnetic targeting system, the paper firstly investigates the influence of coil's parameters on the gradient and uniformity of the target field for the thick-wall Maxwell coils by the co-simulation method of Comsol and Matlab. Then it points out that the traditional design method for thick coils is not reasonable and the optimum design for the coil is very necessary. On this basis, an electromagnetic optimization model of magnetic source system with finite element analysis and adaptive hybrid genetic algorithm is set up. And then the paper realizes the optimizations of thick-wall Maxwell coils and permanent array system well.
     Finally, due to the fact that the drug and receptor activation efficiency is low in existing drug screening system, this paper introduces the magnetic targeting technique to improve the effective drug concentration in the vicinity of the cell surface receptor. And thus it can effectively enhance the efficiency of drug and receptor activation. On this basis, a magnetic targeting system, which can generate the uniform magnetic force in the region of96-well plates force, is designed and used to carry out preliminary experimental study of drug and GPCR activation characteristics.
引文
[1]Q. A. Pankhurst, J. Connolly,S. K. Jones, et al. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics,2003,36 (13): 167-181.
    [2]J. Dobson. Magnetic micro-and nano-particle-based targeting for drug and gene delivery. Nanomedicine,2006,1 (1):31-37.
    [3]M. Arruebo, R. Fernandez-Pacheco, M. R. Ibarra, et al. Magnetic nanoparticles for drug delivery. Nano Today,2007,2 (3):22-32.
    [4]C. Sun, J. S. H. Lee, M. Q. Zhang. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews,2008,60 (11):1252-1265.
    [5]Q. A. Pankhurst, N. K. T. Thanh, S. K. Jones, et al. Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics,2009, 42(22):1-15.
    [6]K. J. Widder, A. E. Senyei, D. G. Scarpeui. Magnetic microsphere:A model systemfor site specific drug delivery in vivo. Proceedings of the Society for Experimental Biology and Medicine.1978,158 (1):141-146.
    [7]J. Dobson. Magnetic nanoparticles for drug delivery. Drug Development Research, 2006,67 (1):55-60.
    [8]R. Jurgons, C. Seliger, A. Hilpert, et al. Drug loaded magnetic nanoparticles for cancer therapy. Journal of Physics:Condensed Matter,2006,18 (38):2893-2902.
    [9]H. Kempe, S. A. Kates, M. Kempe. Nanomedicine's promising therapy:magnetic drug targeting. Expert Review of Medical Devices,2011,8 (3),291-294.
    [10]F. Scherer, M. Anton, U. Schillinger, et al. Magnetofection:enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy,2002,9 (2): 102-109.
    [11]C. Plank, U. Schillinger, F. Scherer, et al. The magnetofection method:Using magnetic force to enhance gene delivery. The journal of Biological Chemistry,2003, 384 (5):737-747.
    [12]C. Plank, M. Anton, C. Rudolph, et al. Enhancint and targeting nucleic acid delivery by magnetic force. Expert Opinion,2003,3 (5):745-758.
    [13]J. Dobson. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Therapy,2006,13 (4):283-287.
    [14]K. Kamimura, T. Suda, G Zhang, et al. Advances in gene delivery systems. Pharmaceutical Medicine,2011,25 (5):293-306.
    [15]J. Hu, G H. Chen, M. C. Lo-Irene. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Research,2005,39 (18):4528-4536.
    [16]李佳,苏宏智,印染废水处理方法及其研究进展.污染防技治术,2009,22(6):57-61.
    [17]马放,王强,朱雪松等.磁技术在污水处理中的应用现状及发展趋势.中国给水排水,2010,26(14):34-37.
    [18]李建军,朱金波,张丽亭等.磁选技术在水污染治理中的应用.水处理技术,2012,38(7):(9-13).
    [19]J. Cummings. Microspheres as a drug delivery system in cancer therapy. Expert Opinion on Theraputic Patent,1998,8 (2):153-171.
    [20]刘菡萏.磁性药物靶向递送的动力学研究[博士学位论文].上海:上海交通大学,2008.
    [21]S. Vaucher, J. Fielden, M. Li, et al. Molecule-based magnetic nanoparticles:synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Letters,2002 (3):225-229.
    [22]D. Kim, N. Lee, M. Park, et al. Synthesis of uniform ferrimagnetic magnetite nanocubes. Journal of the American Chemical Society,2009 (2):454-455.
    [23]X. Wang, J. Zhuang, Q. Peng, et al. A general strategy for nanocrystal synthesis. Nature,2005 (7055):121-124.
    [24]A. G. Roca, R. Costo, A. F. Rebolledo, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D-Applied Physics, 2009,42 (22):224002.
    [25]O. Veiseh, J. W. Gunn, M. Q. Zhang. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews,2010,62 (3):284-304.
    [26]M. M. Lin, H. H. Kim, H. Kim, et al. Surface activation and targeting strategies of superparamagnetic iron oxide nanoparticles in cancer-oriented diagnosis and therapy. Nanomedicine,2010,5 (1):109-133.
    [27]A. Lubbe. Preclinical experiences with magnetic drug targeting:Tolerance and efficacy and clinical experiences with magnetic drug targeting:A phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors-Reply. Cancer Research, 1997,57 (14):3064-3065.
    [28]C. Alexiou, W. Arnold, R. J. Klein, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Research,2000,60 (23):6641-6648.
    [29]C. Alexiou, W. Arnold, P. Hulin, et al. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. Journal of Magnetism and Magnetic Materials,2001,225 (1):187-193.
    [30]C. Alexiou, R. Jurgons, R. Schmid, et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. Journal of Magnetism and Magnetic Materials,2005,293 (1):389-393.
    [31]Y. Yoshida, S. Fukui, S. Fujimoto, et al. Ex vivo investigation of magnetically targeted drug delivery system. Journal of Magnetism and Magnetic Materials,2007, 310 (2):2880-2882.
    [32]H. T. Chen, M. D. Kaminski, A. J. Rosengart.2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications. Medical Engineering & Physics,2008,30:1-8.
    [33]J. H. P. Watson. Theory of capture of particles in magnetic high-intensity filters. IEEE Transactions on Magnetics,1975,11 (5):1597-1601.
    [34]A. D. Grief, G. Richardson. Mathematical modelling of magnetically targeted drug delivery. Journal of Magnetism and Magnetic Materials,2005,293 (1):455-463.
    [35]E. P. Furlani, K. C. Ng. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Physical Review E,2006,73 (6):061919.
    [36]R. Ganguly, A. P. Gaind, S. Sen, et al. Analyzing ferrofluid transport for magnetic drug targeting. Journal of Magnetism and Magnetic Materials,2005,289:331-334.
    [37]J. A. Ritter, A. D. Ebner,K. D. Daniel, et al. Application of high gradient magnetic separation principles to magnetic drug targeting. Journal of Magnetism and Magnetic Materials,2004,280:184-201.
    [38]M. O. Aviles, A. D. Ebner, J. A. Ritter. Ferromagnetic seeding for the magnetic targeting of drugs and radiation in capillary beds. Journal of Magnetism and Magnetic Materials,2007,310:131-144.
    [39]X. L. Li, K. L. Yao, Z. L. Liu. CFD study on the magnetic fluid delivering in the vessel in high-gradient magnetic field. Journal of Magnetism and Magnetic Materials,2008,320 (11):1753-1758.
    [40]M. Brandl, M. Mayer, J. Hartmann, et al. Theoretical analysis of ferromagnetic microparticles in streaming liquid under the influence of external magnetic forces. Journal of Magnetism and Magnetic Materials,2010,322:2454-2464.
    [41]M. R. Habibi, M. Ghasemi. Numerical study of magnetic nanoparticles concentration in biofluid (blood) under influence of high gradient magnetic field. Journal of Magnetism and Magnetic Materials,2011,323:23-38.
    [42]宋涛,徐华,鲍秀琦等.靶向治疗中水基铁磁流体在磁场作用下的聚集性研究.功能材料,2004,35:803-805.
    [43]徐华,宋涛.磁性药物靶向治疗中磁流体的体外动力学研究.北京生物医学工程,2005,24(3):204-208.
    [44]康斌,宋威,张炎等.纳米磁性药物靶向动力学模拟.计算物理,2007,24(5):585-590.
    [45]刘菡萏,徐威,梁庆华等.磁性靶向药物递送中铁磁流体的动力学建模.应用数学和力学,2008,29(10):1219-1226.
    [46]刘菡萏,徐威,王石刚.磁性靶向药物递送的数学建模.上海交通大学学报,2008,42(1):1-4.
    [47]熊平,郭萍,向东等.引导磁场下磁性药物靶向治疗的理论分析.物理学报,2006,55(8):4383-4387.
    [48]X. L. Li, K. L. Yao, H. R. Liu, et al. The investigation of capture behaviors of different shape magnetic sources in the high-gradient magnetic field. Journal of Magnetism and Magnetic Materials,2007,311:481-488.
    [49]H. Xu, T. Song, X. Q. Bao, et al. Site-directed research of magnetic nanoparticles in magnetic drug targeting. Journal of Magnetism and Magnetic Materials,2005,293 (1):514-519.
    [50]C. Alexiou, D. Diehl, P. Henninger, et al. A high field gradient magnet for magnetic drug targeting. IEEE Transactions Applied Superconductivity,2006,16 (2): 1527-1530.
    [51]Q. L. Cao, X. T. Han, L. Li. Enhancement of the efficiency of magnetic targeting for drug delivery:Development and evaluation of magnet system. Journal of Magnetism and Magnetic Materials,2011,323 (15):1919-1924.
    [52]S. Takeda, F. Mishima, S. Fujimoto, et al. Development of magnetically targeted drug delivery system using superconducting magnet, Journal of Magnetism and Magnetic Materials,2007,311:367-371.
    [53]S. Nishijima, S. I. Takeda, F. Mishima, et al. A study of magnetic drug delivery system using bulk high temperature superconducting magnet. IEEE Transactions Applied Superconductivity,2008,18 (2):874-877.
    [54]N. Pei, Z. Y. Huang, J. Ge, et al. In vitro study of deep capture of paramagnetic particle for targeting. Journal of Magnetism and Magnetic Materials,2009,321 (18):2911-2915.
    [55]Z. Y. Huang, N. Pei, Y. Y. Wang, et al. Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics. Biomaterials,2010,31 (8):2130-2140.
    [56]F. Friedlaender, F. Gerber, R. Kurz, et al. Particle motion near and capture on single spheres in HGMS. IEEE Transactions on Magnetics.1981,17 (6):2801-2803.
    [57]B. Polyak, L. Fishbein, M. Chomy, et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proceedings of the National Academy of Sciences of the United States of America,2008,105 (2): 698-703.
    [58]H. T. Chen, A. D. Ebner, A. J. Rosengart, et al. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent:1. Parametric study with single wire correlation. Journal of Magnetism and Magnetic Materials,2004,284: 181-194.
    [59]F. Mishima, S. Fujimoto, S. Takeda, et al. Development of control system for magnetically targeted drug delivery. Journal of Magnetism and Magnetic Materials, 2007,310:2883-2885.
    [60]S. W. Kamau, P. O. Hassa, B. Steitz, et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Research,2006, 34 (5):1-8.
    [61]S. C. McBain, U. Griesenbach, S. Xenariou, et al. Magnetic nanoparticles as gene delivery agents:enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology,2008,19:405102.
    [62]B. Shapiro. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. Journal of Magnetism and Magnetic Materials,2009, 321 (10):1594-1599.
    [63]郭萍,熊平,向东等.引导磁场下顺磁纳米铁核素靶向治疗的理论研究.中国医学物理学杂志,2006,23(3):194-197.
    [64]付志红,赵俊丽,罗聪等.靶向振荡磁场发生器的研制.重庆大学学报.2008,31(7):749-753.
    [65]A. Manz, N. Graber, H. M. Widmer. Miniaturized total chemical analysis systems:A novel concept for chemical sensing. Sensors and Actuators B,1990,1 (1):244-248.
    [66]M. A. M. Gijs. Magnetic bead handling on-chip:new opportunities for analytical applications. Microfluidics and Nanofluidics,2004,1 (1):22-40.
    [67]Y. Moser, T. Lehnert, M. A. M. Gijs. Quadrupolar magnetic actuation of superparamagnetic particles for enhanced microfluidic perfusion. Applied. Physics. Letter,2009,94:022505.
    [68]B. Teste, F. Malloggi, A. L. Gassner, et al. Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient. Lab on a Chip,2011,11: 833-840.
    [69]N. Modak, A. Datta, R. Ganguly. Cell separation in a microfluidic channel using magnetic microspheres. Microfluidics and Nanofluidics,2009,6:647-660.
    [70]C. T. Yavuz, A. Prakash, J. T. Mayo, et al. Magnetic separations:From steel plants to biotechnology. Chemical Engineering Science,2009,64:2510-2521.
    [71]C. P. Lee, M. F. Lai. Microseparator for magnetic particle separations. Journal of Applied Physics,2010,107:09B524.
    [72]C. Y. Wen, C. P. Yeh, C. H. Tsai, et al. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis,2009,30:4179-4186.
    [73]Z. H. Wei, C. P. Lee. Magnetic fluid micromixer with tapered magnets. Journal of Applied Physics,2009,105:07B523.
    [74]Q. Ramadan, M. A. M. Gijs. Microfluidic applications of functionalized magnetic particles for environmental analysis:focus on waterborne pathogen detection. Microfluidics and Nanofluidics,2012,13 (4):529-542.
    [75]N. T. Nguyen. Special issue on magnetic-based microfluidics. Microfluidics and Nanofluidics,2012,13 (4):527-528.
    [76]N. T. Nguyen. Micro magnetofluidics--interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics,2012,12 (1-4):1-16.
    [77]C. S. Lee, H. Lee, R. M. Westervelt. Microelectromagnets for the control of magnetic nanoparticles. Applied Physics Letters,2001,79 (20):3308-3310.
    [78]X. Y. Wu, H. Y. Wu, Y. D. Hu. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluidics and Nanofluidics,2011,11:11-24.
    [79]Y. Wang, J. Zhe, B. T. F. Chung, et al. A rapid magnetic particle driven micromixer. Microfluidics and Nanofluidics,2008,4 (5):375-389.
    [80]A. Hateh, A. E. Kmabolz, G. Holmna, et al. A ferrofluidicmagnetic micropump, Jounral of Microelectromechanical Systems,2001,10 (2):215-222.
    [81]M. Khoo, C. Liu. A novel micromachined magnetic membrane microfluid pump. Proceedings of the 22th annual EMBS international conference,2000,2394-2397.
    [82]王瑞金.微通道中流体扩散和混合机理及其微混合器的研究[博士学位论文].浙江:浙江大学,2005.
    [83]A. L. Gassner, M. Abonnenc, H. X. Chen, et al. Magnetic forces produced by rectangular permanent magnets in static microsystems. Lab on a Chip,2009,9 (16): 2356-2363.
    [84]J. J. Abbott, O. Ergeneman, M. P. Kummer, et al. Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Transactions on Robotics,2007,23 (6):1247-1252.
    [85]E. E. Tzirtzilakis. A mathematical model for blood flow in magnetic field. Physics of Fluids,2005,17 (7):077103.
    [86]K. Smistrup. Magnetic separation in microfluidic systems[博士学位论文]:Technical University of Denmark,2007.
    [87]S. Odenbach, M. Liu. Invalidation of the Kelvin Force in Ferrofluids. Physics Review Letters, Jan,2001,86 (2),328-331.
    [88]Q. L. Cao, X. T. Han, L. Li. Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. Journal of Physics D:Applied Physics,2012,45:465001.
    [89]E. P. Furlani, Y. Sahoo, K. C. Ng, et al. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomedical Microdevices,2007,9 (4): 451-463.
    [90]E. M. Cherry, P. G Maxim, J. K. Eaton. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting. Medical Physics, 2010,37(1):175-182.
    [91]L. L. Castro, R. Miotto, A. F. Bakuzis. Concentration effects on the grafting of magnetic nanoparticles by Monte Carlo simulations. Journal of Applied Physics, 2006,99 (8):08S101.
    [92]X. L. Peng, Y. Min, T. Y. Ma, et al. Two-dimensional Monte Carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic fields. Journal of Magnetism and Magnetic Materials,2009,321 (9):1221-1226.
    [93]G. Bertoni, B. Torre, A. Falqui, et al. Nanochains Formation of Superparamagnetic Nanoparticles. Journal of Physical Chemistry C,2011,115 (15):7249-7254.
    [94]A. Satoh. A new technique for metropolis Monte Carlo simulation to capture aggregate structures of fine particles:Cluster-moving Monte Carlo algorithm. Journal of Colloid and Interface Science,1992,150 (2):461-472.
    [95]M. Aoshima, A.Satoh. Two-dimensional Monte Carlo simulations of a polydisperse colloidal dispersion composed of ferromagnetic particles for the case of no external magnetic field. Journal of Colloid and Interface Science,2004,280 (1):83-90.
    [96]M. Aoshima, A. Satoh. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field. Journal of Colloid and Interface Science,2005,288 (2):475-488.
    [97]张鹏.微流控芯片中多物理场耦合问题的数值模拟研究[博士学位论文].长春:吉林大学,2006.
    [98]J. J. Zhu, L. T. Liang, X. C. Xuan. On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets. Microfluidics and Nanofluidics,2012,12:65-73.
    [99]K. S. Kim, J. K. Park. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab on a Chip,2005,5: 657-664.
    [100]Q. Ramadan, V. Samper, D. Poenar, et al. On-chip micro-electromagnets for magnetic-based bio-molecules separation. Journal of Magnetism and Magnetic Materials,2004,281 (2-3):150-172.
    [101]Q. Ramadan, C. Yu, V. Samper, et al. Microcoils for transport of magnetic beads. Applied Physics Letters,2006,88:032501.
    [102]C. Derec, C. Wilhelm, J. Servais, et al. Local control of magnetic objects in microfluidic channels. Microfluidics and Nanofluidics,2010,8 (1):123-130.
    [103]Munir, J. L. Wang, Z. Z. Zhu, et al. Mathematical modeling and analysis of a magnetic nanoparticle-enhanced mixing in a microfluidic system using time-dependent magnetic field. IEEE Transactions on Nanotechnology,2011,10 (5): 953-961.
    [104]H. Suzuki, C. M. Ho. A chaotic mixer for magnetic bead-based micro cell sorter. Journal of Microelectromechanical Systems, Oct,2004,13 (5):779-790.
    [105]雷鸣,杨叔子,吴雅.遗传搜索优化算法.华中理工大学学报,1992,20:223-228.
    [106]刘琼荪,周声华.基于自适应惩罚函数的混合遗传算法.重庆大学学报(自然科学版),2006,29(6):78-81.
    [107]J. B. Mathieu, S. Martel. Magnetic Microparticle Steering within the Constraints of an MRI System: Proof of Concept of a Novel Targeting Approach. Biomedical Microdevices,2007,9 (6):801-808.
    [108]K. B. Yesin, K. Vollmers, B. J. Nelson. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. The International Journal of Robotics Research,2006,25:527-536.
    [109]曾晓英,杨昶,邱明等.长沙电力学院学报(自然科学版),2005,20(2):82-105.
    [110]H. Choi, J. Choi, G Jang, et al. Two-dimensional actuation of a microrobot with a stationary two-pair coil system. Smart Materials and Structures,2009,18 (5): 1150171-9.
    [111]周赣,黄学良,周勤博等.Halbach型永磁阵列的应用综述.微特电机,2008,36(8):52-55.
    [112]P. J. Conn, J. P. Pin. Pharmacology and functions of metabotropic glutamate receptors. Annual Review of Pharmacology and Toxicology,1997,37 (1):205-237.
    [113]F. Gasparini, R. Kuhn, J. P. Pin. Allosteric modulators of group I metabotropic glutamate receptors:novel subtype-selective ligands and therapeutic perspectives. Current Opinion in Pharmacology,2002,2 (1):43-69.
    [114]J. P. Pin, J. Kniazeff, V. Binet et al. Activation mechanism of the heterodimeric GABAB receptor. Biochemical Pharmacology,2004,68 (8):1565-1572.
    [115]A. C. Foster, J. A. Kemp. Glutamate-and GABA-based CNS therapeutics. Current Opinion in Pharmacology,2006,6 (1):7-17.
    [116]H. J. Tu, P. Rondard, C. J. Xu et al. Dominant role of GABAB2 and Gβγ for GABAB receptor mediated ERK1/2/CREB pathway in cerebellar neurons. Cellular Signalling, 2007,19 (9):1996-2002.
    [117]M. A. Carai, G. Colombo, W. Froestl, et al. In vivo effectiveness of CGP7930, a positive allosteric modulator of the GABAB receptor. European Journal of Pharmacology,2004,504 (3):213-216.
    [118]Y. Namiki, T. Namiki, H. Yoshida, et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nature Nanotechology,2009,4 (9): 598-606.
    [119]E. K. Ruuge, A. N. Rusetski. Magnetic fluids as drug carriers:Targeted transport of drugs by a magnetic field. Journal of Magnetism and Magnetic Materials,1993,122: 335-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700